//===- CodeExtractor.cpp - Pull code region into a new function -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the interface to tear out a code region, such as an // individual loop or a parallel section, into a new function, replacing it with // a call to the new function. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/CodeExtractor.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/RegionIterator.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include <algorithm> #include <set> using namespace llvm; #define DEBUG_TYPE "code-extractor" // Provide a command-line option to aggregate function arguments into a struct // for functions produced by the code extractor. This is useful when converting // extracted functions to pthread-based code, as only one argument (void*) can // be passed in to pthread_create(). static cl::opt<bool> AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, cl::desc("Aggregate arguments to code-extracted functions")); /// \brief Test whether a block is valid for extraction. static bool isBlockValidForExtraction(const BasicBlock &BB) { // Landing pads must be in the function where they were inserted for cleanup. if (BB.isEHPad()) return false; // Don't hoist code containing allocas, invokes, or vastarts. for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) return false; if (const CallInst *CI = dyn_cast<CallInst>(I)) if (const Function *F = CI->getCalledFunction()) if (F->getIntrinsicID() == Intrinsic::vastart) return false; } return true; } /// \brief Build a set of blocks to extract if the input blocks are viable. template <typename IteratorT> static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin, IteratorT BBEnd) { SetVector<BasicBlock *> Result; assert(BBBegin != BBEnd); // Loop over the blocks, adding them to our set-vector, and aborting with an // empty set if we encounter invalid blocks. do { if (!Result.insert(*BBBegin)) llvm_unreachable("Repeated basic blocks in extraction input"); if (!isBlockValidForExtraction(**BBBegin)) { Result.clear(); return Result; } } while (++BBBegin != BBEnd); #ifndef NDEBUG for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), E = Result.end(); I != E; ++I) for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); PI != PE; ++PI) assert(Result.count(*PI) && "No blocks in this region may have entries from outside the region" " except for the first block!"); #endif return Result; } /// \brief Helper to call buildExtractionBlockSet with an ArrayRef. static SetVector<BasicBlock *> buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) { return buildExtractionBlockSet(BBs.begin(), BBs.end()); } /// \brief Helper to call buildExtractionBlockSet with a RegionNode. static SetVector<BasicBlock *> buildExtractionBlockSet(const RegionNode &RN) { if (!RN.isSubRegion()) // Just a single BasicBlock. return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>()); const Region &R = *RN.getNodeAs<Region>(); return buildExtractionBlockSet(R.block_begin(), R.block_end()); } CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs) : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt), Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {} CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, bool AggregateArgs) : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {} CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs) : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {} CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN, bool AggregateArgs) : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {} /// definedInRegion - Return true if the specified value is defined in the /// extracted region. static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { if (Instruction *I = dyn_cast<Instruction>(V)) if (Blocks.count(I->getParent())) return true; return false; } /// definedInCaller - Return true if the specified value is defined in the /// function being code extracted, but not in the region being extracted. /// These values must be passed in as live-ins to the function. static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { if (isa<Argument>(V)) return true; if (Instruction *I = dyn_cast<Instruction>(V)) if (!Blocks.count(I->getParent())) return true; return false; } void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs) const { for (BasicBlock *BB : Blocks) { // If a used value is defined outside the region, it's an input. If an // instruction is used outside the region, it's an output. for (Instruction &II : *BB) { for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; ++OI) if (definedInCaller(Blocks, *OI)) Inputs.insert(*OI); for (User *U : II.users()) if (!definedInRegion(Blocks, U)) { Outputs.insert(&II); break; } } } } /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the /// region, we need to split the entry block of the region so that the PHI node /// is easier to deal with. void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { unsigned NumPredsFromRegion = 0; unsigned NumPredsOutsideRegion = 0; if (Header != &Header->getParent()->getEntryBlock()) { PHINode *PN = dyn_cast<PHINode>(Header->begin()); if (!PN) return; // No PHI nodes. // If the header node contains any PHI nodes, check to see if there is more // than one entry from outside the region. If so, we need to sever the // header block into two. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (Blocks.count(PN->getIncomingBlock(i))) ++NumPredsFromRegion; else ++NumPredsOutsideRegion; // If there is one (or fewer) predecessor from outside the region, we don't // need to do anything special. if (NumPredsOutsideRegion <= 1) return; } // Otherwise, we need to split the header block into two pieces: one // containing PHI nodes merging values from outside of the region, and a // second that contains all of the code for the block and merges back any // incoming values from inside of the region. BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator(); BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, Header->getName()+".ce"); // We only want to code extract the second block now, and it becomes the new // header of the region. BasicBlock *OldPred = Header; Blocks.remove(OldPred); Blocks.insert(NewBB); Header = NewBB; // Okay, update dominator sets. The blocks that dominate the new one are the // blocks that dominate TIBB plus the new block itself. if (DT) DT->splitBlock(NewBB); // Okay, now we need to adjust the PHI nodes and any branches from within the // region to go to the new header block instead of the old header block. if (NumPredsFromRegion) { PHINode *PN = cast<PHINode>(OldPred->begin()); // Loop over all of the predecessors of OldPred that are in the region, // changing them to branch to NewBB instead. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (Blocks.count(PN->getIncomingBlock(i))) { TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); TI->replaceUsesOfWith(OldPred, NewBB); } // Okay, everything within the region is now branching to the right block, we // just have to update the PHI nodes now, inserting PHI nodes into NewBB. for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { PHINode *PN = cast<PHINode>(AfterPHIs); // Create a new PHI node in the new region, which has an incoming value // from OldPred of PN. PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, PN->getName() + ".ce", &NewBB->front()); NewPN->addIncoming(PN, OldPred); // Loop over all of the incoming value in PN, moving them to NewPN if they // are from the extracted region. for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { if (Blocks.count(PN->getIncomingBlock(i))) { NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); PN->removeIncomingValue(i); --i; } } } } } void CodeExtractor::splitReturnBlocks() { for (BasicBlock *Block : Blocks) if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { BasicBlock *New = Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); if (DT) { // Old dominates New. New node dominates all other nodes dominated // by Old. DomTreeNode *OldNode = DT->getNode(Block); SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), OldNode->end()); DomTreeNode *NewNode = DT->addNewBlock(New, Block); for (DomTreeNode *I : Children) DT->changeImmediateDominator(I, NewNode); } } } /// constructFunction - make a function based on inputs and outputs, as follows: /// f(in0, ..., inN, out0, ..., outN) /// Function *CodeExtractor::constructFunction(const ValueSet &inputs, const ValueSet &outputs, BasicBlock *header, BasicBlock *newRootNode, BasicBlock *newHeader, Function *oldFunction, Module *M) { DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); // This function returns unsigned, outputs will go back by reference. switch (NumExitBlocks) { case 0: case 1: RetTy = Type::getVoidTy(header->getContext()); break; case 2: RetTy = Type::getInt1Ty(header->getContext()); break; default: RetTy = Type::getInt16Ty(header->getContext()); break; } std::vector<Type*> paramTy; // Add the types of the input values to the function's argument list for (Value *value : inputs) { DEBUG(dbgs() << "value used in func: " << *value << "\n"); paramTy.push_back(value->getType()); } // Add the types of the output values to the function's argument list. for (Value *output : outputs) { DEBUG(dbgs() << "instr used in func: " << *output << "\n"); if (AggregateArgs) paramTy.push_back(output->getType()); else paramTy.push_back(PointerType::getUnqual(output->getType())); } DEBUG({ dbgs() << "Function type: " << *RetTy << " f("; for (Type *i : paramTy) dbgs() << *i << ", "; dbgs() << ")\n"; }); StructType *StructTy; if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { StructTy = StructType::get(M->getContext(), paramTy); paramTy.clear(); paramTy.push_back(PointerType::getUnqual(StructTy)); } FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); // Create the new function Function *newFunction = Function::Create(funcType, GlobalValue::InternalLinkage, oldFunction->getName() + "_" + header->getName(), M); // If the old function is no-throw, so is the new one. if (oldFunction->doesNotThrow()) newFunction->setDoesNotThrow(); newFunction->getBasicBlockList().push_back(newRootNode); // Create an iterator to name all of the arguments we inserted. Function::arg_iterator AI = newFunction->arg_begin(); // Rewrite all users of the inputs in the extracted region to use the // arguments (or appropriate addressing into struct) instead. for (unsigned i = 0, e = inputs.size(); i != e; ++i) { Value *RewriteVal; if (AggregateArgs) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); TerminatorInst *TI = newFunction->begin()->getTerminator(); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); } else RewriteVal = &*AI++; std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); for (User *use : Users) if (Instruction *inst = dyn_cast<Instruction>(use)) if (Blocks.count(inst->getParent())) inst->replaceUsesOfWith(inputs[i], RewriteVal); } // Set names for input and output arguments. if (!AggregateArgs) { AI = newFunction->arg_begin(); for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) AI->setName(inputs[i]->getName()); for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) AI->setName(outputs[i]->getName()+".out"); } // Rewrite branches to basic blocks outside of the loop to new dummy blocks // within the new function. This must be done before we lose track of which // blocks were originally in the code region. std::vector<User*> Users(header->user_begin(), header->user_end()); for (unsigned i = 0, e = Users.size(); i != e; ++i) // The BasicBlock which contains the branch is not in the region // modify the branch target to a new block if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) if (!Blocks.count(TI->getParent()) && TI->getParent()->getParent() == oldFunction) TI->replaceUsesOfWith(header, newHeader); return newFunction; } /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI /// that uses the value within the basic block, and return the predecessor /// block associated with that use, or return 0 if none is found. static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { for (Use &U : Used->uses()) { PHINode *P = dyn_cast<PHINode>(U.getUser()); if (P && P->getParent() == BB) return P->getIncomingBlock(U); } return nullptr; } /// emitCallAndSwitchStatement - This method sets up the caller side by adding /// the call instruction, splitting any PHI nodes in the header block as /// necessary. void CodeExtractor:: emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, ValueSet &inputs, ValueSet &outputs) { // Emit a call to the new function, passing in: *pointer to struct (if // aggregating parameters), or plan inputs and allocated memory for outputs std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; LLVMContext &Context = newFunction->getContext(); // Add inputs as params, or to be filled into the struct for (Value *input : inputs) if (AggregateArgs) StructValues.push_back(input); else params.push_back(input); // Create allocas for the outputs for (Value *output : outputs) { if (AggregateArgs) { StructValues.push_back(output); } else { AllocaInst *alloca = new AllocaInst(output->getType(), nullptr, output->getName() + ".loc", &codeReplacer->getParent()->front().front()); ReloadOutputs.push_back(alloca); params.push_back(alloca); } } StructType *StructArgTy = nullptr; AllocaInst *Struct = nullptr; if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { std::vector<Type*> ArgTypes; for (ValueSet::iterator v = StructValues.begin(), ve = StructValues.end(); v != ve; ++v) ArgTypes.push_back((*v)->getType()); // Allocate a struct at the beginning of this function StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); Struct = new AllocaInst(StructArgTy, nullptr, "structArg", &codeReplacer->getParent()->front().front()); params.push_back(Struct); for (unsigned i = 0, e = inputs.size(); i != e; ++i) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); codeReplacer->getInstList().push_back(GEP); StoreInst *SI = new StoreInst(StructValues[i], GEP); codeReplacer->getInstList().push_back(SI); } } // Emit the call to the function CallInst *call = CallInst::Create(newFunction, params, NumExitBlocks > 1 ? "targetBlock" : ""); codeReplacer->getInstList().push_back(call); Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); unsigned FirstOut = inputs.size(); if (!AggregateArgs) std::advance(OutputArgBegin, inputs.size()); // Reload the outputs passed in by reference for (unsigned i = 0, e = outputs.size(); i != e; ++i) { Value *Output = nullptr; if (AggregateArgs) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); codeReplacer->getInstList().push_back(GEP); Output = GEP; } else { Output = ReloadOutputs[i]; } LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); Reloads.push_back(load); codeReplacer->getInstList().push_back(load); std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); for (unsigned u = 0, e = Users.size(); u != e; ++u) { Instruction *inst = cast<Instruction>(Users[u]); if (!Blocks.count(inst->getParent())) inst->replaceUsesOfWith(outputs[i], load); } } // Now we can emit a switch statement using the call as a value. SwitchInst *TheSwitch = SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), codeReplacer, 0, codeReplacer); // Since there may be multiple exits from the original region, make the new // function return an unsigned, switch on that number. This loop iterates // over all of the blocks in the extracted region, updating any terminator // instructions in the to-be-extracted region that branch to blocks that are // not in the region to be extracted. std::map<BasicBlock*, BasicBlock*> ExitBlockMap; unsigned switchVal = 0; for (BasicBlock *Block : Blocks) { TerminatorInst *TI = Block->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (!Blocks.count(TI->getSuccessor(i))) { BasicBlock *OldTarget = TI->getSuccessor(i); // add a new basic block which returns the appropriate value BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; if (!NewTarget) { // If we don't already have an exit stub for this non-extracted // destination, create one now! NewTarget = BasicBlock::Create(Context, OldTarget->getName() + ".exitStub", newFunction); unsigned SuccNum = switchVal++; Value *brVal = nullptr; switch (NumExitBlocks) { case 0: case 1: break; // No value needed. case 2: // Conditional branch, return a bool brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); break; default: brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); break; } ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); // Update the switch instruction. TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), SuccNum), OldTarget); // Restore values just before we exit Function::arg_iterator OAI = OutputArgBegin; for (unsigned out = 0, e = outputs.size(); out != e; ++out) { // For an invoke, the normal destination is the only one that is // dominated by the result of the invocation BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); bool DominatesDef = true; BasicBlock *NormalDest = nullptr; if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out])) NormalDest = Invoke->getNormalDest(); if (NormalDest) { DefBlock = NormalDest; // Make sure we are looking at the original successor block, not // at a newly inserted exit block, which won't be in the dominator // info. for (const auto &I : ExitBlockMap) if (DefBlock == I.second) { DefBlock = I.first; break; } // In the extract block case, if the block we are extracting ends // with an invoke instruction, make sure that we don't emit a // store of the invoke value for the unwind block. if (!DT && DefBlock != OldTarget) DominatesDef = false; } if (DT) { DominatesDef = DT->dominates(DefBlock, OldTarget); // If the output value is used by a phi in the target block, // then we need to test for dominance of the phi's predecessor // instead. Unfortunately, this a little complicated since we // have already rewritten uses of the value to uses of the reload. BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], OldTarget); if (pred && DT && DT->dominates(DefBlock, pred)) DominatesDef = true; } if (DominatesDef) { if (AggregateArgs) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut+out); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(), NTRet); new StoreInst(outputs[out], GEP, NTRet); } else { new StoreInst(outputs[out], &*OAI, NTRet); } } // Advance output iterator even if we don't emit a store if (!AggregateArgs) ++OAI; } } // rewrite the original branch instruction with this new target TI->setSuccessor(i, NewTarget); } } // Now that we've done the deed, simplify the switch instruction. Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); switch (NumExitBlocks) { case 0: // There are no successors (the block containing the switch itself), which // means that previously this was the last part of the function, and hence // this should be rewritten as a `ret' // Check if the function should return a value if (OldFnRetTy->isVoidTy()) { ReturnInst::Create(Context, nullptr, TheSwitch); // Return void } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { // return what we have ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); } else { // Otherwise we must have code extracted an unwind or something, just // return whatever we want. ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy), TheSwitch); } TheSwitch->eraseFromParent(); break; case 1: // Only a single destination, change the switch into an unconditional // branch. BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); TheSwitch->eraseFromParent(); break; case 2: BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), call, TheSwitch); TheSwitch->eraseFromParent(); break; default: // Otherwise, make the default destination of the switch instruction be one // of the other successors. TheSwitch->setCondition(call); TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); // Remove redundant case TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); break; } } void CodeExtractor::moveCodeToFunction(Function *newFunction) { Function *oldFunc = (*Blocks.begin())->getParent(); Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); for (BasicBlock *Block : Blocks) { // Delete the basic block from the old function, and the list of blocks oldBlocks.remove(Block); // Insert this basic block into the new function newBlocks.push_back(Block); } } Function *CodeExtractor::extractCodeRegion() { if (!isEligible()) return nullptr; ValueSet inputs, outputs; // Assumption: this is a single-entry code region, and the header is the first // block in the region. BasicBlock *header = *Blocks.begin(); // If we have to split PHI nodes or the entry block, do so now. severSplitPHINodes(header); // If we have any return instructions in the region, split those blocks so // that the return is not in the region. splitReturnBlocks(); Function *oldFunction = header->getParent(); // This takes place of the original loop BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), "codeRepl", oldFunction, header); // The new function needs a root node because other nodes can branch to the // head of the region, but the entry node of a function cannot have preds. BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), "newFuncRoot"); newFuncRoot->getInstList().push_back(BranchInst::Create(header)); // Find inputs to, outputs from the code region. findInputsOutputs(inputs, outputs); SmallPtrSet<BasicBlock *, 1> ExitBlocks; for (BasicBlock *Block : Blocks) for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; ++SI) if (!Blocks.count(*SI)) ExitBlocks.insert(*SI); NumExitBlocks = ExitBlocks.size(); // Construct new function based on inputs/outputs & add allocas for all defs. Function *newFunction = constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, oldFunction, oldFunction->getParent()); emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); moveCodeToFunction(newFunction); // Loop over all of the PHI nodes in the header block, and change any // references to the old incoming edge to be the new incoming edge. for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (!Blocks.count(PN->getIncomingBlock(i))) PN->setIncomingBlock(i, newFuncRoot); } // Look at all successors of the codeReplacer block. If any of these blocks // had PHI nodes in them, we need to update the "from" block to be the code // replacer, not the original block in the extracted region. std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), succ_end(codeReplacer)); for (unsigned i = 0, e = Succs.size(); i != e; ++i) for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); std::set<BasicBlock*> ProcessedPreds; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (Blocks.count(PN->getIncomingBlock(i))) { if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) PN->setIncomingBlock(i, codeReplacer); else { // There were multiple entries in the PHI for this block, now there // is only one, so remove the duplicated entries. PN->removeIncomingValue(i, false); --i; --e; } } } //cerr << "NEW FUNCTION: " << *newFunction; // verifyFunction(*newFunction); // cerr << "OLD FUNCTION: " << *oldFunction; // verifyFunction(*oldFunction); DEBUG(if (verifyFunction(*newFunction)) report_fatal_error("verifyFunction failed!")); return newFunction; }