//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs various transformations related to eliminating memcpy // calls, or transforming sets of stores into memset's. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "memcpyopt" STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); STATISTIC(NumMemSetInfer, "Number of memsets inferred"); STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, bool &VariableIdxFound, const DataLayout &DL) { // Skip over the first indices. gep_type_iterator GTI = gep_type_begin(GEP); for (unsigned i = 1; i != Idx; ++i, ++GTI) /*skip along*/; // Compute the offset implied by the rest of the indices. int64_t Offset = 0; for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); if (!OpC) return VariableIdxFound = true; if (OpC->isZero()) continue; // No offset. // Handle struct indices, which add their field offset to the pointer. if (StructType *STy = dyn_cast<StructType>(*GTI)) { Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); continue; } // Otherwise, we have a sequential type like an array or vector. Multiply // the index by the ElementSize. uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); Offset += Size*OpC->getSExtValue(); } return Offset; } /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2 /// might be &A[40]. In this case offset would be -8. static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, const DataLayout &DL) { Ptr1 = Ptr1->stripPointerCasts(); Ptr2 = Ptr2->stripPointerCasts(); // Handle the trivial case first. if (Ptr1 == Ptr2) { Offset = 0; return true; } GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); bool VariableIdxFound = false; // If one pointer is a GEP and the other isn't, then see if the GEP is a // constant offset from the base, as in "P" and "gep P, 1". if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL); return !VariableIdxFound; } if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL); return !VariableIdxFound; } // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical // base. After that base, they may have some number of common (and // potentially variable) indices. After that they handle some constant // offset, which determines their offset from each other. At this point, we // handle no other case. if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) return false; // Skip any common indices and track the GEP types. unsigned Idx = 1; for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) break; int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL); int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL); if (VariableIdxFound) return false; Offset = Offset2-Offset1; return true; } /// Represents a range of memset'd bytes with the ByteVal value. /// This allows us to analyze stores like: /// store 0 -> P+1 /// store 0 -> P+0 /// store 0 -> P+3 /// store 0 -> P+2 /// which sometimes happens with stores to arrays of structs etc. When we see /// the first store, we make a range [1, 2). The second store extends the range /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the /// two ranges into [0, 3) which is memset'able. namespace { struct MemsetRange { // Start/End - A semi range that describes the span that this range covers. // The range is closed at the start and open at the end: [Start, End). int64_t Start, End; /// StartPtr - The getelementptr instruction that points to the start of the /// range. Value *StartPtr; /// Alignment - The known alignment of the first store. unsigned Alignment; /// TheStores - The actual stores that make up this range. SmallVector<Instruction*, 16> TheStores; bool isProfitableToUseMemset(const DataLayout &DL) const; }; } // end anon namespace bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { // If we found more than 4 stores to merge or 16 bytes, use memset. if (TheStores.size() >= 4 || End-Start >= 16) return true; // If there is nothing to merge, don't do anything. if (TheStores.size() < 2) return false; // If any of the stores are a memset, then it is always good to extend the // memset. for (Instruction *SI : TheStores) if (!isa<StoreInst>(SI)) return true; // Assume that the code generator is capable of merging pairs of stores // together if it wants to. if (TheStores.size() == 2) return false; // If we have fewer than 8 stores, it can still be worthwhile to do this. // For example, merging 4 i8 stores into an i32 store is useful almost always. // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the // memset will be split into 2 32-bit stores anyway) and doing so can // pessimize the llvm optimizer. // // Since we don't have perfect knowledge here, make some assumptions: assume // the maximum GPR width is the same size as the largest legal integer // size. If so, check to see whether we will end up actually reducing the // number of stores used. unsigned Bytes = unsigned(End-Start); unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; if (MaxIntSize == 0) MaxIntSize = 1; unsigned NumPointerStores = Bytes / MaxIntSize; // Assume the remaining bytes if any are done a byte at a time. unsigned NumByteStores = Bytes % MaxIntSize; // If we will reduce the # stores (according to this heuristic), do the // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 // etc. return TheStores.size() > NumPointerStores+NumByteStores; } namespace { class MemsetRanges { /// A sorted list of the memset ranges. SmallVector<MemsetRange, 8> Ranges; typedef SmallVectorImpl<MemsetRange>::iterator range_iterator; const DataLayout &DL; public: MemsetRanges(const DataLayout &DL) : DL(DL) {} typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator; const_iterator begin() const { return Ranges.begin(); } const_iterator end() const { return Ranges.end(); } bool empty() const { return Ranges.empty(); } void addInst(int64_t OffsetFromFirst, Instruction *Inst) { if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) addStore(OffsetFromFirst, SI); else addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); } void addStore(int64_t OffsetFromFirst, StoreInst *SI) { int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(), SI->getAlignment(), SI); } void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); } void addRange(int64_t Start, int64_t Size, Value *Ptr, unsigned Alignment, Instruction *Inst); }; } // end anon namespace /// Add a new store to the MemsetRanges data structure. This adds a /// new range for the specified store at the specified offset, merging into /// existing ranges as appropriate. void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, unsigned Alignment, Instruction *Inst) { int64_t End = Start+Size; range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start, [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; }); // We now know that I == E, in which case we didn't find anything to merge // with, or that Start <= I->End. If End < I->Start or I == E, then we need // to insert a new range. Handle this now. if (I == Ranges.end() || End < I->Start) { MemsetRange &R = *Ranges.insert(I, MemsetRange()); R.Start = Start; R.End = End; R.StartPtr = Ptr; R.Alignment = Alignment; R.TheStores.push_back(Inst); return; } // This store overlaps with I, add it. I->TheStores.push_back(Inst); // At this point, we may have an interval that completely contains our store. // If so, just add it to the interval and return. if (I->Start <= Start && I->End >= End) return; // Now we know that Start <= I->End and End >= I->Start so the range overlaps // but is not entirely contained within the range. // See if the range extends the start of the range. In this case, it couldn't // possibly cause it to join the prior range, because otherwise we would have // stopped on *it*. if (Start < I->Start) { I->Start = Start; I->StartPtr = Ptr; I->Alignment = Alignment; } // Now we know that Start <= I->End and Start >= I->Start (so the startpoint // is in or right at the end of I), and that End >= I->Start. Extend I out to // End. if (End > I->End) { I->End = End; range_iterator NextI = I; while (++NextI != Ranges.end() && End >= NextI->Start) { // Merge the range in. I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); if (NextI->End > I->End) I->End = NextI->End; Ranges.erase(NextI); NextI = I; } } } //===----------------------------------------------------------------------===// // MemCpyOptLegacyPass Pass //===----------------------------------------------------------------------===// namespace { class MemCpyOptLegacyPass : public FunctionPass { MemCpyOptPass Impl; public: static char ID; // Pass identification, replacement for typeid MemCpyOptLegacyPass() : FunctionPass(ID) { initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; private: // This transformation requires dominator postdominator info void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<AssumptionCacheTracker>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<MemoryDependenceWrapperPass>(); AU.addRequired<AAResultsWrapperPass>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); AU.addPreserved<MemoryDependenceWrapperPass>(); } // Helper functions bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI); bool processMemCpy(MemCpyInst *M); bool processMemMove(MemMoveInst *M); bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, uint64_t cpyLen, unsigned cpyAlign, CallInst *C); bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep); bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep); bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep); bool processByValArgument(CallSite CS, unsigned ArgNo); Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr, Value *ByteVal); bool iterateOnFunction(Function &F); }; char MemCpyOptLegacyPass::ID = 0; } /// The public interface to this file... FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", false, false) /// When scanning forward over instructions, we look for some other patterns to /// fold away. In particular, this looks for stores to neighboring locations of /// memory. If it sees enough consecutive ones, it attempts to merge them /// together into a memcpy/memset. Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, Value *StartPtr, Value *ByteVal) { const DataLayout &DL = StartInst->getModule()->getDataLayout(); // Okay, so we now have a single store that can be splatable. Scan to find // all subsequent stores of the same value to offset from the same pointer. // Join these together into ranges, so we can decide whether contiguous blocks // are stored. MemsetRanges Ranges(DL); BasicBlock::iterator BI(StartInst); for (++BI; !isa<TerminatorInst>(BI); ++BI) { if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { // If the instruction is readnone, ignore it, otherwise bail out. We // don't even allow readonly here because we don't want something like: // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) break; continue; } if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { // If this is a store, see if we can merge it in. if (!NextStore->isSimple()) break; // Check to see if this stored value is of the same byte-splattable value. if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) break; // Check to see if this store is to a constant offset from the start ptr. int64_t Offset; if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, DL)) break; Ranges.addStore(Offset, NextStore); } else { MemSetInst *MSI = cast<MemSetInst>(BI); if (MSI->isVolatile() || ByteVal != MSI->getValue() || !isa<ConstantInt>(MSI->getLength())) break; // Check to see if this store is to a constant offset from the start ptr. int64_t Offset; if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL)) break; Ranges.addMemSet(Offset, MSI); } } // If we have no ranges, then we just had a single store with nothing that // could be merged in. This is a very common case of course. if (Ranges.empty()) return nullptr; // If we had at least one store that could be merged in, add the starting // store as well. We try to avoid this unless there is at least something // interesting as a small compile-time optimization. Ranges.addInst(0, StartInst); // If we create any memsets, we put it right before the first instruction that // isn't part of the memset block. This ensure that the memset is dominated // by any addressing instruction needed by the start of the block. IRBuilder<> Builder(&*BI); // Now that we have full information about ranges, loop over the ranges and // emit memset's for anything big enough to be worthwhile. Instruction *AMemSet = nullptr; for (const MemsetRange &Range : Ranges) { if (Range.TheStores.size() == 1) continue; // If it is profitable to lower this range to memset, do so now. if (!Range.isProfitableToUseMemset(DL)) continue; // Otherwise, we do want to transform this! Create a new memset. // Get the starting pointer of the block. StartPtr = Range.StartPtr; // Determine alignment unsigned Alignment = Range.Alignment; if (Alignment == 0) { Type *EltType = cast<PointerType>(StartPtr->getType())->getElementType(); Alignment = DL.getABITypeAlignment(EltType); } AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI : Range.TheStores) dbgs() << *SI << '\n'; dbgs() << "With: " << *AMemSet << '\n'); if (!Range.TheStores.empty()) AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); // Zap all the stores. for (Instruction *SI : Range.TheStores) { MD->removeInstruction(SI); SI->eraseFromParent(); } ++NumMemSetInfer; } return AMemSet; } static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI, const LoadInst *LI) { unsigned StoreAlign = SI->getAlignment(); if (!StoreAlign) StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); unsigned LoadAlign = LI->getAlignment(); if (!LoadAlign) LoadAlign = DL.getABITypeAlignment(LI->getType()); return std::min(StoreAlign, LoadAlign); } // This method try to lift a store instruction before position P. // It will lift the store and its argument + that anything that // may alias with these. // The method returns true if it was successful. static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P) { // If the store alias this position, early bail out. MemoryLocation StoreLoc = MemoryLocation::get(SI); if (AA.getModRefInfo(P, StoreLoc) != MRI_NoModRef) return false; // Keep track of the arguments of all instruction we plan to lift // so we can make sure to lift them as well if apropriate. DenseSet<Instruction*> Args; if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) if (Ptr->getParent() == SI->getParent()) Args.insert(Ptr); // Instruction to lift before P. SmallVector<Instruction*, 8> ToLift; // Memory locations of lifted instructions. SmallVector<MemoryLocation, 8> MemLocs; MemLocs.push_back(StoreLoc); // Lifted callsites. SmallVector<ImmutableCallSite, 8> CallSites; for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { auto *C = &*I; bool MayAlias = AA.getModRefInfo(C) != MRI_NoModRef; bool NeedLift = false; if (Args.erase(C)) NeedLift = true; else if (MayAlias) { NeedLift = std::any_of(MemLocs.begin(), MemLocs.end(), [C, &AA](const MemoryLocation &ML) { return AA.getModRefInfo(C, ML); }); if (!NeedLift) NeedLift = std::any_of(CallSites.begin(), CallSites.end(), [C, &AA](const ImmutableCallSite &CS) { return AA.getModRefInfo(C, CS); }); } if (!NeedLift) continue; if (MayAlias) { if (auto CS = ImmutableCallSite(C)) { // If we can't lift this before P, it's game over. if (AA.getModRefInfo(P, CS) != MRI_NoModRef) return false; CallSites.push_back(CS); } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { // If we can't lift this before P, it's game over. auto ML = MemoryLocation::get(C); if (AA.getModRefInfo(P, ML) != MRI_NoModRef) return false; MemLocs.push_back(ML); } else // We don't know how to lift this instruction. return false; } ToLift.push_back(C); for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) if (A->getParent() == SI->getParent()) Args.insert(A); } // We made it, we need to lift for (auto *I : reverse(ToLift)) { DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); I->moveBefore(P); } return true; } bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { if (!SI->isSimple()) return false; // Avoid merging nontemporal stores since the resulting // memcpy/memset would not be able to preserve the nontemporal hint. // In theory we could teach how to propagate the !nontemporal metadata to // memset calls. However, that change would force the backend to // conservatively expand !nontemporal memset calls back to sequences of // store instructions (effectively undoing the merging). if (SI->getMetadata(LLVMContext::MD_nontemporal)) return false; const DataLayout &DL = SI->getModule()->getDataLayout(); // Load to store forwarding can be interpreted as memcpy. if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { if (LI->isSimple() && LI->hasOneUse() && LI->getParent() == SI->getParent()) { auto *T = LI->getType(); if (T->isAggregateType()) { AliasAnalysis &AA = LookupAliasAnalysis(); MemoryLocation LoadLoc = MemoryLocation::get(LI); // We use alias analysis to check if an instruction may store to // the memory we load from in between the load and the store. If // such an instruction is found, we try to promote there instead // of at the store position. Instruction *P = SI; for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { if (AA.getModRefInfo(&I, LoadLoc) & MRI_Mod) { P = &I; break; } } // We found an instruction that may write to the loaded memory. // We can try to promote at this position instead of the store // position if nothing alias the store memory after this and the store // destination is not in the range. if (P && P != SI) { if (!moveUp(AA, SI, P)) P = nullptr; } // If a valid insertion position is found, then we can promote // the load/store pair to a memcpy. if (P) { // If we load from memory that may alias the memory we store to, // memmove must be used to preserve semantic. If not, memcpy can // be used. bool UseMemMove = false; if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc)) UseMemMove = true; unsigned Align = findCommonAlignment(DL, SI, LI); uint64_t Size = DL.getTypeStoreSize(T); IRBuilder<> Builder(P); Instruction *M; if (UseMemMove) M = Builder.CreateMemMove(SI->getPointerOperand(), LI->getPointerOperand(), Size, Align, SI->isVolatile()); else M = Builder.CreateMemCpy(SI->getPointerOperand(), LI->getPointerOperand(), Size, Align, SI->isVolatile()); DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " << *M << "\n"); MD->removeInstruction(SI); SI->eraseFromParent(); MD->removeInstruction(LI); LI->eraseFromParent(); ++NumMemCpyInstr; // Make sure we do not invalidate the iterator. BBI = M->getIterator(); return true; } } // Detect cases where we're performing call slot forwarding, but // happen to be using a load-store pair to implement it, rather than // a memcpy. MemDepResult ldep = MD->getDependency(LI); CallInst *C = nullptr; if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) C = dyn_cast<CallInst>(ldep.getInst()); if (C) { // Check that nothing touches the dest of the "copy" between // the call and the store. Value *CpyDest = SI->getPointerOperand()->stripPointerCasts(); bool CpyDestIsLocal = isa<AllocaInst>(CpyDest); AliasAnalysis &AA = LookupAliasAnalysis(); MemoryLocation StoreLoc = MemoryLocation::get(SI); for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); I != E; --I) { if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) { C = nullptr; break; } // The store to dest may never happen if an exception can be thrown // between the load and the store. if (I->mayThrow() && !CpyDestIsLocal) { C = nullptr; break; } } } if (C) { bool changed = performCallSlotOptzn( LI, SI->getPointerOperand()->stripPointerCasts(), LI->getPointerOperand()->stripPointerCasts(), DL.getTypeStoreSize(SI->getOperand(0)->getType()), findCommonAlignment(DL, SI, LI), C); if (changed) { MD->removeInstruction(SI); SI->eraseFromParent(); MD->removeInstruction(LI); LI->eraseFromParent(); ++NumMemCpyInstr; return true; } } } } // There are two cases that are interesting for this code to handle: memcpy // and memset. Right now we only handle memset. // Ensure that the value being stored is something that can be memset'able a // byte at a time like "0" or "-1" or any width, as well as things like // 0xA0A0A0A0 and 0.0. auto *V = SI->getOperand(0); if (Value *ByteVal = isBytewiseValue(V)) { if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), ByteVal)) { BBI = I->getIterator(); // Don't invalidate iterator. return true; } // If we have an aggregate, we try to promote it to memset regardless // of opportunity for merging as it can expose optimization opportunities // in subsequent passes. auto *T = V->getType(); if (T->isAggregateType()) { uint64_t Size = DL.getTypeStoreSize(T); unsigned Align = SI->getAlignment(); if (!Align) Align = DL.getABITypeAlignment(T); IRBuilder<> Builder(SI); auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, Align, SI->isVolatile()); DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); MD->removeInstruction(SI); SI->eraseFromParent(); NumMemSetInfer++; // Make sure we do not invalidate the iterator. BBI = M->getIterator(); return true; } } return false; } bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { // See if there is another memset or store neighboring this memset which // allows us to widen out the memset to do a single larger store. if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), MSI->getValue())) { BBI = I->getIterator(); // Don't invalidate iterator. return true; } return false; } /// Takes a memcpy and a call that it depends on, /// and checks for the possibility of a call slot optimization by having /// the call write its result directly into the destination of the memcpy. bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, Value *cpySrc, uint64_t cpyLen, unsigned cpyAlign, CallInst *C) { // The general transformation to keep in mind is // // call @func(..., src, ...) // memcpy(dest, src, ...) // // -> // // memcpy(dest, src, ...) // call @func(..., dest, ...) // // Since moving the memcpy is technically awkward, we additionally check that // src only holds uninitialized values at the moment of the call, meaning that // the memcpy can be discarded rather than moved. // Lifetime marks shouldn't be operated on. if (Function *F = C->getCalledFunction()) if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) return false; // Deliberately get the source and destination with bitcasts stripped away, // because we'll need to do type comparisons based on the underlying type. CallSite CS(C); // Require that src be an alloca. This simplifies the reasoning considerably. AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); if (!srcAlloca) return false; ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); if (!srcArraySize) return false; const DataLayout &DL = cpy->getModule()->getDataLayout(); uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * srcArraySize->getZExtValue(); if (cpyLen < srcSize) return false; // Check that accessing the first srcSize bytes of dest will not cause a // trap. Otherwise the transform is invalid since it might cause a trap // to occur earlier than it otherwise would. if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { // The destination is an alloca. Check it is larger than srcSize. ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); if (!destArraySize) return false; uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * destArraySize->getZExtValue(); if (destSize < srcSize) return false; } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { // The store to dest may never happen if the call can throw. if (C->mayThrow()) return false; if (A->getDereferenceableBytes() < srcSize) { // If the destination is an sret parameter then only accesses that are // outside of the returned struct type can trap. if (!A->hasStructRetAttr()) return false; Type *StructTy = cast<PointerType>(A->getType())->getElementType(); if (!StructTy->isSized()) { // The call may never return and hence the copy-instruction may never // be executed, and therefore it's not safe to say "the destination // has at least <cpyLen> bytes, as implied by the copy-instruction", return false; } uint64_t destSize = DL.getTypeAllocSize(StructTy); if (destSize < srcSize) return false; } } else { return false; } // Check that dest points to memory that is at least as aligned as src. unsigned srcAlign = srcAlloca->getAlignment(); if (!srcAlign) srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); bool isDestSufficientlyAligned = srcAlign <= cpyAlign; // If dest is not aligned enough and we can't increase its alignment then // bail out. if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) return false; // Check that src is not accessed except via the call and the memcpy. This // guarantees that it holds only undefined values when passed in (so the final // memcpy can be dropped), that it is not read or written between the call and // the memcpy, and that writing beyond the end of it is undefined. SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), srcAlloca->user_end()); while (!srcUseList.empty()) { User *U = srcUseList.pop_back_val(); if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { for (User *UU : U->users()) srcUseList.push_back(UU); continue; } if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { if (!G->hasAllZeroIndices()) return false; for (User *UU : U->users()) srcUseList.push_back(UU); continue; } if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) if (IT->getIntrinsicID() == Intrinsic::lifetime_start || IT->getIntrinsicID() == Intrinsic::lifetime_end) continue; if (U != C && U != cpy) return false; } // Check that src isn't captured by the called function since the // transformation can cause aliasing issues in that case. for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) return false; // Since we're changing the parameter to the callsite, we need to make sure // that what would be the new parameter dominates the callsite. DominatorTree &DT = LookupDomTree(); if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) if (!DT.dominates(cpyDestInst, C)) return false; // In addition to knowing that the call does not access src in some // unexpected manner, for example via a global, which we deduce from // the use analysis, we also need to know that it does not sneakily // access dest. We rely on AA to figure this out for us. AliasAnalysis &AA = LookupAliasAnalysis(); ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize); // If necessary, perform additional analysis. if (MR != MRI_NoModRef) MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); if (MR != MRI_NoModRef) return false; // All the checks have passed, so do the transformation. bool changedArgument = false; for (unsigned i = 0; i < CS.arg_size(); ++i) if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), cpyDest->getName(), C); changedArgument = true; if (CS.getArgument(i)->getType() == Dest->getType()) CS.setArgument(i, Dest); else CS.setArgument(i, CastInst::CreatePointerCast(Dest, CS.getArgument(i)->getType(), Dest->getName(), C)); } if (!changedArgument) return false; // If the destination wasn't sufficiently aligned then increase its alignment. if (!isDestSufficientlyAligned) { assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); } // Drop any cached information about the call, because we may have changed // its dependence information by changing its parameter. MD->removeInstruction(C); // Update AA metadata // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be // handled here, but combineMetadata doesn't support them yet unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, LLVMContext::MD_noalias, LLVMContext::MD_invariant_group}; combineMetadata(C, cpy, KnownIDs); // Remove the memcpy. MD->removeInstruction(cpy); ++NumMemCpyInstr; return true; } /// We've found that the (upward scanning) memory dependence of memcpy 'M' is /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) { // We can only transforms memcpy's where the dest of one is the source of the // other. if (M->getSource() != MDep->getDest() || MDep->isVolatile()) return false; // If dep instruction is reading from our current input, then it is a noop // transfer and substituting the input won't change this instruction. Just // ignore the input and let someone else zap MDep. This handles cases like: // memcpy(a <- a) // memcpy(b <- a) if (M->getSource() == MDep->getSource()) return false; // Second, the length of the memcpy's must be the same, or the preceding one // must be larger than the following one. ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) return false; AliasAnalysis &AA = LookupAliasAnalysis(); // Verify that the copied-from memory doesn't change in between the two // transfers. For example, in: // memcpy(a <- b) // *b = 42; // memcpy(c <- a) // It would be invalid to transform the second memcpy into memcpy(c <- b). // // TODO: If the code between M and MDep is transparent to the destination "c", // then we could still perform the xform by moving M up to the first memcpy. // // NOTE: This is conservative, it will stop on any read from the source loc, // not just the defining memcpy. MemDepResult SourceDep = MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, M->getIterator(), M->getParent()); if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) return false; // If the dest of the second might alias the source of the first, then the // source and dest might overlap. We still want to eliminate the intermediate // value, but we have to generate a memmove instead of memcpy. bool UseMemMove = false; if (!AA.isNoAlias(MemoryLocation::getForDest(M), MemoryLocation::getForSource(MDep))) UseMemMove = true; // If all checks passed, then we can transform M. // Make sure to use the lesser of the alignment of the source and the dest // since we're changing where we're reading from, but don't want to increase // the alignment past what can be read from or written to. // TODO: Is this worth it if we're creating a less aligned memcpy? For // example we could be moving from movaps -> movq on x86. unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); IRBuilder<> Builder(M); if (UseMemMove) Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), Align, M->isVolatile()); else Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), Align, M->isVolatile()); // Remove the instruction we're replacing. MD->removeInstruction(M); M->eraseFromParent(); ++NumMemCpyInstr; return true; } /// We've found that the (upward scanning) memory dependence of \p MemCpy is /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that /// weren't copied over by \p MemCpy. /// /// In other words, transform: /// \code /// memset(dst, c, dst_size); /// memcpy(dst, src, src_size); /// \endcode /// into: /// \code /// memcpy(dst, src, src_size); /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); /// \endcode bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, MemSetInst *MemSet) { // We can only transform memset/memcpy with the same destination. if (MemSet->getDest() != MemCpy->getDest()) return false; // Check that there are no other dependencies on the memset destination. MemDepResult DstDepInfo = MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(), MemCpy->getParent()); if (DstDepInfo.getInst() != MemSet) return false; // Use the same i8* dest as the memcpy, killing the memset dest if different. Value *Dest = MemCpy->getRawDest(); Value *DestSize = MemSet->getLength(); Value *SrcSize = MemCpy->getLength(); // By default, create an unaligned memset. unsigned Align = 1; // If Dest is aligned, and SrcSize is constant, use the minimum alignment // of the sum. const unsigned DestAlign = std::max(MemSet->getAlignment(), MemCpy->getAlignment()); if (DestAlign > 1) if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); IRBuilder<> Builder(MemCpy); // If the sizes have different types, zext the smaller one. if (DestSize->getType() != SrcSize->getType()) { if (DestSize->getType()->getIntegerBitWidth() > SrcSize->getType()->getIntegerBitWidth()) SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); else DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); } Value *MemsetLen = Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize), ConstantInt::getNullValue(DestSize->getType()), Builder.CreateSub(DestSize, SrcSize)); Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1), MemsetLen, Align); MD->removeInstruction(MemSet); MemSet->eraseFromParent(); return true; } /// Transform memcpy to memset when its source was just memset. /// In other words, turn: /// \code /// memset(dst1, c, dst1_size); /// memcpy(dst2, dst1, dst2_size); /// \endcode /// into: /// \code /// memset(dst1, c, dst1_size); /// memset(dst2, c, dst2_size); /// \endcode /// When dst2_size <= dst1_size. /// /// The \p MemCpy must have a Constant length. bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, MemSetInst *MemSet) { // This only makes sense on memcpy(..., memset(...), ...). if (MemSet->getRawDest() != MemCpy->getRawSource()) return false; ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); // Make sure the memcpy doesn't read any more than what the memset wrote. // Don't worry about sizes larger than i64. if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue()) return false; IRBuilder<> Builder(MemCpy); Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize, MemCpy->getAlignment()); return true; } /// Perform simplification of memcpy's. If we have memcpy A /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite /// B to be a memcpy from X to Z (or potentially a memmove, depending on /// circumstances). This allows later passes to remove the first memcpy /// altogether. bool MemCpyOptPass::processMemCpy(MemCpyInst *M) { // We can only optimize non-volatile memcpy's. if (M->isVolatile()) return false; // If the source and destination of the memcpy are the same, then zap it. if (M->getSource() == M->getDest()) { MD->removeInstruction(M); M->eraseFromParent(); return false; } // If copying from a constant, try to turn the memcpy into a memset. if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) if (GV->isConstant() && GV->hasDefinitiveInitializer()) if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { IRBuilder<> Builder(M); Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), M->getAlignment(), false); MD->removeInstruction(M); M->eraseFromParent(); ++NumCpyToSet; return true; } MemDepResult DepInfo = MD->getDependency(M); // Try to turn a partially redundant memset + memcpy into // memcpy + smaller memset. We don't need the memcpy size for this. if (DepInfo.isClobber()) if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) if (processMemSetMemCpyDependence(M, MDep)) return true; // The optimizations after this point require the memcpy size. ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); if (!CopySize) return false; // There are four possible optimizations we can do for memcpy: // a) memcpy-memcpy xform which exposes redundance for DSE. // b) call-memcpy xform for return slot optimization. // c) memcpy from freshly alloca'd space or space that has just started its // lifetime copies undefined data, and we can therefore eliminate the // memcpy in favor of the data that was already at the destination. // d) memcpy from a just-memset'd source can be turned into memset. if (DepInfo.isClobber()) { if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { if (performCallSlotOptzn(M, M->getDest(), M->getSource(), CopySize->getZExtValue(), M->getAlignment(), C)) { MD->removeInstruction(M); M->eraseFromParent(); return true; } } } MemoryLocation SrcLoc = MemoryLocation::getForSource(M); MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( SrcLoc, true, M->getIterator(), M->getParent()); if (SrcDepInfo.isClobber()) { if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) return processMemCpyMemCpyDependence(M, MDep); } else if (SrcDepInfo.isDef()) { Instruction *I = SrcDepInfo.getInst(); bool hasUndefContents = false; if (isa<AllocaInst>(I)) { hasUndefContents = true; } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { if (II->getIntrinsicID() == Intrinsic::lifetime_start) if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) if (LTSize->getZExtValue() >= CopySize->getZExtValue()) hasUndefContents = true; } if (hasUndefContents) { MD->removeInstruction(M); M->eraseFromParent(); ++NumMemCpyInstr; return true; } } if (SrcDepInfo.isClobber()) if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) if (performMemCpyToMemSetOptzn(M, MDep)) { MD->removeInstruction(M); M->eraseFromParent(); ++NumCpyToSet; return true; } return false; } /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed /// not to alias. bool MemCpyOptPass::processMemMove(MemMoveInst *M) { AliasAnalysis &AA = LookupAliasAnalysis(); if (!TLI->has(LibFunc::memmove)) return false; // See if the pointers alias. if (!AA.isNoAlias(MemoryLocation::getForDest(M), MemoryLocation::getForSource(M))) return false; DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M << "\n"); // If not, then we know we can transform this. Type *ArgTys[3] = { M->getRawDest()->getType(), M->getRawSource()->getType(), M->getLength()->getType() }; M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), Intrinsic::memcpy, ArgTys)); // MemDep may have over conservative information about this instruction, just // conservatively flush it from the cache. MD->removeInstruction(M); ++NumMoveToCpy; return true; } /// This is called on every byval argument in call sites. bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) { const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); // Find out what feeds this byval argument. Value *ByValArg = CS.getArgument(ArgNo); Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); MemDepResult DepInfo = MD->getPointerDependencyFrom( MemoryLocation(ByValArg, ByValSize), true, CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); if (!DepInfo.isClobber()) return false; // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by // a memcpy, see if we can byval from the source of the memcpy instead of the // result. MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); if (!MDep || MDep->isVolatile() || ByValArg->stripPointerCasts() != MDep->getDest()) return false; // The length of the memcpy must be larger or equal to the size of the byval. ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); if (!C1 || C1->getValue().getZExtValue() < ByValSize) return false; // Get the alignment of the byval. If the call doesn't specify the alignment, // then it is some target specific value that we can't know. unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); if (ByValAlign == 0) return false; // If it is greater than the memcpy, then we check to see if we can force the // source of the memcpy to the alignment we need. If we fail, we bail out. AssumptionCache &AC = LookupAssumptionCache(); DominatorTree &DT = LookupDomTree(); if (MDep->getAlignment() < ByValAlign && getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, CS.getInstruction(), &AC, &DT) < ByValAlign) return false; // Verify that the copied-from memory doesn't change in between the memcpy and // the byval call. // memcpy(a <- b) // *b = 42; // foo(*a) // It would be invalid to transform the second memcpy into foo(*b). // // NOTE: This is conservative, it will stop on any read from the source loc, // not just the defining memcpy. MemDepResult SourceDep = MD->getPointerDependencyFrom( MemoryLocation::getForSource(MDep), false, CS.getInstruction()->getIterator(), MDep->getParent()); if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) return false; Value *TmpCast = MDep->getSource(); if (MDep->getSource()->getType() != ByValArg->getType()) TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), "tmpcast", CS.getInstruction()); DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" << " " << *MDep << "\n" << " " << *CS.getInstruction() << "\n"); // Otherwise we're good! Update the byval argument. CS.setArgument(ArgNo, TmpCast); ++NumMemCpyInstr; return true; } /// Executes one iteration of MemCpyOptPass. bool MemCpyOptPass::iterateOnFunction(Function &F) { bool MadeChange = false; // Walk all instruction in the function. for (BasicBlock &BB : F) { for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { // Avoid invalidating the iterator. Instruction *I = &*BI++; bool RepeatInstruction = false; if (StoreInst *SI = dyn_cast<StoreInst>(I)) MadeChange |= processStore(SI, BI); else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) RepeatInstruction = processMemSet(M, BI); else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) RepeatInstruction = processMemCpy(M); else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) RepeatInstruction = processMemMove(M); else if (auto CS = CallSite(I)) { for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) if (CS.isByValArgument(i)) MadeChange |= processByValArgument(CS, i); } // Reprocess the instruction if desired. if (RepeatInstruction) { if (BI != BB.begin()) --BI; MadeChange = true; } } } return MadeChange; } PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { auto &MD = AM.getResult<MemoryDependenceAnalysis>(F); auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); auto LookupAliasAnalysis = [&]() -> AliasAnalysis & { return AM.getResult<AAManager>(F); }; auto LookupAssumptionCache = [&]() -> AssumptionCache & { return AM.getResult<AssumptionAnalysis>(F); }; auto LookupDomTree = [&]() -> DominatorTree & { return AM.getResult<DominatorTreeAnalysis>(F); }; bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis, LookupAssumptionCache, LookupDomTree); if (!MadeChange) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve<GlobalsAA>(); PA.preserve<MemoryDependenceAnalysis>(); return PA; } bool MemCpyOptPass::runImpl( Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, std::function<AliasAnalysis &()> LookupAliasAnalysis_, std::function<AssumptionCache &()> LookupAssumptionCache_, std::function<DominatorTree &()> LookupDomTree_) { bool MadeChange = false; MD = MD_; TLI = TLI_; LookupAliasAnalysis = std::move(LookupAliasAnalysis_); LookupAssumptionCache = std::move(LookupAssumptionCache_); LookupDomTree = std::move(LookupDomTree_); // If we don't have at least memset and memcpy, there is little point of doing // anything here. These are required by a freestanding implementation, so if // even they are disabled, there is no point in trying hard. if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy)) return false; while (1) { if (!iterateOnFunction(F)) break; MadeChange = true; } MD = nullptr; return MadeChange; } /// This is the main transformation entry point for a function. bool MemCpyOptLegacyPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); auto LookupAliasAnalysis = [this]() -> AliasAnalysis & { return getAnalysis<AAResultsWrapperPass>().getAAResults(); }; auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & { return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); }; auto LookupDomTree = [this]() -> DominatorTree & { return getAnalysis<DominatorTreeWrapperPass>().getDomTree(); }; return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache, LookupDomTree); }