//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements induction variable simplification. It does // not define any actual pass or policy, but provides a single function to // simplify a loop's induction variables based on ScalarEvolution. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/SimplifyIndVar.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "indvars" STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); namespace { /// This is a utility for simplifying induction variables /// based on ScalarEvolution. It is the primary instrument of the /// IndvarSimplify pass, but it may also be directly invoked to cleanup after /// other loop passes that preserve SCEV. class SimplifyIndvar { Loop *L; LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; SmallVectorImpl<WeakVH> &DeadInsts; bool Changed; public: SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead) : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) { assert(LI && "IV simplification requires LoopInfo"); } bool hasChanged() const { return Changed; } /// Iteratively perform simplification on a worklist of users of the /// specified induction variable. This is the top-level driver that applies /// all simplifications to users of an IV. void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); bool eliminateOverflowIntrinsic(CallInst *CI); bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, bool IsSigned); bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); }; } /// Fold an IV operand into its use. This removes increments of an /// aligned IV when used by a instruction that ignores the low bits. /// /// IVOperand is guaranteed SCEVable, but UseInst may not be. /// /// Return the operand of IVOperand for this induction variable if IVOperand can /// be folded (in case more folding opportunities have been exposed). /// Otherwise return null. Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { Value *IVSrc = nullptr; unsigned OperIdx = 0; const SCEV *FoldedExpr = nullptr; switch (UseInst->getOpcode()) { default: return nullptr; case Instruction::UDiv: case Instruction::LShr: // We're only interested in the case where we know something about // the numerator and have a constant denominator. if (IVOperand != UseInst->getOperand(OperIdx) || !isa<ConstantInt>(UseInst->getOperand(1))) return nullptr; // Attempt to fold a binary operator with constant operand. // e.g. ((I + 1) >> 2) => I >> 2 if (!isa<BinaryOperator>(IVOperand) || !isa<ConstantInt>(IVOperand->getOperand(1))) return nullptr; IVSrc = IVOperand->getOperand(0); // IVSrc must be the (SCEVable) IV, since the other operand is const. assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); if (UseInst->getOpcode() == Instruction::LShr) { // Get a constant for the divisor. See createSCEV. uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); if (D->getValue().uge(BitWidth)) return nullptr; D = ConstantInt::get(UseInst->getContext(), APInt::getOneBitSet(BitWidth, D->getZExtValue())); } FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); } // We have something that might fold it's operand. Compare SCEVs. if (!SE->isSCEVable(UseInst->getType())) return nullptr; // Bypass the operand if SCEV can prove it has no effect. if (SE->getSCEV(UseInst) != FoldedExpr) return nullptr; DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand << " -> " << *UseInst << '\n'); UseInst->setOperand(OperIdx, IVSrc); assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); ++NumElimOperand; Changed = true; if (IVOperand->use_empty()) DeadInsts.emplace_back(IVOperand); return IVSrc; } /// SimplifyIVUsers helper for eliminating useless /// comparisons against an induction variable. void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { unsigned IVOperIdx = 0; ICmpInst::Predicate Pred = ICmp->getPredicate(); if (IVOperand != ICmp->getOperand(0)) { // Swapped assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); IVOperIdx = 1; Pred = ICmpInst::getSwappedPredicate(Pred); } // Get the SCEVs for the ICmp operands. const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); // Simplify unnecessary loops away. const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); S = SE->getSCEVAtScope(S, ICmpLoop); X = SE->getSCEVAtScope(X, ICmpLoop); ICmpInst::Predicate InvariantPredicate; const SCEV *InvariantLHS, *InvariantRHS; // If the condition is always true or always false, replace it with // a constant value. if (SE->isKnownPredicate(Pred, S, X)) { ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); DeadInsts.emplace_back(ICmp); DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); DeadInsts.emplace_back(ICmp); DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); } else if (isa<PHINode>(IVOperand) && SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, InvariantLHS, InvariantRHS)) { // Rewrite the comparison to a loop invariant comparison if it can be done // cheaply, where cheaply means "we don't need to emit any new // instructions". Value *NewLHS = nullptr, *NewRHS = nullptr; if (S == InvariantLHS || X == InvariantLHS) NewLHS = ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); if (S == InvariantRHS || X == InvariantRHS) NewRHS = ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); auto *PN = cast<PHINode>(IVOperand); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && (!NewLHS || !NewRHS); ++i) { // If this is a value incoming from the backedge, then it cannot be a loop // invariant value (since we know that IVOperand is an induction variable). if (L->contains(PN->getIncomingBlock(i))) continue; // NB! This following assert does not fundamentally have to be true, but // it is true today given how SCEV analyzes induction variables. // Specifically, today SCEV will *not* recognize %iv as an induction // variable in the following case: // // define void @f(i32 %k) { // entry: // br i1 undef, label %r, label %l // // l: // %k.inc.l = add i32 %k, 1 // br label %loop // // r: // %k.inc.r = add i32 %k, 1 // br label %loop // // loop: // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ] // %iv.inc = add i32 %iv, 1 // br label %loop // } // // but if it starts to, at some point, then the assertion below will have // to be changed to a runtime check. Value *Incoming = PN->getIncomingValue(i); #ifndef NDEBUG if (auto *I = dyn_cast<Instruction>(Incoming)) assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!"); #endif const SCEV *IncomingS = SE->getSCEV(Incoming); if (!NewLHS && IncomingS == InvariantLHS) NewLHS = Incoming; if (!NewRHS && IncomingS == InvariantRHS) NewRHS = Incoming; } if (!NewLHS || !NewRHS) // We could not find an existing value to replace either LHS or RHS. // Generating new instructions has subtler tradeoffs, so avoid doing that // for now. return; DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); ICmp->setPredicate(InvariantPredicate); ICmp->setOperand(0, NewLHS); ICmp->setOperand(1, NewRHS); } else return; ++NumElimCmp; Changed = true; } /// SimplifyIVUsers helper for eliminating useless /// remainder operations operating on an induction variable. void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, bool IsSigned) { // We're only interested in the case where we know something about // the numerator. if (IVOperand != Rem->getOperand(0)) return; // Get the SCEVs for the ICmp operands. const SCEV *S = SE->getSCEV(Rem->getOperand(0)); const SCEV *X = SE->getSCEV(Rem->getOperand(1)); // Simplify unnecessary loops away. const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); S = SE->getSCEVAtScope(S, ICmpLoop); X = SE->getSCEVAtScope(X, ICmpLoop); // i % n --> i if i is in [0,n). if ((!IsSigned || SE->isKnownNonNegative(S)) && SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, S, X)) Rem->replaceAllUsesWith(Rem->getOperand(0)); else { // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); if (IsSigned && !SE->isKnownNonNegative(LessOne)) return; if (!SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, LessOne, X)) return; ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, Rem->getOperand(0), Rem->getOperand(1)); SelectInst *Sel = SelectInst::Create(ICmp, ConstantInt::get(Rem->getType(), 0), Rem->getOperand(0), "tmp", Rem); Rem->replaceAllUsesWith(Sel); } DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); ++NumElimRem; Changed = true; DeadInsts.emplace_back(Rem); } bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { auto *F = CI->getCalledFunction(); if (!F) return false; typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( const SCEV *, const SCEV *, SCEV::NoWrapFlags); typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( const SCEV *, Type *); OperationFunctionTy Operation; ExtensionFunctionTy Extension; Instruction::BinaryOps RawOp; // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we // have nuw. bool NoSignedOverflow; switch (F->getIntrinsicID()) { default: return false; case Intrinsic::sadd_with_overflow: Operation = &ScalarEvolution::getAddExpr; Extension = &ScalarEvolution::getSignExtendExpr; RawOp = Instruction::Add; NoSignedOverflow = true; break; case Intrinsic::uadd_with_overflow: Operation = &ScalarEvolution::getAddExpr; Extension = &ScalarEvolution::getZeroExtendExpr; RawOp = Instruction::Add; NoSignedOverflow = false; break; case Intrinsic::ssub_with_overflow: Operation = &ScalarEvolution::getMinusSCEV; Extension = &ScalarEvolution::getSignExtendExpr; RawOp = Instruction::Sub; NoSignedOverflow = true; break; case Intrinsic::usub_with_overflow: Operation = &ScalarEvolution::getMinusSCEV; Extension = &ScalarEvolution::getZeroExtendExpr; RawOp = Instruction::Sub; NoSignedOverflow = false; break; } const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); auto *NarrowTy = cast<IntegerType>(LHS->getType()); auto *WideTy = IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); const SCEV *A = (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap), WideTy); const SCEV *B = (SE->*Operation)((SE->*Extension)(LHS, WideTy), (SE->*Extension)(RHS, WideTy), SCEV::FlagAnyWrap); if (A != B) return false; // Proved no overflow, nuke the overflow check and, if possible, the overflow // intrinsic as well. BinaryOperator *NewResult = BinaryOperator::Create( RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); if (NoSignedOverflow) NewResult->setHasNoSignedWrap(true); else NewResult->setHasNoUnsignedWrap(true); SmallVector<ExtractValueInst *, 4> ToDelete; for (auto *U : CI->users()) { if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { if (EVI->getIndices()[0] == 1) EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); else { assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); EVI->replaceAllUsesWith(NewResult); } ToDelete.push_back(EVI); } } for (auto *EVI : ToDelete) EVI->eraseFromParent(); if (CI->use_empty()) CI->eraseFromParent(); return true; } /// Eliminate an operation that consumes a simple IV and has no observable /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, /// but UseInst may not be. bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, Instruction *IVOperand) { if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { eliminateIVComparison(ICmp, IVOperand); return true; } if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { bool IsSigned = Rem->getOpcode() == Instruction::SRem; if (IsSigned || Rem->getOpcode() == Instruction::URem) { eliminateIVRemainder(Rem, IVOperand, IsSigned); return true; } } if (auto *CI = dyn_cast<CallInst>(UseInst)) if (eliminateOverflowIntrinsic(CI)) return true; if (eliminateIdentitySCEV(UseInst, IVOperand)) return true; return false; } /// Eliminate any operation that SCEV can prove is an identity function. bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand) { if (!SE->isSCEVable(UseInst->getType()) || (UseInst->getType() != IVOperand->getType()) || (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) return false; // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the // dominator tree, even if X is an operand to Y. For instance, in // // %iv = phi i32 {0,+,1} // br %cond, label %left, label %merge // // left: // %X = add i32 %iv, 0 // br label %merge // // merge: // %M = phi (%X, %iv) // // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and // %M.replaceAllUsesWith(%X) would be incorrect. if (isa<PHINode>(UseInst)) // If UseInst is not a PHI node then we know that IVOperand dominates // UseInst directly from the legality of SSA. if (!DT || !DT->dominates(IVOperand, UseInst)) return false; if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) return false; DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); UseInst->replaceAllUsesWith(IVOperand); ++NumElimIdentity; Changed = true; DeadInsts.emplace_back(UseInst); return true; } /// Annotate BO with nsw / nuw if it provably does not signed-overflow / /// unsigned-overflow. Returns true if anything changed, false otherwise. bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, Value *IVOperand) { // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) return false; const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, SCEV::NoWrapFlags); switch (BO->getOpcode()) { default: return false; case Instruction::Add: GetExprForBO = &ScalarEvolution::getAddExpr; break; case Instruction::Sub: GetExprForBO = &ScalarEvolution::getMinusSCEV; break; case Instruction::Mul: GetExprForBO = &ScalarEvolution::getMulExpr; break; } unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); bool Changed = false; if (!BO->hasNoUnsignedWrap()) { const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); const SCEV *OpAfterExtend = (SE->*GetExprForBO)( SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap); if (ExtendAfterOp == OpAfterExtend) { BO->setHasNoUnsignedWrap(); SE->forgetValue(BO); Changed = true; } } if (!BO->hasNoSignedWrap()) { const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); const SCEV *OpAfterExtend = (SE->*GetExprForBO)( SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap); if (ExtendAfterOp == OpAfterExtend) { BO->setHasNoSignedWrap(); SE->forgetValue(BO); Changed = true; } } return Changed; } /// Add all uses of Def to the current IV's worklist. static void pushIVUsers( Instruction *Def, SmallPtrSet<Instruction*,16> &Simplified, SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { for (User *U : Def->users()) { Instruction *UI = cast<Instruction>(U); // Avoid infinite or exponential worklist processing. // Also ensure unique worklist users. // If Def is a LoopPhi, it may not be in the Simplified set, so check for // self edges first. if (UI != Def && Simplified.insert(UI).second) SimpleIVUsers.push_back(std::make_pair(UI, Def)); } } /// Return true if this instruction generates a simple SCEV /// expression in terms of that IV. /// /// This is similar to IVUsers' isInteresting() but processes each instruction /// non-recursively when the operand is already known to be a simpleIVUser. /// static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { if (!SE->isSCEVable(I->getType())) return false; // Get the symbolic expression for this instruction. const SCEV *S = SE->getSCEV(I); // Only consider affine recurrences. const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); if (AR && AR->getLoop() == L) return true; return false; } /// Iteratively perform simplification on a worklist of users /// of the specified induction variable. Each successive simplification may push /// more users which may themselves be candidates for simplification. /// /// This algorithm does not require IVUsers analysis. Instead, it simplifies /// instructions in-place during analysis. Rather than rewriting induction /// variables bottom-up from their users, it transforms a chain of IVUsers /// top-down, updating the IR only when it encounters a clear optimization /// opportunity. /// /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. /// void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { if (!SE->isSCEVable(CurrIV->getType())) return; // Instructions processed by SimplifyIndvar for CurrIV. SmallPtrSet<Instruction*,16> Simplified; // Use-def pairs if IV users waiting to be processed for CurrIV. SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; // Push users of the current LoopPhi. In rare cases, pushIVUsers may be // called multiple times for the same LoopPhi. This is the proper thing to // do for loop header phis that use each other. pushIVUsers(CurrIV, Simplified, SimpleIVUsers); while (!SimpleIVUsers.empty()) { std::pair<Instruction*, Instruction*> UseOper = SimpleIVUsers.pop_back_val(); Instruction *UseInst = UseOper.first; // Bypass back edges to avoid extra work. if (UseInst == CurrIV) continue; Instruction *IVOperand = UseOper.second; for (unsigned N = 0; IVOperand; ++N) { assert(N <= Simplified.size() && "runaway iteration"); Value *NewOper = foldIVUser(UseOper.first, IVOperand); if (!NewOper) break; // done folding IVOperand = dyn_cast<Instruction>(NewOper); } if (!IVOperand) continue; if (eliminateIVUser(UseOper.first, IVOperand)) { pushIVUsers(IVOperand, Simplified, SimpleIVUsers); continue; } if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { if (isa<OverflowingBinaryOperator>(BO) && strengthenOverflowingOperation(BO, IVOperand)) { // re-queue uses of the now modified binary operator and fall // through to the checks that remain. pushIVUsers(IVOperand, Simplified, SimpleIVUsers); } } CastInst *Cast = dyn_cast<CastInst>(UseOper.first); if (V && Cast) { V->visitCast(Cast); continue; } if (isSimpleIVUser(UseOper.first, L, SE)) { pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); } } } namespace llvm { void IVVisitor::anchor() { } /// Simplify instructions that use this induction variable /// by using ScalarEvolution to analyze the IV's recurrence. bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) { SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead); SIV.simplifyUsers(CurrIV, V); return SIV.hasChanged(); } /// Simplify users of induction variables within this /// loop. This does not actually change or add IVs. bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) { bool Changed = false; for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead); } return Changed; } } // namespace llvm