//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements an idiom recognizer that transforms simple loops into a // non-loop form. In cases that this kicks in, it can be a significant // performance win. // //===----------------------------------------------------------------------===// // // TODO List: // // Future loop memory idioms to recognize: // memcmp, memmove, strlen, etc. // Future floating point idioms to recognize in -ffast-math mode: // fpowi // Future integer operation idioms to recognize: // ctpop, ctlz, cttz // // Beware that isel's default lowering for ctpop is highly inefficient for // i64 and larger types when i64 is legal and the value has few bits set. It // would be good to enhance isel to emit a loop for ctpop in this case. // // This could recognize common matrix multiplies and dot product idioms and // replace them with calls to BLAS (if linked in??). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopPassManager.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-idiom" STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); namespace { class LoopIdiomRecognize { Loop *CurLoop; AliasAnalysis *AA; DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; TargetLibraryInfo *TLI; const TargetTransformInfo *TTI; const DataLayout *DL; public: explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, const DataLayout *DL) : CurLoop(nullptr), AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {} bool runOnLoop(Loop *L); private: typedef SmallVector<StoreInst *, 8> StoreList; typedef MapVector<Value *, StoreList> StoreListMap; StoreListMap StoreRefsForMemset; StoreListMap StoreRefsForMemsetPattern; StoreList StoreRefsForMemcpy; bool HasMemset; bool HasMemsetPattern; bool HasMemcpy; /// \name Countable Loop Idiom Handling /// @{ bool runOnCountableLoop(); bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, SmallVectorImpl<BasicBlock *> &ExitBlocks); void collectStores(BasicBlock *BB); bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern, bool &ForMemcpy); bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, bool ForMemset); bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, Value *StoredVal, Instruction *TheStore, SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, const SCEV *BECount, bool NegStride); bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); /// @} /// \name Noncountable Loop Idiom Handling /// @{ bool runOnNoncountableLoop(); bool recognizePopcount(); void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, PHINode *CntPhi, Value *Var); /// @} }; class LoopIdiomRecognizeLegacyPass : public LoopPass { public: static char ID; explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { initializeLoopIdiomRecognizeLegacyPassPass( *PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); const TargetTransformInfo *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( *L->getHeader()->getParent()); const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); return LIR.runOnLoop(L); } /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. /// void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<TargetLibraryInfoWrapperPass>(); AU.addRequired<TargetTransformInfoWrapperPass>(); getLoopAnalysisUsage(AU); } }; } // End anonymous namespace. PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, AnalysisManager<Loop> &AM) { const auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); Function *F = L.getHeader()->getParent(); // Use getCachedResult because Loop pass cannot trigger a function analysis. auto *AA = FAM.getCachedResult<AAManager>(*F); auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F); const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); const auto *DL = &L.getHeader()->getModule()->getDataLayout(); assert((AA && DT && LI && SE && TLI && TTI && DL) && "Analyses for Loop Idiom Recognition not available"); LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); if (!LIR.runOnLoop(&L)) return PreservedAnalyses::all(); return getLoopPassPreservedAnalyses(); } char LoopIdiomRecognizeLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", "Recognize loop idioms", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", "Recognize loop idioms", false, false) Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } static void deleteDeadInstruction(Instruction *I) { I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } //===----------------------------------------------------------------------===// // // Implementation of LoopIdiomRecognize // //===----------------------------------------------------------------------===// bool LoopIdiomRecognize::runOnLoop(Loop *L) { CurLoop = L; // If the loop could not be converted to canonical form, it must have an // indirectbr in it, just give up. if (!L->getLoopPreheader()) return false; // Disable loop idiom recognition if the function's name is a common idiom. StringRef Name = L->getHeader()->getParent()->getName(); if (Name == "memset" || Name == "memcpy") return false; HasMemset = TLI->has(LibFunc::memset); HasMemsetPattern = TLI->has(LibFunc::memset_pattern16); HasMemcpy = TLI->has(LibFunc::memcpy); if (HasMemset || HasMemsetPattern || HasMemcpy) if (SE->hasLoopInvariantBackedgeTakenCount(L)) return runOnCountableLoop(); return runOnNoncountableLoop(); } bool LoopIdiomRecognize::runOnCountableLoop() { const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); assert(!isa<SCEVCouldNotCompute>(BECount) && "runOnCountableLoop() called on a loop without a predictable" "backedge-taken count"); // If this loop executes exactly one time, then it should be peeled, not // optimized by this pass. if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) if (BECst->getAPInt() == 0) return false; SmallVector<BasicBlock *, 8> ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); DEBUG(dbgs() << "loop-idiom Scanning: F[" << CurLoop->getHeader()->getParent()->getName() << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); bool MadeChange = false; // The following transforms hoist stores/memsets into the loop pre-header. // Give up if the loop has instructions may throw. LoopSafetyInfo SafetyInfo; computeLoopSafetyInfo(&SafetyInfo, CurLoop); if (SafetyInfo.MayThrow) return MadeChange; // Scan all the blocks in the loop that are not in subloops. for (auto *BB : CurLoop->getBlocks()) { // Ignore blocks in subloops. if (LI->getLoopFor(BB) != CurLoop) continue; MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); } return MadeChange; } static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) { uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) && "Don't overflow unsigned."); return (unsigned)SizeInBits >> 3; } static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); return ConstStride->getAPInt(); } /// getMemSetPatternValue - If a strided store of the specified value is safe to /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should /// be passed in. Otherwise, return null. /// /// Note that we don't ever attempt to use memset_pattern8 or 4, because these /// just replicate their input array and then pass on to memset_pattern16. static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { // If the value isn't a constant, we can't promote it to being in a constant // array. We could theoretically do a store to an alloca or something, but // that doesn't seem worthwhile. Constant *C = dyn_cast<Constant>(V); if (!C) return nullptr; // Only handle simple values that are a power of two bytes in size. uint64_t Size = DL->getTypeSizeInBits(V->getType()); if (Size == 0 || (Size & 7) || (Size & (Size - 1))) return nullptr; // Don't care enough about darwin/ppc to implement this. if (DL->isBigEndian()) return nullptr; // Convert to size in bytes. Size /= 8; // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see // if the top and bottom are the same (e.g. for vectors and large integers). if (Size > 16) return nullptr; // If the constant is exactly 16 bytes, just use it. if (Size == 16) return C; // Otherwise, we'll use an array of the constants. unsigned ArraySize = 16 / Size; ArrayType *AT = ArrayType::get(V->getType(), ArraySize); return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); } bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern, bool &ForMemcpy) { // Don't touch volatile stores. if (!SI->isSimple()) return false; // Avoid merging nontemporal stores. if (SI->getMetadata(LLVMContext::MD_nontemporal)) return false; Value *StoredVal = SI->getValueOperand(); Value *StorePtr = SI->getPointerOperand(); // Reject stores that are so large that they overflow an unsigned. uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) return false; // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided store. If we have something else, it's a // random store we can't handle. const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) return false; // Check to see if we have a constant stride. if (!isa<SCEVConstant>(StoreEv->getOperand(1))) return false; // See if the store can be turned into a memset. // If the stored value is a byte-wise value (like i32 -1), then it may be // turned into a memset of i8 -1, assuming that all the consecutive bytes // are stored. A store of i32 0x01020304 can never be turned into a memset, // but it can be turned into memset_pattern if the target supports it. Value *SplatValue = isBytewiseValue(StoredVal); Constant *PatternValue = nullptr; // If we're allowed to form a memset, and the stored value would be // acceptable for memset, use it. if (HasMemset && SplatValue && // Verify that the stored value is loop invariant. If not, we can't // promote the memset. CurLoop->isLoopInvariant(SplatValue)) { // It looks like we can use SplatValue. ForMemset = true; return true; } else if (HasMemsetPattern && // Don't create memset_pattern16s with address spaces. StorePtr->getType()->getPointerAddressSpace() == 0 && (PatternValue = getMemSetPatternValue(StoredVal, DL))) { // It looks like we can use PatternValue! ForMemsetPattern = true; return true; } // Otherwise, see if the store can be turned into a memcpy. if (HasMemcpy) { // Check to see if the stride matches the size of the store. If so, then we // know that every byte is touched in the loop. APInt Stride = getStoreStride(StoreEv); unsigned StoreSize = getStoreSizeInBytes(SI, DL); if (StoreSize != Stride && StoreSize != -Stride) return false; // The store must be feeding a non-volatile load. LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); if (!LI || !LI->isSimple()) return false; // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided load. If we have something else, it's a // random load we can't handle. const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) return false; // The store and load must share the same stride. if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) return false; // Success. This store can be converted into a memcpy. ForMemcpy = true; return true; } // This store can't be transformed into a memset/memcpy. return false; } void LoopIdiomRecognize::collectStores(BasicBlock *BB) { StoreRefsForMemset.clear(); StoreRefsForMemsetPattern.clear(); StoreRefsForMemcpy.clear(); for (Instruction &I : *BB) { StoreInst *SI = dyn_cast<StoreInst>(&I); if (!SI) continue; bool ForMemset = false; bool ForMemsetPattern = false; bool ForMemcpy = false; // Make sure this is a strided store with a constant stride. if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy)) continue; // Save the store locations. if (ForMemset) { // Find the base pointer. Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); StoreRefsForMemset[Ptr].push_back(SI); } else if (ForMemsetPattern) { // Find the base pointer. Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); StoreRefsForMemsetPattern[Ptr].push_back(SI); } else if (ForMemcpy) StoreRefsForMemcpy.push_back(SI); } } /// runOnLoopBlock - Process the specified block, which lives in a counted loop /// with the specified backedge count. This block is known to be in the current /// loop and not in any subloops. bool LoopIdiomRecognize::runOnLoopBlock( BasicBlock *BB, const SCEV *BECount, SmallVectorImpl<BasicBlock *> &ExitBlocks) { // We can only promote stores in this block if they are unconditionally // executed in the loop. For a block to be unconditionally executed, it has // to dominate all the exit blocks of the loop. Verify this now. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) if (!DT->dominates(BB, ExitBlocks[i])) return false; bool MadeChange = false; // Look for store instructions, which may be optimized to memset/memcpy. collectStores(BB); // Look for a single store or sets of stores with a common base, which can be // optimized into a memset (memset_pattern). The latter most commonly happens // with structs and handunrolled loops. for (auto &SL : StoreRefsForMemset) MadeChange |= processLoopStores(SL.second, BECount, true); for (auto &SL : StoreRefsForMemsetPattern) MadeChange |= processLoopStores(SL.second, BECount, false); // Optimize the store into a memcpy, if it feeds an similarly strided load. for (auto &SI : StoreRefsForMemcpy) MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { Instruction *Inst = &*I++; // Look for memset instructions, which may be optimized to a larger memset. if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { WeakVH InstPtr(&*I); if (!processLoopMemSet(MSI, BECount)) continue; MadeChange = true; // If processing the memset invalidated our iterator, start over from the // top of the block. if (!InstPtr) I = BB->begin(); continue; } } return MadeChange; } /// processLoopStores - See if this store(s) can be promoted to a memset. bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, bool ForMemset) { // Try to find consecutive stores that can be transformed into memsets. SetVector<StoreInst *> Heads, Tails; SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; // Do a quadratic search on all of the given stores and find // all of the pairs of stores that follow each other. SmallVector<unsigned, 16> IndexQueue; for (unsigned i = 0, e = SL.size(); i < e; ++i) { assert(SL[i]->isSimple() && "Expected only non-volatile stores."); Value *FirstStoredVal = SL[i]->getValueOperand(); Value *FirstStorePtr = SL[i]->getPointerOperand(); const SCEVAddRecExpr *FirstStoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); APInt FirstStride = getStoreStride(FirstStoreEv); unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL); // See if we can optimize just this store in isolation. if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { Heads.insert(SL[i]); continue; } Value *FirstSplatValue = nullptr; Constant *FirstPatternValue = nullptr; if (ForMemset) FirstSplatValue = isBytewiseValue(FirstStoredVal); else FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); assert((FirstSplatValue || FirstPatternValue) && "Expected either splat value or pattern value."); IndexQueue.clear(); // If a store has multiple consecutive store candidates, search Stores // array according to the sequence: from i+1 to e, then from i-1 to 0. // This is because usually pairing with immediate succeeding or preceding // candidate create the best chance to find memset opportunity. unsigned j = 0; for (j = i + 1; j < e; ++j) IndexQueue.push_back(j); for (j = i; j > 0; --j) IndexQueue.push_back(j - 1); for (auto &k : IndexQueue) { assert(SL[k]->isSimple() && "Expected only non-volatile stores."); Value *SecondStorePtr = SL[k]->getPointerOperand(); const SCEVAddRecExpr *SecondStoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); APInt SecondStride = getStoreStride(SecondStoreEv); if (FirstStride != SecondStride) continue; Value *SecondStoredVal = SL[k]->getValueOperand(); Value *SecondSplatValue = nullptr; Constant *SecondPatternValue = nullptr; if (ForMemset) SecondSplatValue = isBytewiseValue(SecondStoredVal); else SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); assert((SecondSplatValue || SecondPatternValue) && "Expected either splat value or pattern value."); if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { if (ForMemset) { if (FirstSplatValue != SecondSplatValue) continue; } else { if (FirstPatternValue != SecondPatternValue) continue; } Tails.insert(SL[k]); Heads.insert(SL[i]); ConsecutiveChain[SL[i]] = SL[k]; break; } } } // We may run into multiple chains that merge into a single chain. We mark the // stores that we transformed so that we don't visit the same store twice. SmallPtrSet<Value *, 16> TransformedStores; bool Changed = false; // For stores that start but don't end a link in the chain: for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); it != e; ++it) { if (Tails.count(*it)) continue; // We found a store instr that starts a chain. Now follow the chain and try // to transform it. SmallPtrSet<Instruction *, 8> AdjacentStores; StoreInst *I = *it; StoreInst *HeadStore = I; unsigned StoreSize = 0; // Collect the chain into a list. while (Tails.count(I) || Heads.count(I)) { if (TransformedStores.count(I)) break; AdjacentStores.insert(I); StoreSize += getStoreSizeInBytes(I, DL); // Move to the next value in the chain. I = ConsecutiveChain[I]; } Value *StoredVal = HeadStore->getValueOperand(); Value *StorePtr = HeadStore->getPointerOperand(); const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); APInt Stride = getStoreStride(StoreEv); // Check to see if the stride matches the size of the stores. If so, then // we know that every byte is touched in the loop. if (StoreSize != Stride && StoreSize != -Stride) continue; bool NegStride = StoreSize == -Stride; if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), StoredVal, HeadStore, AdjacentStores, StoreEv, BECount, NegStride)) { TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); Changed = true; } } return Changed; } /// processLoopMemSet - See if this memset can be promoted to a large memset. bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { // We can only handle non-volatile memsets with a constant size. if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false; // If we're not allowed to hack on memset, we fail. if (!HasMemset) return false; Value *Pointer = MSI->getDest(); // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided store. If we have something else, it's a // random store we can't handle. const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) return false; // Reject memsets that are so large that they overflow an unsigned. uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); if ((SizeInBytes >> 32) != 0) return false; // Check to see if the stride matches the size of the memset. If so, then we // know that every byte is touched in the loop. const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); if (!ConstStride) return false; APInt Stride = ConstStride->getAPInt(); if (SizeInBytes != Stride && SizeInBytes != -Stride) return false; // Verify that the memset value is loop invariant. If not, we can't promote // the memset. Value *SplatValue = MSI->getValue(); if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) return false; SmallPtrSet<Instruction *, 1> MSIs; MSIs.insert(MSI); bool NegStride = SizeInBytes == -Stride; return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, MSI->getAlignment(), SplatValue, MSI, MSIs, Ev, BECount, NegStride); } /// mayLoopAccessLocation - Return true if the specified loop might access the /// specified pointer location, which is a loop-strided access. The 'Access' /// argument specifies what the verboten forms of access are (read or write). static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, const SCEV *BECount, unsigned StoreSize, AliasAnalysis &AA, SmallPtrSetImpl<Instruction *> &IgnoredStores) { // Get the location that may be stored across the loop. Since the access is // strided positively through memory, we say that the modified location starts // at the pointer and has infinite size. uint64_t AccessSize = MemoryLocation::UnknownSize; // If the loop iterates a fixed number of times, we can refine the access size // to be exactly the size of the memset, which is (BECount+1)*StoreSize if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; // TODO: For this to be really effective, we have to dive into the pointer // operand in the store. Store to &A[i] of 100 will always return may alias // with store of &A[100], we need to StoreLoc to be "A" with size of 100, // which will then no-alias a store to &A[100]. MemoryLocation StoreLoc(Ptr, AccessSize); for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; ++BI) for (Instruction &I : **BI) if (IgnoredStores.count(&I) == 0 && (AA.getModRefInfo(&I, StoreLoc) & Access)) return true; return false; } // If we have a negative stride, Start refers to the end of the memory location // we're trying to memset. Therefore, we need to recompute the base pointer, // which is just Start - BECount*Size. static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, Type *IntPtr, unsigned StoreSize, ScalarEvolution *SE) { const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); if (StoreSize != 1) Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), SCEV::FlagNUW); return SE->getMinusSCEV(Start, Index); } /// processLoopStridedStore - We see a strided store of some value. If we can /// transform this into a memset or memset_pattern in the loop preheader, do so. bool LoopIdiomRecognize::processLoopStridedStore( Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, Value *StoredVal, Instruction *TheStore, SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, const SCEV *BECount, bool NegStride) { Value *SplatValue = isBytewiseValue(StoredVal); Constant *PatternValue = nullptr; if (!SplatValue) PatternValue = getMemSetPatternValue(StoredVal, DL); assert((SplatValue || PatternValue) && "Expected either splat value or pattern value."); // The trip count of the loop and the base pointer of the addrec SCEV is // guaranteed to be loop invariant, which means that it should dominate the // header. This allows us to insert code for it in the preheader. unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); BasicBlock *Preheader = CurLoop->getLoopPreheader(); IRBuilder<> Builder(Preheader->getTerminator()); SCEVExpander Expander(*SE, *DL, "loop-idiom"); Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); const SCEV *Start = Ev->getStart(); // Handle negative strided loops. if (NegStride) Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); // Okay, we have a strided store "p[i]" of a splattable value. We can turn // this into a memset in the loop preheader now if we want. However, this // would be unsafe to do if there is anything else in the loop that may read // or write to the aliased location. Check for any overlap by generating the // base pointer and checking the region. Value *BasePtr = Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize, *AA, Stores)) { Expander.clear(); // If we generated new code for the base pointer, clean up. RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); return false; } // Okay, everything looks good, insert the memset. // The # stored bytes is (BECount+1)*Size. Expand the trip count out to // pointer size if it isn't already. BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW); if (StoreSize != 1) { NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), SCEV::FlagNUW); } Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); CallInst *NewCall; if (SplatValue) { NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); } else { // Everything is emitted in default address space Type *Int8PtrTy = DestInt8PtrTy; Module *M = TheStore->getModule(); Value *MSP = M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr); inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI); // Otherwise we should form a memset_pattern16. PatternValue is known to be // an constant array of 16-bytes. Plop the value into a mergable global. GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, GlobalValue::PrivateLinkage, PatternValue, ".memset_pattern"); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. GV->setAlignment(16); Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); } DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" << " from store to: " << *Ev << " at: " << *TheStore << "\n"); NewCall->setDebugLoc(TheStore->getDebugLoc()); // Okay, the memset has been formed. Zap the original store and anything that // feeds into it. for (auto *I : Stores) deleteDeadInstruction(I); ++NumMemSet; return true; } /// If the stored value is a strided load in the same loop with the same stride /// this may be transformable into a memcpy. This kicks in for stuff like /// for (i) A[i] = B[i]; bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount) { assert(SI->isSimple() && "Expected only non-volatile stores."); Value *StorePtr = SI->getPointerOperand(); const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); APInt Stride = getStoreStride(StoreEv); unsigned StoreSize = getStoreSizeInBytes(SI, DL); bool NegStride = StoreSize == -Stride; // The store must be feeding a non-volatile load. LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); assert(LI->isSimple() && "Expected only non-volatile stores."); // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided load. If we have something else, it's a // random load we can't handle. const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); // The trip count of the loop and the base pointer of the addrec SCEV is // guaranteed to be loop invariant, which means that it should dominate the // header. This allows us to insert code for it in the preheader. BasicBlock *Preheader = CurLoop->getLoopPreheader(); IRBuilder<> Builder(Preheader->getTerminator()); SCEVExpander Expander(*SE, *DL, "loop-idiom"); const SCEV *StrStart = StoreEv->getStart(); unsigned StrAS = SI->getPointerAddressSpace(); Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); // Handle negative strided loops. if (NegStride) StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); // Okay, we have a strided store "p[i]" of a loaded value. We can turn // this into a memcpy in the loop preheader now if we want. However, this // would be unsafe to do if there is anything else in the loop that may read // or write the memory region we're storing to. This includes the load that // feeds the stores. Check for an alias by generating the base address and // checking everything. Value *StoreBasePtr = Expander.expandCodeFor( StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); SmallPtrSet<Instruction *, 1> Stores; Stores.insert(SI); if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, StoreSize, *AA, Stores)) { Expander.clear(); // If we generated new code for the base pointer, clean up. RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); return false; } const SCEV *LdStart = LoadEv->getStart(); unsigned LdAS = LI->getPointerAddressSpace(); // Handle negative strided loops. if (NegStride) LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); // For a memcpy, we have to make sure that the input array is not being // mutated by the loop. Value *LoadBasePtr = Expander.expandCodeFor( LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize, *AA, Stores)) { Expander.clear(); // If we generated new code for the base pointer, clean up. RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); return false; } // Okay, everything is safe, we can transform this! // The # stored bytes is (BECount+1)*Size. Expand the trip count out to // pointer size if it isn't already. BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); if (StoreSize != 1) NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), SCEV::FlagNUW); Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); CallInst *NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, std::min(SI->getAlignment(), LI->getAlignment())); NewCall->setDebugLoc(SI->getDebugLoc()); DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); // Okay, the memcpy has been formed. Zap the original store and anything that // feeds into it. deleteDeadInstruction(SI); ++NumMemCpy; return true; } bool LoopIdiomRecognize::runOnNoncountableLoop() { return recognizePopcount(); } /// Check if the given conditional branch is based on the comparison between /// a variable and zero, and if the variable is non-zero, the control yields to /// the loop entry. If the branch matches the behavior, the variable involved /// in the comparion is returned. This function will be called to see if the /// precondition and postcondition of the loop are in desirable form. static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) { if (!BI || !BI->isConditional()) return nullptr; ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); if (!Cond) return nullptr; ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); if (!CmpZero || !CmpZero->isZero()) return nullptr; ICmpInst::Predicate Pred = Cond->getPredicate(); if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) || (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry)) return Cond->getOperand(0); return nullptr; } /// Return true iff the idiom is detected in the loop. /// /// Additionally: /// 1) \p CntInst is set to the instruction counting the population bit. /// 2) \p CntPhi is set to the corresponding phi node. /// 3) \p Var is set to the value whose population bits are being counted. /// /// The core idiom we are trying to detect is: /// \code /// if (x0 != 0) /// goto loop-exit // the precondition of the loop /// cnt0 = init-val; /// do { /// x1 = phi (x0, x2); /// cnt1 = phi(cnt0, cnt2); /// /// cnt2 = cnt1 + 1; /// ... /// x2 = x1 & (x1 - 1); /// ... /// } while(x != 0); /// /// loop-exit: /// \endcode static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) { // step 1: Check to see if the look-back branch match this pattern: // "if (a!=0) goto loop-entry". BasicBlock *LoopEntry; Instruction *DefX2, *CountInst; Value *VarX1, *VarX0; PHINode *PhiX, *CountPhi; DefX2 = CountInst = nullptr; VarX1 = VarX0 = nullptr; PhiX = CountPhi = nullptr; LoopEntry = *(CurLoop->block_begin()); // step 1: Check if the loop-back branch is in desirable form. { if (Value *T = matchCondition( dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) DefX2 = dyn_cast<Instruction>(T); else return false; } // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" { if (!DefX2 || DefX2->getOpcode() != Instruction::And) return false; BinaryOperator *SubOneOp; if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) VarX1 = DefX2->getOperand(1); else { VarX1 = DefX2->getOperand(0); SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); } if (!SubOneOp) return false; Instruction *SubInst = cast<Instruction>(SubOneOp); ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); if (!Dec || !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) { return false; } } // step 3: Check the recurrence of variable X { PhiX = dyn_cast<PHINode>(VarX1); if (!PhiX || (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { return false; } } // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 { CountInst = nullptr; for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), IterE = LoopEntry->end(); Iter != IterE; Iter++) { Instruction *Inst = &*Iter; if (Inst->getOpcode() != Instruction::Add) continue; ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); if (!Inc || !Inc->isOne()) continue; PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); if (!Phi || Phi->getParent() != LoopEntry) continue; // Check if the result of the instruction is live of the loop. bool LiveOutLoop = false; for (User *U : Inst->users()) { if ((cast<Instruction>(U))->getParent() != LoopEntry) { LiveOutLoop = true; break; } } if (LiveOutLoop) { CountInst = Inst; CountPhi = Phi; break; } } if (!CountInst) return false; } // step 5: check if the precondition is in this form: // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" { auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) return false; CntInst = CountInst; CntPhi = CountPhi; Var = T; } return true; } /// Recognizes a population count idiom in a non-countable loop. /// /// If detected, transforms the relevant code to issue the popcount intrinsic /// function call, and returns true; otherwise, returns false. bool LoopIdiomRecognize::recognizePopcount() { if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) return false; // Counting population are usually conducted by few arithmetic instructions. // Such instructions can be easily "absorbed" by vacant slots in a // non-compact loop. Therefore, recognizing popcount idiom only makes sense // in a compact loop. // Give up if the loop has multiple blocks or multiple backedges. if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) return false; BasicBlock *LoopBody = *(CurLoop->block_begin()); if (LoopBody->size() >= 20) { // The loop is too big, bail out. return false; } // It should have a preheader containing nothing but an unconditional branch. BasicBlock *PH = CurLoop->getLoopPreheader(); if (!PH) return false; if (&PH->front() != PH->getTerminator()) return false; auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); if (!EntryBI || EntryBI->isConditional()) return false; // It should have a precondition block where the generated popcount instrinsic // function can be inserted. auto *PreCondBB = PH->getSinglePredecessor(); if (!PreCondBB) return false; auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); if (!PreCondBI || PreCondBI->isUnconditional()) return false; Instruction *CntInst; PHINode *CntPhi; Value *Val; if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) return false; transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); return true; } static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, const DebugLoc &DL) { Value *Ops[] = {Val}; Type *Tys[] = {Val->getType()}; Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); CallInst *CI = IRBuilder.CreateCall(Func, Ops); CI->setDebugLoc(DL); return CI; } void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, PHINode *CntPhi, Value *Var) { BasicBlock *PreHead = CurLoop->getLoopPreheader(); auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); const DebugLoc DL = CntInst->getDebugLoc(); // Assuming before transformation, the loop is following: // if (x) // the precondition // do { cnt++; x &= x - 1; } while(x); // Step 1: Insert the ctpop instruction at the end of the precondition block IRBuilder<> Builder(PreCondBr); Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; { PopCnt = createPopcntIntrinsic(Builder, Var, DL); NewCount = PopCntZext = Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); if (NewCount != PopCnt) (cast<Instruction>(NewCount))->setDebugLoc(DL); // TripCnt is exactly the number of iterations the loop has TripCnt = NewCount; // If the population counter's initial value is not zero, insert Add Inst. Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); if (!InitConst || !InitConst->isZero()) { NewCount = Builder.CreateAdd(NewCount, CntInitVal); (cast<Instruction>(NewCount))->setDebugLoc(DL); } } // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to // "if (NewCount == 0) loop-exit". Without this change, the intrinsic // function would be partial dead code, and downstream passes will drag // it back from the precondition block to the preheader. { ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); Value *Opnd0 = PopCntZext; Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); if (PreCond->getOperand(0) != Var) std::swap(Opnd0, Opnd1); ICmpInst *NewPreCond = cast<ICmpInst>( Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); PreCondBr->setCondition(NewPreCond); RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); } // Step 3: Note that the population count is exactly the trip count of the // loop in question, which enable us to to convert the loop from noncountable // loop into a countable one. The benefit is twofold: // // - If the loop only counts population, the entire loop becomes dead after // the transformation. It is a lot easier to prove a countable loop dead // than to prove a noncountable one. (In some C dialects, an infinite loop // isn't dead even if it computes nothing useful. In general, DCE needs // to prove a noncountable loop finite before safely delete it.) // // - If the loop also performs something else, it remains alive. // Since it is transformed to countable form, it can be aggressively // optimized by some optimizations which are in general not applicable // to a noncountable loop. // // After this step, this loop (conceptually) would look like following: // newcnt = __builtin_ctpop(x); // t = newcnt; // if (x) // do { cnt++; x &= x-1; t--) } while (t > 0); BasicBlock *Body = *(CurLoop->block_begin()); { auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator()); ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); Type *Ty = TripCnt->getType(); PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); Builder.SetInsertPoint(LbCond); Instruction *TcDec = cast<Instruction>( Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), "tcdec", false, true)); TcPhi->addIncoming(TripCnt, PreHead); TcPhi->addIncoming(TcDec, Body); CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; LbCond->setPredicate(Pred); LbCond->setOperand(0, TcDec); LbCond->setOperand(1, ConstantInt::get(Ty, 0)); } // Step 4: All the references to the original population counter outside // the loop are replaced with the NewCount -- the value returned from // __builtin_ctpop(). CntInst->replaceUsesOutsideBlock(NewCount, Body); // step 5: Forget the "non-computable" trip-count SCEV associated with the // loop. The loop would otherwise not be deleted even if it becomes empty. SE->forgetLoop(CurLoop); }