//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if (c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LCSSA.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PredIteratorCache.h" #include "llvm/Pass.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; #define DEBUG_TYPE "lcssa" STATISTIC(NumLCSSA, "Number of live out of a loop variables"); /// Return true if the specified block is in the list. static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &ExitBlocks) { return find(ExitBlocks, BB) != ExitBlocks.end(); } /// Given an instruction in the loop, check to see if it has any uses that are /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the /// uses. static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT, const SmallVectorImpl<BasicBlock *> &ExitBlocks, PredIteratorCache &PredCache, LoopInfo *LI) { SmallVector<Use *, 16> UsesToRewrite; // Tokens cannot be used in PHI nodes, so we skip over them. // We can run into tokens which are live out of a loop with catchswitch // instructions in Windows EH if the catchswitch has one catchpad which // is inside the loop and another which is not. if (Inst.getType()->isTokenTy()) return false; BasicBlock *InstBB = Inst.getParent(); for (Use &U : Inst.uses()) { Instruction *User = cast<Instruction>(U.getUser()); BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast<PHINode>(User)) UserBB = PN->getIncomingBlock(U); if (InstBB != UserBB && !L.contains(UserBB)) UsesToRewrite.push_back(&U); } // If there are no uses outside the loop, exit with no change. if (UsesToRewrite.empty()) return false; ++NumLCSSA; // We are applying the transformation // Invoke instructions are special in that their result value is not available // along their unwind edge. The code below tests to see whether DomBB // dominates the value, so adjust DomBB to the normal destination block, // which is effectively where the value is first usable. BasicBlock *DomBB = Inst.getParent(); if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst)) DomBB = Inv->getNormalDest(); DomTreeNode *DomNode = DT.getNode(DomBB); SmallVector<PHINode *, 16> AddedPHIs; SmallVector<PHINode *, 8> PostProcessPHIs; SSAUpdater SSAUpdate; SSAUpdate.Initialize(Inst.getType(), Inst.getName()); // Insert the LCSSA phi's into all of the exit blocks dominated by the // value, and add them to the Phi's map. for (BasicBlock *ExitBB : ExitBlocks) { if (!DT.dominates(DomNode, DT.getNode(ExitBB))) continue; // If we already inserted something for this BB, don't reprocess it. if (SSAUpdate.HasValueForBlock(ExitBB)) continue; PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB), Inst.getName() + ".lcssa", &ExitBB->front()); // Add inputs from inside the loop for this PHI. for (BasicBlock *Pred : PredCache.get(ExitBB)) { PN->addIncoming(&Inst, Pred); // If the exit block has a predecessor not within the loop, arrange for // the incoming value use corresponding to that predecessor to be // rewritten in terms of a different LCSSA PHI. if (!L.contains(Pred)) UsesToRewrite.push_back( &PN->getOperandUse(PN->getOperandNumForIncomingValue( PN->getNumIncomingValues() - 1))); } AddedPHIs.push_back(PN); // Remember that this phi makes the value alive in this block. SSAUpdate.AddAvailableValue(ExitBB, PN); // LoopSimplify might fail to simplify some loops (e.g. when indirect // branches are involved). In such situations, it might happen that an exit // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create // PHIs in such an exit block, we are also inserting PHIs into L2's header. // This could break LCSSA form for L2 because these inserted PHIs can also // have uses outside of L2. Remember all PHIs in such situation as to // revisit than later on. FIXME: Remove this if indirectbr support into // LoopSimplify gets improved. if (auto *OtherLoop = LI->getLoopFor(ExitBB)) if (!L.contains(OtherLoop)) PostProcessPHIs.push_back(PN); } // Rewrite all uses outside the loop in terms of the new PHIs we just // inserted. for (Use *UseToRewrite : UsesToRewrite) { // If this use is in an exit block, rewrite to use the newly inserted PHI. // This is required for correctness because SSAUpdate doesn't handle uses in // the same block. It assumes the PHI we inserted is at the end of the // block. Instruction *User = cast<Instruction>(UseToRewrite->getUser()); BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast<PHINode>(User)) UserBB = PN->getIncomingBlock(*UseToRewrite); if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { // Tell the VHs that the uses changed. This updates SCEV's caches. if (UseToRewrite->get()->hasValueHandle()) ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); UseToRewrite->set(&UserBB->front()); continue; } // Otherwise, do full PHI insertion. SSAUpdate.RewriteUse(*UseToRewrite); } // Post process PHI instructions that were inserted into another disjoint loop // and update their exits properly. for (auto *I : PostProcessPHIs) { if (I->use_empty()) continue; BasicBlock *PHIBB = I->getParent(); Loop *OtherLoop = LI->getLoopFor(PHIBB); SmallVector<BasicBlock *, 8> EBs; OtherLoop->getExitBlocks(EBs); if (EBs.empty()) continue; // Recurse and re-process each PHI instruction. FIXME: we should really // convert this entire thing to a worklist approach where we process a // vector of instructions... processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI); } // Remove PHI nodes that did not have any uses rewritten. for (PHINode *PN : AddedPHIs) if (PN->use_empty()) PN->eraseFromParent(); return true; } /// Return true if the specified block dominates at least /// one of the blocks in the specified list. static bool blockDominatesAnExit(BasicBlock *BB, DominatorTree &DT, const SmallVectorImpl<BasicBlock *> &ExitBlocks) { DomTreeNode *DomNode = DT.getNode(BB); return llvm::any_of(ExitBlocks, [&](BasicBlock * EB) { return DT.dominates(DomNode, DT.getNode(EB)); }); } bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE) { bool Changed = false; // Get the set of exiting blocks. SmallVector<BasicBlock *, 8> ExitBlocks; L.getExitBlocks(ExitBlocks); if (ExitBlocks.empty()) return false; PredIteratorCache PredCache; // Look at all the instructions in the loop, checking to see if they have uses // outside the loop. If so, rewrite those uses. for (BasicBlock *BB : L.blocks()) { // For large loops, avoid use-scanning by using dominance information: In // particular, if a block does not dominate any of the loop exits, then none // of the values defined in the block could be used outside the loop. if (!blockDominatesAnExit(BB, DT, ExitBlocks)) continue; for (Instruction &I : *BB) { // Reject two common cases fast: instructions with no uses (like stores) // and instructions with one use that is in the same block as this. if (I.use_empty() || (I.hasOneUse() && I.user_back()->getParent() == BB && !isa<PHINode>(I.user_back()))) continue; Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI); } } // If we modified the code, remove any caches about the loop from SCEV to // avoid dangling entries. // FIXME: This is a big hammer, can we clear the cache more selectively? if (SE && Changed) SE->forgetLoop(&L); assert(L.isLCSSAForm(DT)); return Changed; } /// Process a loop nest depth first. bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE) { bool Changed = false; // Recurse depth-first through inner loops. for (Loop *SubLoop : L.getSubLoops()) Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); Changed |= formLCSSA(L, DT, LI, SE); return Changed; } /// Process all loops in the function, inner-most out. static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, ScalarEvolution *SE) { bool Changed = false; for (auto &L : *LI) Changed |= formLCSSARecursively(*L, DT, LI, SE); return Changed; } namespace { struct LCSSAWrapperPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid LCSSAWrapperPass() : FunctionPass(ID) { initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); } // Cached analysis information for the current function. DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; bool runOnFunction(Function &F) override; /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addPreservedID(LoopSimplifyID); AU.addPreserved<AAResultsWrapperPass>(); AU.addPreserved<BasicAAWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); AU.addPreserved<ScalarEvolutionWrapperPass>(); AU.addPreserved<SCEVAAWrapperPass>(); } }; } char LCSSAWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", false, false) Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } char &llvm::LCSSAID = LCSSAWrapperPass::ID; /// Transform \p F into loop-closed SSA form. bool LCSSAWrapperPass::runOnFunction(Function &F) { LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); SE = SEWP ? &SEWP->getSE() : nullptr; return formLCSSAOnAllLoops(LI, *DT, SE); } PreservedAnalyses LCSSAPass::run(Function &F, AnalysisManager<Function> &AM) { auto &LI = AM.getResult<LoopAnalysis>(F); auto &DT = AM.getResult<DominatorTreeAnalysis>(F); auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); if (!formLCSSAOnAllLoops(&LI, DT, SE)) return PreservedAnalyses::all(); // FIXME: This should also 'preserve the CFG'. PreservedAnalyses PA; PA.preserve<BasicAA>(); PA.preserve<GlobalsAA>(); PA.preserve<SCEVAA>(); PA.preserve<ScalarEvolutionAnalysis>(); return PA; }