//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MapValue function, which is shared by various parts of // the lib/Transforms/Utils library. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/ValueMapper.h" #include "llvm/ADT/DenseSet.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" using namespace llvm; // Out of line method to get vtable etc for class. void ValueMapTypeRemapper::anchor() {} void ValueMaterializer::anchor() {} namespace { /// A basic block used in a BlockAddress whose function body is not yet /// materialized. struct DelayedBasicBlock { BasicBlock *OldBB; std::unique_ptr<BasicBlock> TempBB; // Explicit move for MSVC. DelayedBasicBlock(DelayedBasicBlock &&X) : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {} DelayedBasicBlock &operator=(DelayedBasicBlock &&X) { OldBB = std::move(X.OldBB); TempBB = std::move(X.TempBB); return *this; } DelayedBasicBlock(const BlockAddress &Old) : OldBB(Old.getBasicBlock()), TempBB(BasicBlock::Create(Old.getContext())) {} }; struct WorklistEntry { enum EntryKind { MapGlobalInit, MapAppendingVar, MapGlobalAliasee, RemapFunction }; struct GVInitTy { GlobalVariable *GV; Constant *Init; }; struct AppendingGVTy { GlobalVariable *GV; Constant *InitPrefix; }; struct GlobalAliaseeTy { GlobalAlias *GA; Constant *Aliasee; }; unsigned Kind : 2; unsigned MCID : 29; unsigned AppendingGVIsOldCtorDtor : 1; unsigned AppendingGVNumNewMembers; union { GVInitTy GVInit; AppendingGVTy AppendingGV; GlobalAliaseeTy GlobalAliasee; Function *RemapF; } Data; }; struct MappingContext { ValueToValueMapTy *VM; ValueMaterializer *Materializer = nullptr; /// Construct a MappingContext with a value map and materializer. explicit MappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer = nullptr) : VM(&VM), Materializer(Materializer) {} }; class MDNodeMapper; class Mapper { friend class MDNodeMapper; #ifndef NDEBUG DenseSet<GlobalValue *> AlreadyScheduled; #endif RemapFlags Flags; ValueMapTypeRemapper *TypeMapper; unsigned CurrentMCID = 0; SmallVector<MappingContext, 2> MCs; SmallVector<WorklistEntry, 4> Worklist; SmallVector<DelayedBasicBlock, 1> DelayedBBs; SmallVector<Constant *, 16> AppendingInits; public: Mapper(ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) : Flags(Flags), TypeMapper(TypeMapper), MCs(1, MappingContext(VM, Materializer)) {} /// ValueMapper should explicitly call \a flush() before destruction. ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } bool hasWorkToDo() const { return !Worklist.empty(); } unsigned registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer = nullptr) { MCs.push_back(MappingContext(VM, Materializer)); return MCs.size() - 1; } void addFlags(RemapFlags Flags); Value *mapValue(const Value *V); void remapInstruction(Instruction *I); void remapFunction(Function &F); Constant *mapConstant(const Constant *C) { return cast_or_null<Constant>(mapValue(C)); } /// Map metadata. /// /// Find the mapping for MD. Guarantees that the return will be resolved /// (not an MDNode, or MDNode::isResolved() returns true). Metadata *mapMetadata(const Metadata *MD); void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MCID); void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef<Constant *> NewMembers, unsigned MCID); void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, unsigned MCID); void scheduleRemapFunction(Function &F, unsigned MCID); void flush(); private: void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef<Constant *> NewMembers); void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); void remapFunction(Function &F, ValueToValueMapTy &VM); ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } Value *mapBlockAddress(const BlockAddress &BA); /// Map metadata that doesn't require visiting operands. Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); Metadata *mapToSelf(const Metadata *MD); }; class MDNodeMapper { Mapper &M; /// Data about a node in \a UniquedGraph. struct Data { bool HasChanged = false; unsigned ID = ~0u; TempMDNode Placeholder; Data() {} Data(Data &&X) : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)), Placeholder(std::move(X.Placeholder)) {} Data &operator=(Data &&X) { HasChanged = std::move(X.HasChanged); ID = std::move(X.ID); Placeholder = std::move(X.Placeholder); return *this; } }; /// A graph of uniqued nodes. struct UniquedGraph { SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. SmallVector<MDNode *, 16> POT; // Post-order traversal. /// Propagate changed operands through the post-order traversal. /// /// Iteratively update \a Data::HasChanged for each node based on \a /// Data::HasChanged of its operands, until fixed point. void propagateChanges(); /// Get a forward reference to a node to use as an operand. Metadata &getFwdReference(MDNode &Op); }; /// Worklist of distinct nodes whose operands need to be remapped. SmallVector<MDNode *, 16> DistinctWorklist; // Storage for a UniquedGraph. SmallDenseMap<const Metadata *, Data, 32> InfoStorage; SmallVector<MDNode *, 16> POTStorage; public: MDNodeMapper(Mapper &M) : M(M) {} /// Map a metadata node (and its transitive operands). /// /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative /// algorithm handles distinct nodes and uniqued node subgraphs using /// different strategies. /// /// Distinct nodes are immediately mapped and added to \a DistinctWorklist /// using \a mapDistinctNode(). Their mapping can always be computed /// immediately without visiting operands, even if their operands change. /// /// The mapping for uniqued nodes depends on whether their operands change. /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of /// a node to calculate uniqued node mappings in bulk. Distinct leafs are /// added to \a DistinctWorklist with \a mapDistinctNode(). /// /// After mapping \c N itself, this function remaps the operands of the /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c /// N has been mapped. Metadata *map(const MDNode &N); private: /// Map a top-level uniqued node and the uniqued subgraph underneath it. /// /// This builds up a post-order traversal of the (unmapped) uniqued subgraph /// underneath \c FirstN and calculates the nodes' mapping. Each node uses /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its /// operands uses the identity mapping. /// /// The algorithm works as follows: /// /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and /// save the post-order traversal in the given \a UniquedGraph, tracking /// nodes' operands change. /// /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands /// through the \a UniquedGraph until fixed point, following the rule /// that if a node changes, any node that references must also change. /// /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes /// (referencing new operands) where necessary. Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); /// Try to map the operand of an \a MDNode. /// /// If \c Op is already mapped, return the mapping. If it's not an \a /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, /// return the result of \a mapDistinctNode(). /// /// \return None if \c Op is an unmapped uniqued \a MDNode. /// \post getMappedOp(Op) only returns None if this returns None. Optional<Metadata *> tryToMapOperand(const Metadata *Op); /// Map a distinct node. /// /// Return the mapping for the distinct node \c N, saving the result in \a /// DistinctWorklist for later remapping. /// /// \pre \c N is not yet mapped. /// \pre \c N.isDistinct(). MDNode *mapDistinctNode(const MDNode &N); /// Get a previously mapped node. Optional<Metadata *> getMappedOp(const Metadata *Op) const; /// Create a post-order traversal of an unmapped uniqued node subgraph. /// /// This traverses the metadata graph deeply enough to map \c FirstN. It /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any /// metadata that has already been mapped will not be part of the POT. /// /// Each node that has a changed operand from outside the graph (e.g., a /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) /// is marked with \a Data::HasChanged. /// /// \return \c true if any nodes in \c G have \a Data::HasChanged. /// \post \c G.POT is a post-order traversal ending with \c FirstN. /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs /// to change because of operands outside the graph. bool createPOT(UniquedGraph &G, const MDNode &FirstN); /// Visit the operands of a uniqued node in the POT. /// /// Visit the operands in the range from \c I to \c E, returning the first /// uniqued node we find that isn't yet in \c G. \c I is always advanced to /// where to continue the loop through the operands. /// /// This sets \c HasChanged if any of the visited operands change. MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, MDNode::op_iterator E, bool &HasChanged); /// Map all the nodes in the given uniqued graph. /// /// This visits all the nodes in \c G in post-order, using the identity /// mapping or creating a new node depending on \a Data::HasChanged. /// /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of /// their operands outside of \c G. /// \pre \a Data::HasChanged is true for a node in \c G iff any of its /// operands have changed. /// \post \a getMappedOp() returns the mapped node for every node in \c G. void mapNodesInPOT(UniquedGraph &G); /// Remap a node's operands using the given functor. /// /// Iterate through the operands of \c N and update them in place using \c /// mapOperand. /// /// \pre N.isDistinct() or N.isTemporary(). template <class OperandMapper> void remapOperands(MDNode &N, OperandMapper mapOperand); }; } // end namespace Value *Mapper::mapValue(const Value *V) { ValueToValueMapTy::iterator I = getVM().find(V); // If the value already exists in the map, use it. if (I != getVM().end()) { assert(I->second && "Unexpected null mapping"); return I->second; } // If we have a materializer and it can materialize a value, use that. if (auto *Materializer = getMaterializer()) { if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { getVM()[V] = NewV; return NewV; } } // Global values do not need to be seeded into the VM if they // are using the identity mapping. if (isa<GlobalValue>(V)) { if (Flags & RF_NullMapMissingGlobalValues) return nullptr; return getVM()[V] = const_cast<Value *>(V); } if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { // Inline asm may need *type* remapping. FunctionType *NewTy = IA->getFunctionType(); if (TypeMapper) { NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); if (NewTy != IA->getFunctionType()) V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), IA->hasSideEffects(), IA->isAlignStack()); } return getVM()[V] = const_cast<Value *>(V); } if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { const Metadata *MD = MDV->getMetadata(); if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { // Look through to grab the local value. if (Value *LV = mapValue(LAM->getValue())) { if (V == LAM->getValue()) return const_cast<Value *>(V); return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); } // FIXME: always return nullptr once Verifier::verifyDominatesUse() // ensures metadata operands only reference defined SSA values. return (Flags & RF_IgnoreMissingLocals) ? nullptr : MetadataAsValue::get(V->getContext(), MDTuple::get(V->getContext(), None)); } // If this is a module-level metadata and we know that nothing at the module // level is changing, then use an identity mapping. if (Flags & RF_NoModuleLevelChanges) return getVM()[V] = const_cast<Value *>(V); // Map the metadata and turn it into a value. auto *MappedMD = mapMetadata(MD); if (MD == MappedMD) return getVM()[V] = const_cast<Value *>(V); return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); } // Okay, this either must be a constant (which may or may not be mappable) or // is something that is not in the mapping table. Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); if (!C) return nullptr; if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) return mapBlockAddress(*BA); auto mapValueOrNull = [this](Value *V) { auto Mapped = mapValue(V); assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && "Unexpected null mapping for constant operand without " "NullMapMissingGlobalValues flag"); return Mapped; }; // Otherwise, we have some other constant to remap. Start by checking to see // if all operands have an identity remapping. unsigned OpNo = 0, NumOperands = C->getNumOperands(); Value *Mapped = nullptr; for (; OpNo != NumOperands; ++OpNo) { Value *Op = C->getOperand(OpNo); Mapped = mapValueOrNull(Op); if (!Mapped) return nullptr; if (Mapped != Op) break; } // See if the type mapper wants to remap the type as well. Type *NewTy = C->getType(); if (TypeMapper) NewTy = TypeMapper->remapType(NewTy); // If the result type and all operands match up, then just insert an identity // mapping. if (OpNo == NumOperands && NewTy == C->getType()) return getVM()[V] = C; // Okay, we need to create a new constant. We've already processed some or // all of the operands, set them all up now. SmallVector<Constant*, 8> Ops; Ops.reserve(NumOperands); for (unsigned j = 0; j != OpNo; ++j) Ops.push_back(cast<Constant>(C->getOperand(j))); // If one of the operands mismatch, push it and the other mapped operands. if (OpNo != NumOperands) { Ops.push_back(cast<Constant>(Mapped)); // Map the rest of the operands that aren't processed yet. for (++OpNo; OpNo != NumOperands; ++OpNo) { Mapped = mapValueOrNull(C->getOperand(OpNo)); if (!Mapped) return nullptr; Ops.push_back(cast<Constant>(Mapped)); } } Type *NewSrcTy = nullptr; if (TypeMapper) if (auto *GEPO = dyn_cast<GEPOperator>(C)) NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); if (isa<ConstantArray>(C)) return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); if (isa<ConstantStruct>(C)) return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); if (isa<ConstantVector>(C)) return getVM()[V] = ConstantVector::get(Ops); // If this is a no-operand constant, it must be because the type was remapped. if (isa<UndefValue>(C)) return getVM()[V] = UndefValue::get(NewTy); if (isa<ConstantAggregateZero>(C)) return getVM()[V] = ConstantAggregateZero::get(NewTy); assert(isa<ConstantPointerNull>(C)); return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); } Value *Mapper::mapBlockAddress(const BlockAddress &BA) { Function *F = cast<Function>(mapValue(BA.getFunction())); // F may not have materialized its initializer. In that case, create a // dummy basic block for now, and replace it once we've materialized all // the initializers. BasicBlock *BB; if (F->empty()) { DelayedBBs.push_back(DelayedBasicBlock(BA)); BB = DelayedBBs.back().TempBB.get(); } else { BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); } return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); } Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { getVM().MD()[Key].reset(Val); return Val; } Metadata *Mapper::mapToSelf(const Metadata *MD) { return mapToMetadata(MD, const_cast<Metadata *>(MD)); } Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { if (!Op) return nullptr; if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { #ifndef NDEBUG if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) assert((!*MappedOp || M.getVM().count(CMD->getValue()) || M.getVM().getMappedMD(Op)) && "Expected Value to be memoized"); else assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && "Expected result to be memoized"); #endif return *MappedOp; } const MDNode &N = *cast<MDNode>(Op); if (N.isDistinct()) return mapDistinctNode(N); return None; } MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { assert(N.isDistinct() && "Expected a distinct node"); assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); DistinctWorklist.push_back(cast<MDNode>( (M.Flags & RF_MoveDistinctMDs) ? M.mapToSelf(&N) : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone())))); return DistinctWorklist.back(); } static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, Value *MappedV) { if (CMD.getValue() == MappedV) return const_cast<ConstantAsMetadata *>(&CMD); return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; } Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { if (!Op) return nullptr; if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) return *MappedOp; if (isa<MDString>(Op)) return const_cast<Metadata *>(Op); if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); return None; } Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { auto Where = Info.find(&Op); assert(Where != Info.end() && "Expected a valid reference"); auto &OpD = Where->second; if (!OpD.HasChanged) return Op; // Lazily construct a temporary node. if (!OpD.Placeholder) OpD.Placeholder = Op.clone(); return *OpD.Placeholder; } template <class OperandMapper> void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { assert(!N.isUniqued() && "Expected distinct or temporary nodes"); for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { Metadata *Old = N.getOperand(I); Metadata *New = mapOperand(Old); if (Old != New) N.replaceOperandWith(I, New); } } namespace { /// An entry in the worklist for the post-order traversal. struct POTWorklistEntry { MDNode *N; ///< Current node. MDNode::op_iterator Op; ///< Current operand of \c N. /// Keep a flag of whether operands have changed in the worklist to avoid /// hitting the map in \a UniquedGraph. bool HasChanged = false; POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} }; } // end namespace bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { assert(G.Info.empty() && "Expected a fresh traversal"); assert(FirstN.isUniqued() && "Expected uniqued node in POT"); // Construct a post-order traversal of the uniqued subgraph under FirstN. bool AnyChanges = false; SmallVector<POTWorklistEntry, 16> Worklist; Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); (void)G.Info[&FirstN]; while (!Worklist.empty()) { // Start or continue the traversal through the this node's operands. auto &WE = Worklist.back(); if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { // Push a new node to traverse first. Worklist.push_back(POTWorklistEntry(*N)); continue; } // Push the node onto the POT. assert(WE.N->isUniqued() && "Expected only uniqued nodes"); assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); auto &D = G.Info[WE.N]; AnyChanges |= D.HasChanged = WE.HasChanged; D.ID = G.POT.size(); G.POT.push_back(WE.N); // Pop the node off the worklist. Worklist.pop_back(); } return AnyChanges; } MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, MDNode::op_iterator E, bool &HasChanged) { while (I != E) { Metadata *Op = *I++; // Increment even on early return. if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { // Check if the operand changes. HasChanged |= Op != *MappedOp; continue; } // A uniqued metadata node. MDNode &OpN = *cast<MDNode>(Op); assert(OpN.isUniqued() && "Only uniqued operands cannot be mapped immediately"); if (G.Info.insert(std::make_pair(&OpN, Data())).second) return &OpN; // This is a new one. Return it. } return nullptr; } void MDNodeMapper::UniquedGraph::propagateChanges() { bool AnyChanges; do { AnyChanges = false; for (MDNode *N : POT) { auto &D = Info[N]; if (D.HasChanged) continue; if (!llvm::any_of(N->operands(), [&](const Metadata *Op) { auto Where = Info.find(Op); return Where != Info.end() && Where->second.HasChanged; })) continue; AnyChanges = D.HasChanged = true; } } while (AnyChanges); } void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { // Construct uniqued nodes, building forward references as necessary. SmallVector<MDNode *, 16> CyclicNodes; for (auto *N : G.POT) { auto &D = G.Info[N]; if (!D.HasChanged) { // The node hasn't changed. M.mapToSelf(N); continue; } // Remember whether this node had a placeholder. bool HadPlaceholder(D.Placeholder); // Clone the uniqued node and remap the operands. TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { if (Optional<Metadata *> MappedOp = getMappedOp(Old)) return *MappedOp; assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); return &G.getFwdReference(*cast<MDNode>(Old)); }); auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); M.mapToMetadata(N, NewN); // Nodes that were referenced out of order in the POT are involved in a // uniquing cycle. if (HadPlaceholder) CyclicNodes.push_back(NewN); } // Resolve cycles. for (auto *N : CyclicNodes) if (!N->isResolved()) N->resolveCycles(); } Metadata *MDNodeMapper::map(const MDNode &N) { assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); assert(!(M.Flags & RF_NoModuleLevelChanges) && "MDNodeMapper::map assumes module-level changes"); // Require resolved nodes whenever metadata might be remapped. assert(N.isResolved() && "Unexpected unresolved node"); Metadata *MappedN = N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); while (!DistinctWorklist.empty()) remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) return *MappedOp; return mapTopLevelUniquedNode(*cast<MDNode>(Old)); }); return MappedN; } Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { assert(FirstN.isUniqued() && "Expected uniqued node"); // Create a post-order traversal of uniqued nodes under FirstN. UniquedGraph G; if (!createPOT(G, FirstN)) { // Return early if no nodes have changed. for (const MDNode *N : G.POT) M.mapToSelf(N); return &const_cast<MDNode &>(FirstN); } // Update graph with all nodes that have changed. G.propagateChanges(); // Map all the nodes in the graph. mapNodesInPOT(G); // Return the original node, remapped. return *getMappedOp(&FirstN); } namespace { struct MapMetadataDisabler { ValueToValueMapTy &VM; MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { VM.disableMapMetadata(); } ~MapMetadataDisabler() { VM.enableMapMetadata(); } }; } // end namespace Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { // If the value already exists in the map, use it. if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) return *NewMD; if (isa<MDString>(MD)) return const_cast<Metadata *>(MD); // This is a module-level metadata. If nothing at the module level is // changing, use an identity mapping. if ((Flags & RF_NoModuleLevelChanges)) return const_cast<Metadata *>(MD); if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { // Disallow recursion into metadata mapping through mapValue. MapMetadataDisabler MMD(getVM()); // Don't memoize ConstantAsMetadata. Instead of lasting until the // LLVMContext is destroyed, they can be deleted when the GlobalValue they // reference is destructed. These aren't super common, so the extra // indirection isn't that expensive. return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); } assert(isa<MDNode>(MD) && "Expected a metadata node"); return None; } Metadata *Mapper::mapMetadata(const Metadata *MD) { assert(MD && "Expected valid metadata"); assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) return *NewMD; return MDNodeMapper(*this).map(*cast<MDNode>(MD)); } void Mapper::flush() { // Flush out the worklist of global values. while (!Worklist.empty()) { WorklistEntry E = Worklist.pop_back_val(); CurrentMCID = E.MCID; switch (E.Kind) { case WorklistEntry::MapGlobalInit: E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); break; case WorklistEntry::MapAppendingVar: { unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; mapAppendingVariable(*E.Data.AppendingGV.GV, E.Data.AppendingGV.InitPrefix, E.AppendingGVIsOldCtorDtor, makeArrayRef(AppendingInits).slice(PrefixSize)); AppendingInits.resize(PrefixSize); break; } case WorklistEntry::MapGlobalAliasee: E.Data.GlobalAliasee.GA->setAliasee( mapConstant(E.Data.GlobalAliasee.Aliasee)); break; case WorklistEntry::RemapFunction: remapFunction(*E.Data.RemapF); break; } } CurrentMCID = 0; // Finish logic for block addresses now that all global values have been // handled. while (!DelayedBBs.empty()) { DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); } } void Mapper::remapInstruction(Instruction *I) { // Remap operands. for (Use &Op : I->operands()) { Value *V = mapValue(Op); // If we aren't ignoring missing entries, assert that something happened. if (V) Op = V; else assert((Flags & RF_IgnoreMissingLocals) && "Referenced value not in value map!"); } // Remap phi nodes' incoming blocks. if (PHINode *PN = dyn_cast<PHINode>(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = mapValue(PN->getIncomingBlock(i)); // If we aren't ignoring missing entries, assert that something happened. if (V) PN->setIncomingBlock(i, cast<BasicBlock>(V)); else assert((Flags & RF_IgnoreMissingLocals) && "Referenced block not in value map!"); } } // Remap attached metadata. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; I->getAllMetadata(MDs); for (const auto &MI : MDs) { MDNode *Old = MI.second; MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); if (New != Old) I->setMetadata(MI.first, New); } if (!TypeMapper) return; // If the instruction's type is being remapped, do so now. if (auto CS = CallSite(I)) { SmallVector<Type *, 3> Tys; FunctionType *FTy = CS.getFunctionType(); Tys.reserve(FTy->getNumParams()); for (Type *Ty : FTy->params()) Tys.push_back(TypeMapper->remapType(Ty)); CS.mutateFunctionType(FunctionType::get( TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); return; } if (auto *AI = dyn_cast<AllocaInst>(I)) AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { GEP->setSourceElementType( TypeMapper->remapType(GEP->getSourceElementType())); GEP->setResultElementType( TypeMapper->remapType(GEP->getResultElementType())); } I->mutateType(TypeMapper->remapType(I->getType())); } void Mapper::remapFunction(Function &F) { // Remap the operands. for (Use &Op : F.operands()) if (Op) Op = mapValue(Op); // Remap the metadata attachments. SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; F.getAllMetadata(MDs); F.clearMetadata(); for (const auto &I : MDs) F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); // Remap the argument types. if (TypeMapper) for (Argument &A : F.args()) A.mutateType(TypeMapper->remapType(A.getType())); // Remap the instructions. for (BasicBlock &BB : F) for (Instruction &I : BB) remapInstruction(&I); } void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef<Constant *> NewMembers) { SmallVector<Constant *, 16> Elements; if (InitPrefix) { unsigned NumElements = cast<ArrayType>(InitPrefix->getType())->getNumElements(); for (unsigned I = 0; I != NumElements; ++I) Elements.push_back(InitPrefix->getAggregateElement(I)); } PointerType *VoidPtrTy; Type *EltTy; if (IsOldCtorDtor) { // FIXME: This upgrade is done during linking to support the C API. See // also IRLinker::linkAppendingVarProto() in IRMover.cpp. VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); auto &ST = *cast<StructType>(NewMembers.front()->getType()); Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; EltTy = StructType::get(GV.getContext(), Tys, false); } for (auto *V : NewMembers) { Constant *NewV; if (IsOldCtorDtor) { auto *S = cast<ConstantStruct>(V); auto *E1 = mapValue(S->getOperand(0)); auto *E2 = mapValue(S->getOperand(1)); Value *Null = Constant::getNullValue(VoidPtrTy); NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr); } else { NewV = cast_or_null<Constant>(mapValue(V)); } Elements.push_back(NewV); } GV.setInitializer(ConstantArray::get( cast<ArrayType>(GV.getType()->getElementType()), Elements)); } void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MCID) { assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::MapGlobalInit; WE.MCID = MCID; WE.Data.GVInit.GV = &GV; WE.Data.GVInit.Init = &Init; Worklist.push_back(WE); } void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef<Constant *> NewMembers, unsigned MCID) { assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::MapAppendingVar; WE.MCID = MCID; WE.Data.AppendingGV.GV = &GV; WE.Data.AppendingGV.InitPrefix = InitPrefix; WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; WE.AppendingGVNumNewMembers = NewMembers.size(); Worklist.push_back(WE); AppendingInits.append(NewMembers.begin(), NewMembers.end()); } void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, unsigned MCID) { assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::MapGlobalAliasee; WE.MCID = MCID; WE.Data.GlobalAliasee.GA = &GA; WE.Data.GlobalAliasee.Aliasee = &Aliasee; Worklist.push_back(WE); } void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::RemapFunction; WE.MCID = MCID; WE.Data.RemapF = &F; Worklist.push_back(WE); } void Mapper::addFlags(RemapFlags Flags) { assert(!hasWorkToDo() && "Expected to have flushed the worklist"); this->Flags = this->Flags | Flags; } static Mapper *getAsMapper(void *pImpl) { return reinterpret_cast<Mapper *>(pImpl); } namespace { class FlushingMapper { Mapper &M; public: explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { assert(!M.hasWorkToDo() && "Expected to be flushed"); } ~FlushingMapper() { M.flush(); } Mapper *operator->() const { return &M; } }; } // end namespace ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } unsigned ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer) { return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); } void ValueMapper::addFlags(RemapFlags Flags) { FlushingMapper(pImpl)->addFlags(Flags); } Value *ValueMapper::mapValue(const Value &V) { return FlushingMapper(pImpl)->mapValue(&V); } Constant *ValueMapper::mapConstant(const Constant &C) { return cast_or_null<Constant>(mapValue(C)); } Metadata *ValueMapper::mapMetadata(const Metadata &MD) { return FlushingMapper(pImpl)->mapMetadata(&MD); } MDNode *ValueMapper::mapMDNode(const MDNode &N) { return cast_or_null<MDNode>(mapMetadata(N)); } void ValueMapper::remapInstruction(Instruction &I) { FlushingMapper(pImpl)->remapInstruction(&I); } void ValueMapper::remapFunction(Function &F) { FlushingMapper(pImpl)->remapFunction(F); } void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MCID) { getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); } void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef<Constant *> NewMembers, unsigned MCID) { getAsMapper(pImpl)->scheduleMapAppendingVariable( GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); } void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, unsigned MCID) { getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); } void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); }