//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Dead Loop Deletion Pass. This pass is responsible // for eliminating loops with non-infinite computable trip counts that have no // side effects or volatile instructions, and do not contribute to the // computation of the function's return value. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopDeletion.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopPassManager.h" #include "llvm/IR/Dominators.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-delete" STATISTIC(NumDeleted, "Number of loops deleted"); /// isLoopDead - Determined if a loop is dead. This assumes that we've already /// checked for unique exit and exiting blocks, and that the code is in LCSSA /// form. bool LoopDeletionPass::isLoopDead(Loop *L, ScalarEvolution &SE, SmallVectorImpl<BasicBlock *> &exitingBlocks, SmallVectorImpl<BasicBlock *> &exitBlocks, bool &Changed, BasicBlock *Preheader) { BasicBlock *exitBlock = exitBlocks[0]; // Make sure that all PHI entries coming from the loop are loop invariant. // Because the code is in LCSSA form, any values used outside of the loop // must pass through a PHI in the exit block, meaning that this check is // sufficient to guarantee that no loop-variant values are used outside // of the loop. BasicBlock::iterator BI = exitBlock->begin(); bool AllEntriesInvariant = true; bool AllOutgoingValuesSame = true; while (PHINode *P = dyn_cast<PHINode>(BI)) { Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]); // Make sure all exiting blocks produce the same incoming value for the exit // block. If there are different incoming values for different exiting // blocks, then it is impossible to statically determine which value should // be used. AllOutgoingValuesSame = all_of(makeArrayRef(exitingBlocks).slice(1), [&](BasicBlock *BB) { return incoming == P->getIncomingValueForBlock(BB); }); if (!AllOutgoingValuesSame) break; if (Instruction *I = dyn_cast<Instruction>(incoming)) if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) { AllEntriesInvariant = false; break; } ++BI; } if (Changed) SE.forgetLoopDispositions(L); if (!AllEntriesInvariant || !AllOutgoingValuesSame) return false; // Make sure that no instructions in the block have potential side-effects. // This includes instructions that could write to memory, and loads that are // marked volatile. This could be made more aggressive by using aliasing // information to identify readonly and readnone calls. for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); LI != LE; ++LI) { for (Instruction &I : **LI) { if (I.mayHaveSideEffects()) return false; } } return true; } /// Remove dead loops, by which we mean loops that do not impact the observable /// behavior of the program other than finite running time. Note we do ensure /// that this never remove a loop that might be infinite, as doing so could /// change the halting/non-halting nature of a program. NOTE: This entire /// process relies pretty heavily on LoopSimplify and LCSSA in order to make /// various safety checks work. bool LoopDeletionPass::runImpl(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &loopInfo) { assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); // We can only remove the loop if there is a preheader that we can // branch from after removing it. BasicBlock *preheader = L->getLoopPreheader(); if (!preheader) return false; // If LoopSimplify form is not available, stay out of trouble. if (!L->hasDedicatedExits()) return false; // We can't remove loops that contain subloops. If the subloops were dead, // they would already have been removed in earlier executions of this pass. if (L->begin() != L->end()) return false; SmallVector<BasicBlock *, 4> exitingBlocks; L->getExitingBlocks(exitingBlocks); SmallVector<BasicBlock *, 4> exitBlocks; L->getUniqueExitBlocks(exitBlocks); // We require that the loop only have a single exit block. Otherwise, we'd // be in the situation of needing to be able to solve statically which exit // block will be branched to, or trying to preserve the branching logic in // a loop invariant manner. if (exitBlocks.size() != 1) return false; // Finally, we have to check that the loop really is dead. bool Changed = false; if (!isLoopDead(L, SE, exitingBlocks, exitBlocks, Changed, preheader)) return Changed; // Don't remove loops for which we can't solve the trip count. // They could be infinite, in which case we'd be changing program behavior. const SCEV *S = SE.getMaxBackedgeTakenCount(L); if (isa<SCEVCouldNotCompute>(S)) return Changed; // Now that we know the removal is safe, remove the loop by changing the // branch from the preheader to go to the single exit block. BasicBlock *exitBlock = exitBlocks[0]; // Because we're deleting a large chunk of code at once, the sequence in which // we remove things is very important to avoid invalidation issues. Don't // mess with this unless you have good reason and know what you're doing. // Tell ScalarEvolution that the loop is deleted. Do this before // deleting the loop so that ScalarEvolution can look at the loop // to determine what it needs to clean up. SE.forgetLoop(L); // Connect the preheader directly to the exit block. TerminatorInst *TI = preheader->getTerminator(); TI->replaceUsesOfWith(L->getHeader(), exitBlock); // Rewrite phis in the exit block to get their inputs from // the preheader instead of the exiting block. BasicBlock *exitingBlock = exitingBlocks[0]; BasicBlock::iterator BI = exitBlock->begin(); while (PHINode *P = dyn_cast<PHINode>(BI)) { int j = P->getBasicBlockIndex(exitingBlock); assert(j >= 0 && "Can't find exiting block in exit block's phi node!"); P->setIncomingBlock(j, preheader); for (unsigned i = 1; i < exitingBlocks.size(); ++i) P->removeIncomingValue(exitingBlocks[i]); ++BI; } // Update the dominator tree and remove the instructions and blocks that will // be deleted from the reference counting scheme. SmallVector<DomTreeNode*, 8> ChildNodes; for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); LI != LE; ++LI) { // Move all of the block's children to be children of the preheader, which // allows us to remove the domtree entry for the block. ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end()); for (DomTreeNode *ChildNode : ChildNodes) { DT.changeImmediateDominator(ChildNode, DT[preheader]); } ChildNodes.clear(); DT.eraseNode(*LI); // Remove the block from the reference counting scheme, so that we can // delete it freely later. (*LI)->dropAllReferences(); } // Erase the instructions and the blocks without having to worry // about ordering because we already dropped the references. // NOTE: This iteration is safe because erasing the block does not remove its // entry from the loop's block list. We do that in the next section. for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); LI != LE; ++LI) (*LI)->eraseFromParent(); // Finally, the blocks from loopinfo. This has to happen late because // otherwise our loop iterators won't work. SmallPtrSet<BasicBlock *, 8> blocks; blocks.insert(L->block_begin(), L->block_end()); for (BasicBlock *BB : blocks) loopInfo.removeBlock(BB); // The last step is to update LoopInfo now that we've eliminated this loop. loopInfo.markAsRemoved(L); Changed = true; ++NumDeleted; return Changed; } PreservedAnalyses LoopDeletionPass::run(Loop &L, AnalysisManager<Loop> &AM) { auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); Function *F = L.getHeader()->getParent(); auto &DT = *FAM.getCachedResult<DominatorTreeAnalysis>(*F); auto &SE = *FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); auto &LI = *FAM.getCachedResult<LoopAnalysis>(*F); bool Changed = runImpl(&L, DT, SE, LI); if (!Changed) return PreservedAnalyses::all(); return getLoopPassPreservedAnalyses(); } namespace { class LoopDeletionLegacyPass : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopDeletionLegacyPass() : LoopPass(ID) { initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry()); } // Possibly eliminate loop L if it is dead. bool runOnLoop(Loop *L, LPPassManager &) override; void getAnalysisUsage(AnalysisUsage &AU) const override { getLoopAnalysisUsage(AU); } }; } char LoopDeletionLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion", "Delete dead loops", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion", "Delete dead loops", false, false) Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); } bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) { if (skipLoop(L)) return false; DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); LoopDeletionPass Impl; return Impl.runImpl(L, DT, SE, loopInfo); }