//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/IndVarSimplify.h" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopPassManager.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SimplifyIndVar.h" using namespace llvm; #define DEBUG_TYPE "indvars" STATISTIC(NumWidened , "Number of indvars widened"); STATISTIC(NumReplaced , "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); // Trip count verification can be enabled by default under NDEBUG if we // implement a strong expression equivalence checker in SCEV. Until then, we // use the verify-indvars flag, which may assert in some cases. static cl::opt<bool> VerifyIndvars( "verify-indvars", cl::Hidden, cl::desc("Verify the ScalarEvolution result after running indvars")); enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; static cl::opt<ReplaceExitVal> ReplaceExitValue( "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible"), clEnumValEnd)); namespace { struct RewritePhi; class IndVarSimplify { LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; const DataLayout &DL; TargetLibraryInfo *TLI; const TargetTransformInfo *TTI; SmallVector<WeakVH, 16> DeadInsts; bool Changed = false; bool isValidRewrite(Value *FromVal, Value *ToVal); void handleFloatingPointIV(Loop *L, PHINode *PH); void rewriteNonIntegerIVs(Loop *L); void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); void rewriteFirstIterationLoopExitValues(Loop *L); Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar, SCEVExpander &Rewriter); void sinkUnusedInvariants(Loop *L); Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, Instruction *InsertPt, Type *Ty); public: IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, const DataLayout &DL, TargetLibraryInfo *TLI, TargetTransformInfo *TTI) : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} bool run(Loop *L); }; } /// Return true if the SCEV expansion generated by the rewriter can replace the /// original value. SCEV guarantees that it produces the same value, but the way /// it is produced may be illegal IR. Ideally, this function will only be /// called for verification. bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { // If an SCEV expression subsumed multiple pointers, its expansion could // reassociate the GEP changing the base pointer. This is illegal because the // final address produced by a GEP chain must be inbounds relative to its // underlying object. Otherwise basic alias analysis, among other things, // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid // producing an expression involving multiple pointers. Until then, we must // bail out here. // // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject // because it understands lcssa phis while SCEV does not. Value *FromPtr = FromVal; Value *ToPtr = ToVal; if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { FromPtr = GEP->getPointerOperand(); } if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { ToPtr = GEP->getPointerOperand(); } if (FromPtr != FromVal || ToPtr != ToVal) { // Quickly check the common case if (FromPtr == ToPtr) return true; // SCEV may have rewritten an expression that produces the GEP's pointer // operand. That's ok as long as the pointer operand has the same base // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the // base of a recurrence. This handles the case in which SCEV expansion // converts a pointer type recurrence into a nonrecurrent pointer base // indexed by an integer recurrence. // If the GEP base pointer is a vector of pointers, abort. if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) return false; const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); if (FromBase == ToBase) return true; DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase << " != " << *ToBase << "\n"); return false; } return true; } /// Determine the insertion point for this user. By default, insert immediately /// before the user. SCEVExpander or LICM will hoist loop invariants out of the /// loop. For PHI nodes, there may be multiple uses, so compute the nearest /// common dominator for the incoming blocks. static Instruction *getInsertPointForUses(Instruction *User, Value *Def, DominatorTree *DT, LoopInfo *LI) { PHINode *PHI = dyn_cast<PHINode>(User); if (!PHI) return User; Instruction *InsertPt = nullptr; for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { if (PHI->getIncomingValue(i) != Def) continue; BasicBlock *InsertBB = PHI->getIncomingBlock(i); if (!InsertPt) { InsertPt = InsertBB->getTerminator(); continue; } InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); InsertPt = InsertBB->getTerminator(); } assert(InsertPt && "Missing phi operand"); auto *DefI = dyn_cast<Instruction>(Def); if (!DefI) return InsertPt; assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); auto *L = LI->getLoopFor(DefI->getParent()); assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) if (LI->getLoopFor(DTN->getBlock()) == L) return DTN->getBlock()->getTerminator(); llvm_unreachable("DefI dominates InsertPt!"); } //===----------------------------------------------------------------------===// // rewriteNonIntegerIVs and helpers. Prefer integer IVs. //===----------------------------------------------------------------------===// /// Convert APF to an integer, if possible. static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { bool isExact = false; // See if we can convert this to an int64_t uint64_t UIntVal; if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, &isExact) != APFloat::opOK || !isExact) return false; IntVal = UIntVal; return true; } /// If the loop has floating induction variable then insert corresponding /// integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); /// void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); int64_t InitValue; if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) return; // Check IV increment. Reject this PN if increment operation is not // an add or increment value can not be represented by an integer. auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; // If this is not an add of the PHI with a constantfp, or if the constant fp // is not an integer, bail out. ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); int64_t IncValue; if (IncValueVal == nullptr || Incr->getOperand(0) != PN || !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) return; // Check Incr uses. One user is PN and the other user is an exit condition // used by the conditional terminator. Value::user_iterator IncrUse = Incr->user_begin(); Instruction *U1 = cast<Instruction>(*IncrUse++); if (IncrUse == Incr->user_end()) return; Instruction *U2 = cast<Instruction>(*IncrUse++); if (IncrUse != Incr->user_end()) return; // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't // only used by a branch, we can't transform it. FCmpInst *Compare = dyn_cast<FCmpInst>(U1); if (!Compare) Compare = dyn_cast<FCmpInst>(U2); if (!Compare || !Compare->hasOneUse() || !isa<BranchInst>(Compare->user_back())) return; BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); // We need to verify that the branch actually controls the iteration count // of the loop. If not, the new IV can overflow and no one will notice. // The branch block must be in the loop and one of the successors must be out // of the loop. assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); if (!L->contains(TheBr->getParent()) || (L->contains(TheBr->getSuccessor(0)) && L->contains(TheBr->getSuccessor(1)))) return; // If it isn't a comparison with an integer-as-fp (the exit value), we can't // transform it. ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); int64_t ExitValue; if (ExitValueVal == nullptr || !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) return; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (Compare->getPredicate()) { default: return; // Unknown comparison. case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_ONE: case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; } // We convert the floating point induction variable to a signed i32 value if // we can. This is only safe if the comparison will not overflow in a way // that won't be trapped by the integer equivalent operations. Check for this // now. // TODO: We could use i64 if it is native and the range requires it. // The start/stride/exit values must all fit in signed i32. if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) return; // If not actually striding (add x, 0.0), avoid touching the code. if (IncValue == 0) return; // Positive and negative strides have different safety conditions. if (IncValue > 0) { // If we have a positive stride, we require the init to be less than the // exit value. if (InitValue >= ExitValue) return; uint32_t Range = uint32_t(ExitValue-InitValue); // Check for infinite loop, either: // while (i <= Exit) or until (i > Exit) if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) return; } else { // If we have a negative stride, we require the init to be greater than the // exit value. if (InitValue <= ExitValue) return; uint32_t Range = uint32_t(InitValue-ExitValue); // Check for infinite loop, either: // while (i >= Exit) or until (i < Exit) if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(-IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) return; } IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), PN->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, ConstantInt::get(Int32Ty, ExitValue), Compare->getName()); // In the following deletions, PN may become dead and may be deleted. // Use a WeakVH to observe whether this happens. WeakVH WeakPH = PN; // Delete the old floating point exit comparison. The branch starts using the // new comparison. NewCompare->takeName(Compare); Compare->replaceAllUsesWith(NewCompare); RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); // Delete the old floating point increment. Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); // If the FP induction variable still has uses, this is because something else // in the loop uses its value. In order to canonicalize the induction // variable, we chose to eliminate the IV and rewrite it in terms of an // int->fp cast. // // We give preference to sitofp over uitofp because it is faster on most // platforms. if (WeakPH) { Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", &*PN->getParent()->getFirstInsertionPt()); PN->replaceAllUsesWith(Conv); RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); } Changed = true; } void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { // First step. Check to see if there are any floating-point recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. // BasicBlock *Header = L->getHeader(); SmallVector<WeakVH, 8> PHIs; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) PHIs.push_back(PN); for (unsigned i = 0, e = PHIs.size(); i != e; ++i) if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) handleFloatingPointIV(L, PN); // If the loop previously had floating-point IV, ScalarEvolution // may not have been able to compute a trip count. Now that we've done some // re-writing, the trip count may be computable. if (Changed) SE->forgetLoop(L); } namespace { // Collect information about PHI nodes which can be transformed in // rewriteLoopExitValues. struct RewritePhi { PHINode *PN; unsigned Ith; // Ith incoming value. Value *Val; // Exit value after expansion. bool HighCost; // High Cost when expansion. RewritePhi(PHINode *P, unsigned I, Value *V, bool H) : PN(P), Ith(I), Val(V), HighCost(H) {} }; } Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, Instruction *InsertPt, Type *ResultTy) { // Before expanding S into an expensive LLVM expression, see if we can use an // already existing value as the expansion for S. if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) if (ExistingValue->getType() == ResultTy) return ExistingValue; // We didn't find anything, fall back to using SCEVExpander. return Rewriter.expandCodeFor(S, ResultTy, InsertPt); } //===----------------------------------------------------------------------===// // rewriteLoopExitValues - Optimize IV users outside the loop. // As a side effect, reduces the amount of IV processing within the loop. //===----------------------------------------------------------------------===// /// Check to see if this loop has a computable loop-invariant execution count. /// If so, this means that we can compute the final value of any expressions /// that are recurrent in the loop, and substitute the exit values from the loop /// into any instructions outside of the loop that use the final values of the /// current expressions. /// /// This is mostly redundant with the regular IndVarSimplify activities that /// happen later, except that it's more powerful in some cases, because it's /// able to brute-force evaluate arbitrary instructions as long as they have /// constant operands at the beginning of the loop. void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { // Check a pre-condition. assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); SmallVector<BasicBlock*, 8> ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); SmallVector<RewritePhi, 8> RewritePhiSet; // Find all values that are computed inside the loop, but used outside of it. // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan // the exit blocks of the loop to find them. for (BasicBlock *ExitBB : ExitBlocks) { // If there are no PHI nodes in this exit block, then no values defined // inside the loop are used on this path, skip it. PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); if (!PN) continue; unsigned NumPreds = PN->getNumIncomingValues(); // Iterate over all of the PHI nodes. BasicBlock::iterator BBI = ExitBB->begin(); while ((PN = dyn_cast<PHINode>(BBI++))) { if (PN->use_empty()) continue; // dead use, don't replace it if (!SE->isSCEVable(PN->getType())) continue; // It's necessary to tell ScalarEvolution about this explicitly so that // it can walk the def-use list and forget all SCEVs, as it may not be // watching the PHI itself. Once the new exit value is in place, there // may not be a def-use connection between the loop and every instruction // which got a SCEVAddRecExpr for that loop. SE->forgetValue(PN); // Iterate over all of the values in all the PHI nodes. for (unsigned i = 0; i != NumPreds; ++i) { // If the value being merged in is not integer or is not defined // in the loop, skip it. Value *InVal = PN->getIncomingValue(i); if (!isa<Instruction>(InVal)) continue; // If this pred is for a subloop, not L itself, skip it. if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) continue; // The Block is in a subloop, skip it. // Check that InVal is defined in the loop. Instruction *Inst = cast<Instruction>(InVal); if (!L->contains(Inst)) continue; // Okay, this instruction has a user outside of the current loop // and varies predictably *inside* the loop. Evaluate the value it // contains when the loop exits, if possible. const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); if (!SE->isLoopInvariant(ExitValue, L) || !isSafeToExpand(ExitValue, *SE)) continue; // Computing the value outside of the loop brings no benefit if : // - it is definitely used inside the loop in a way which can not be // optimized away. // - no use outside of the loop can take advantage of hoisting the // computation out of the loop if (ExitValue->getSCEVType()>=scMulExpr) { unsigned NumHardInternalUses = 0; unsigned NumSoftExternalUses = 0; unsigned NumUses = 0; for (auto IB = Inst->user_begin(), IE = Inst->user_end(); IB != IE && NumUses <= 6; ++IB) { Instruction *UseInstr = cast<Instruction>(*IB); unsigned Opc = UseInstr->getOpcode(); NumUses++; if (L->contains(UseInstr)) { if (Opc == Instruction::Call || Opc == Instruction::Ret) NumHardInternalUses++; } else { if (Opc == Instruction::PHI) { // Do not count the Phi as a use. LCSSA may have inserted // plenty of trivial ones. NumUses--; for (auto PB = UseInstr->user_begin(), PE = UseInstr->user_end(); PB != PE && NumUses <= 6; ++PB, ++NumUses) { unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) NumSoftExternalUses++; } continue; } if (Opc != Instruction::Call && Opc != Instruction::Ret) NumSoftExternalUses++; } } if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) continue; } bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); Value *ExitVal = expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' << " LoopVal = " << *Inst << "\n"); if (!isValidRewrite(Inst, ExitVal)) { DeadInsts.push_back(ExitVal); continue; } // Collect all the candidate PHINodes to be rewritten. RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); } } } bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); // Transformation. for (const RewritePhi &Phi : RewritePhiSet) { PHINode *PN = Phi.PN; Value *ExitVal = Phi.Val; // Only do the rewrite when the ExitValue can be expanded cheaply. // If LoopCanBeDel is true, rewrite exit value aggressively. if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { DeadInsts.push_back(ExitVal); continue; } Changed = true; ++NumReplaced; Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); PN->setIncomingValue(Phi.Ith, ExitVal); // If this instruction is dead now, delete it. Don't do it now to avoid // invalidating iterators. if (isInstructionTriviallyDead(Inst, TLI)) DeadInsts.push_back(Inst); // Replace PN with ExitVal if that is legal and does not break LCSSA. if (PN->getNumIncomingValues() == 1 && LI->replacementPreservesLCSSAForm(PN, ExitVal)) { PN->replaceAllUsesWith(ExitVal); PN->eraseFromParent(); } } // The insertion point instruction may have been deleted; clear it out // so that the rewriter doesn't trip over it later. Rewriter.clearInsertPoint(); } //===---------------------------------------------------------------------===// // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know // they will exit at the first iteration. //===---------------------------------------------------------------------===// /// Check to see if this loop has loop invariant conditions which lead to loop /// exits. If so, we know that if the exit path is taken, it is at the first /// loop iteration. This lets us predict exit values of PHI nodes that live in /// loop header. void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { // Verify the input to the pass is already in LCSSA form. assert(L->isLCSSAForm(*DT)); SmallVector<BasicBlock *, 8> ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); auto *LoopHeader = L->getHeader(); assert(LoopHeader && "Invalid loop"); for (auto *ExitBB : ExitBlocks) { BasicBlock::iterator BBI = ExitBB->begin(); // If there are no more PHI nodes in this exit block, then no more // values defined inside the loop are used on this path. while (auto *PN = dyn_cast<PHINode>(BBI++)) { for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); IncomingValIdx != E; ++IncomingValIdx) { auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); // We currently only support loop exits from loop header. If the // incoming block is not loop header, we need to recursively check // all conditions starting from loop header are loop invariants. // Additional support might be added in the future. if (IncomingBB != LoopHeader) continue; // Get condition that leads to the exit path. auto *TermInst = IncomingBB->getTerminator(); Value *Cond = nullptr; if (auto *BI = dyn_cast<BranchInst>(TermInst)) { // Must be a conditional branch, otherwise the block // should not be in the loop. Cond = BI->getCondition(); } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) Cond = SI->getCondition(); else continue; if (!L->isLoopInvariant(Cond)) continue; auto *ExitVal = dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); // Only deal with PHIs. if (!ExitVal) continue; // If ExitVal is a PHI on the loop header, then we know its // value along this exit because the exit can only be taken // on the first iteration. auto *LoopPreheader = L->getLoopPreheader(); assert(LoopPreheader && "Invalid loop"); int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); if (PreheaderIdx != -1) { assert(ExitVal->getParent() == LoopHeader && "ExitVal must be in loop header"); PN->setIncomingValue(IncomingValIdx, ExitVal->getIncomingValue(PreheaderIdx)); } } } } } /// Check whether it is possible to delete the loop after rewriting exit /// value. If it is possible, ignore ReplaceExitValue and do rewriting /// aggressively. bool IndVarSimplify::canLoopBeDeleted( Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { BasicBlock *Preheader = L->getLoopPreheader(); // If there is no preheader, the loop will not be deleted. if (!Preheader) return false; // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. // We obviate multiple ExitingBlocks case for simplicity. // TODO: If we see testcase with multiple ExitingBlocks can be deleted // after exit value rewriting, we can enhance the logic here. SmallVector<BasicBlock *, 4> ExitingBlocks; L->getExitingBlocks(ExitingBlocks); SmallVector<BasicBlock *, 8> ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) return false; BasicBlock *ExitBlock = ExitBlocks[0]; BasicBlock::iterator BI = ExitBlock->begin(); while (PHINode *P = dyn_cast<PHINode>(BI)) { Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); // If the Incoming value of P is found in RewritePhiSet, we know it // could be rewritten to use a loop invariant value in transformation // phase later. Skip it in the loop invariant check below. bool found = false; for (const RewritePhi &Phi : RewritePhiSet) { unsigned i = Phi.Ith; if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { found = true; break; } } Instruction *I; if (!found && (I = dyn_cast<Instruction>(Incoming))) if (!L->hasLoopInvariantOperands(I)) return false; ++BI; } for (auto *BB : L->blocks()) if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) return false; return true; } //===----------------------------------------------------------------------===// // IV Widening - Extend the width of an IV to cover its widest uses. //===----------------------------------------------------------------------===// namespace { // Collect information about induction variables that are used by sign/zero // extend operations. This information is recorded by CollectExtend and provides // the input to WidenIV. struct WideIVInfo { PHINode *NarrowIV = nullptr; Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext bool IsSigned = false; // Was a sext user seen before a zext? }; } /// Update information about the induction variable that is extended by this /// sign or zero extend operation. This is used to determine the final width of /// the IV before actually widening it. static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, const TargetTransformInfo *TTI) { bool IsSigned = Cast->getOpcode() == Instruction::SExt; if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) return; Type *Ty = Cast->getType(); uint64_t Width = SE->getTypeSizeInBits(Ty); if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) return; // Cast is either an sext or zext up to this point. // We should not widen an indvar if arithmetics on the wider indvar are more // expensive than those on the narrower indvar. We check only the cost of ADD // because at least an ADD is required to increment the induction variable. We // could compute more comprehensively the cost of all instructions on the // induction variable when necessary. if (TTI && TTI->getArithmeticInstrCost(Instruction::Add, Ty) > TTI->getArithmeticInstrCost(Instruction::Add, Cast->getOperand(0)->getType())) { return; } if (!WI.WidestNativeType) { WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); WI.IsSigned = IsSigned; return; } // We extend the IV to satisfy the sign of its first user, arbitrarily. if (WI.IsSigned != IsSigned) return; if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); } namespace { /// Record a link in the Narrow IV def-use chain along with the WideIV that /// computes the same value as the Narrow IV def. This avoids caching Use* /// pointers. struct NarrowIVDefUse { Instruction *NarrowDef = nullptr; Instruction *NarrowUse = nullptr; Instruction *WideDef = nullptr; // True if the narrow def is never negative. Tracking this information lets // us use a sign extension instead of a zero extension or vice versa, when // profitable and legal. bool NeverNegative = false; NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, bool NeverNegative) : NarrowDef(ND), NarrowUse(NU), WideDef(WD), NeverNegative(NeverNegative) {} }; /// The goal of this transform is to remove sign and zero extends without /// creating any new induction variables. To do this, it creates a new phi of /// the wider type and redirects all users, either removing extends or inserting /// truncs whenever we stop propagating the type. /// class WidenIV { // Parameters PHINode *OrigPhi; Type *WideType; bool IsSigned; // Context LoopInfo *LI; Loop *L; ScalarEvolution *SE; DominatorTree *DT; // Result PHINode *WidePhi; Instruction *WideInc; const SCEV *WideIncExpr; SmallVectorImpl<WeakVH> &DeadInsts; SmallPtrSet<Instruction*,16> Widened; SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; public: WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, DominatorTree *DTree, SmallVectorImpl<WeakVH> &DI) : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), IsSigned(WI.IsSigned), LI(LInfo), L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), WidePhi(nullptr), WideInc(nullptr), WideIncExpr(nullptr), DeadInsts(DI) { assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); } PHINode *createWideIV(SCEVExpander &Rewriter); protected: Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, Instruction *Use); Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, unsigned OpCode) const; Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); bool widenLoopCompare(NarrowIVDefUse DU); void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); }; } // anonymous namespace /// Perform a quick domtree based check for loop invariance assuming that V is /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this /// purpose. static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { Instruction *Inst = dyn_cast<Instruction>(V); if (!Inst) return true; return DT->properlyDominates(Inst->getParent(), L->getHeader()); } Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, Instruction *Use) { // Set the debug location and conservative insertion point. IRBuilder<> Builder(Use); // Hoist the insertion point into loop preheaders as far as possible. for (const Loop *L = LI->getLoopFor(Use->getParent()); L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); L = L->getParentLoop()) Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : Builder.CreateZExt(NarrowOper, WideType); } /// Instantiate a wide operation to replace a narrow operation. This only needs /// to handle operations that can evaluation to SCEVAddRec. It can safely return /// 0 for any operation we decide not to clone. Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR) { unsigned Opcode = DU.NarrowUse->getOpcode(); switch (Opcode) { default: return nullptr; case Instruction::Add: case Instruction::Mul: case Instruction::UDiv: case Instruction::Sub: return cloneArithmeticIVUser(DU, WideAR); case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return cloneBitwiseIVUser(DU); } } Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { Instruction *NarrowUse = DU.NarrowUse; Instruction *NarrowDef = DU.NarrowDef; Instruction *WideDef = DU.WideDef; DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything // about the narrow operand yet so must insert a [sz]ext. It is probably loop // invariant and will be folded or hoisted. If it actually comes from a // widened IV, it should be removed during a future call to widenIVUse. Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef : createExtendInst(NarrowUse->getOperand(0), WideType, IsSigned, NarrowUse); Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef : createExtendInst(NarrowUse->getOperand(1), WideType, IsSigned, NarrowUse); auto *NarrowBO = cast<BinaryOperator>(NarrowUse); auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, NarrowBO->getName()); IRBuilder<> Builder(NarrowUse); Builder.Insert(WideBO); WideBO->copyIRFlags(NarrowBO); return WideBO; } Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR) { Instruction *NarrowUse = DU.NarrowUse; Instruction *NarrowDef = DU.NarrowDef; Instruction *WideDef = DU.WideDef; DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; // We're trying to find X such that // // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X // // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), // and check using SCEV if any of them are correct. // Returns true if extending NonIVNarrowDef according to `SignExt` is a // correct solution to X. auto GuessNonIVOperand = [&](bool SignExt) { const SCEV *WideLHS; const SCEV *WideRHS; auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { if (SignExt) return SE->getSignExtendExpr(S, Ty); return SE->getZeroExtendExpr(S, Ty); }; if (IVOpIdx == 0) { WideLHS = SE->getSCEV(WideDef); const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); WideRHS = GetExtend(NarrowRHS, WideType); } else { const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); WideLHS = GetExtend(NarrowLHS, WideType); WideRHS = SE->getSCEV(WideDef); } // WideUse is "WideDef `op.wide` X" as described in the comment. const SCEV *WideUse = nullptr; switch (NarrowUse->getOpcode()) { default: llvm_unreachable("No other possibility!"); case Instruction::Add: WideUse = SE->getAddExpr(WideLHS, WideRHS); break; case Instruction::Mul: WideUse = SE->getMulExpr(WideLHS, WideRHS); break; case Instruction::UDiv: WideUse = SE->getUDivExpr(WideLHS, WideRHS); break; case Instruction::Sub: WideUse = SE->getMinusSCEV(WideLHS, WideRHS); break; } return WideUse == WideAR; }; bool SignExtend = IsSigned; if (!GuessNonIVOperand(SignExtend)) { SignExtend = !SignExtend; if (!GuessNonIVOperand(SignExtend)) return nullptr; } Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef : createExtendInst(NarrowUse->getOperand(0), WideType, SignExtend, NarrowUse); Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef : createExtendInst(NarrowUse->getOperand(1), WideType, SignExtend, NarrowUse); auto *NarrowBO = cast<BinaryOperator>(NarrowUse); auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, NarrowBO->getName()); IRBuilder<> Builder(NarrowUse); Builder.Insert(WideBO); WideBO->copyIRFlags(NarrowBO); return WideBO; } const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, unsigned OpCode) const { if (OpCode == Instruction::Add) return SE->getAddExpr(LHS, RHS); if (OpCode == Instruction::Sub) return SE->getMinusSCEV(LHS, RHS); if (OpCode == Instruction::Mul) return SE->getMulExpr(LHS, RHS); llvm_unreachable("Unsupported opcode."); } /// No-wrap operations can transfer sign extension of their result to their /// operands. Generate the SCEV value for the widened operation without /// actually modifying the IR yet. If the expression after extending the /// operands is an AddRec for this loop, return it. const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { // Handle the common case of add<nsw/nuw> const unsigned OpCode = DU.NarrowUse->getOpcode(); // Only Add/Sub/Mul instructions supported yet. if (OpCode != Instruction::Add && OpCode != Instruction::Sub && OpCode != Instruction::Mul) return nullptr; // One operand (NarrowDef) has already been extended to WideDef. Now determine // if extending the other will lead to a recurrence. const unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); const SCEV *ExtendOperExpr = nullptr; const OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(DU.NarrowUse); if (IsSigned && OBO->hasNoSignedWrap()) ExtendOperExpr = SE->getSignExtendExpr( SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); else if(!IsSigned && OBO->hasNoUnsignedWrap()) ExtendOperExpr = SE->getZeroExtendExpr( SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); else return nullptr; // When creating this SCEV expr, don't apply the current operations NSW or NUW // flags. This instruction may be guarded by control flow that the no-wrap // behavior depends on. Non-control-equivalent instructions can be mapped to // the same SCEV expression, and it would be incorrect to transfer NSW/NUW // semantics to those operations. const SCEV *lhs = SE->getSCEV(DU.WideDef); const SCEV *rhs = ExtendOperExpr; // Let's swap operands to the initial order for the case of non-commutative // operations, like SUB. See PR21014. if (ExtendOperIdx == 0) std::swap(lhs, rhs); const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); if (!AddRec || AddRec->getLoop() != L) return nullptr; return AddRec; } /// Is this instruction potentially interesting for further simplification after /// widening it's type? In other words, can the extend be safely hoisted out of /// the loop with SCEV reducing the value to a recurrence on the same loop. If /// so, return the sign or zero extended recurrence. Otherwise return NULL. const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { if (!SE->isSCEVable(NarrowUse->getType())) return nullptr; const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= SE->getTypeSizeInBits(WideType)) { // NarrowUse implicitly widens its operand. e.g. a gep with a narrow // index. So don't follow this use. return nullptr; } const SCEV *WideExpr = IsSigned ? SE->getSignExtendExpr(NarrowExpr, WideType) : SE->getZeroExtendExpr(NarrowExpr, WideType); const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); if (!AddRec || AddRec->getLoop() != L) return nullptr; return AddRec; } /// This IV user cannot be widen. Replace this use of the original narrow IV /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " << *DU.NarrowUse << "\n"); IRBuilder<> Builder( getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); } /// If the narrow use is a compare instruction, then widen the compare // (and possibly the other operand). The extend operation is hoisted into the // loop preheader as far as possible. bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); if (!Cmp) return false; // We can legally widen the comparison in the following two cases: // // - The signedness of the IV extension and comparison match // // - The narrow IV is always positive (and thus its sign extension is equal // to its zero extension). For instance, let's say we're zero extending // %narrow for the following use // // icmp slt i32 %narrow, %val ... (A) // // and %narrow is always positive. Then // // (A) == icmp slt i32 sext(%narrow), sext(%val) // == icmp slt i32 zext(%narrow), sext(%val) if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) return false; Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); unsigned IVWidth = SE->getTypeSizeInBits(WideType); assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); // Widen the compare instruction. IRBuilder<> Builder( getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); // Widen the other operand of the compare, if necessary. if (CastWidth < IVWidth) { Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); } return true; } /// Determine whether an individual user of the narrow IV can be widened. If so, /// return the wide clone of the user. Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { // Stop traversing the def-use chain at inner-loop phis or post-loop phis. if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { if (LI->getLoopFor(UsePhi->getParent()) != L) { // For LCSSA phis, sink the truncate outside the loop. // After SimplifyCFG most loop exit targets have a single predecessor. // Otherwise fall back to a truncate within the loop. if (UsePhi->getNumOperands() != 1) truncateIVUse(DU, DT, LI); else { // Widening the PHI requires us to insert a trunc. The logical place // for this trunc is in the same BB as the PHI. This is not possible if // the BB is terminated by a catchswitch. if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) return nullptr; PHINode *WidePhi = PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", UsePhi); WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); UsePhi->replaceAllUsesWith(Trunc); DeadInsts.emplace_back(UsePhi); DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " << *WidePhi << "\n"); } return nullptr; } } // Our raison d'etre! Eliminate sign and zero extension. if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { Value *NewDef = DU.WideDef; if (DU.NarrowUse->getType() != WideType) { unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); unsigned IVWidth = SE->getTypeSizeInBits(WideType); if (CastWidth < IVWidth) { // The cast isn't as wide as the IV, so insert a Trunc. IRBuilder<> Builder(DU.NarrowUse); NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); } else { // A wider extend was hidden behind a narrower one. This may induce // another round of IV widening in which the intermediate IV becomes // dead. It should be very rare. DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi << " not wide enough to subsume " << *DU.NarrowUse << "\n"); DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); NewDef = DU.NarrowUse; } } if (NewDef != DU.NarrowUse) { DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse << " replaced by " << *DU.WideDef << "\n"); ++NumElimExt; DU.NarrowUse->replaceAllUsesWith(NewDef); DeadInsts.emplace_back(DU.NarrowUse); } // Now that the extend is gone, we want to expose it's uses for potential // further simplification. We don't need to directly inform SimplifyIVUsers // of the new users, because their parent IV will be processed later as a // new loop phi. If we preserved IVUsers analysis, we would also want to // push the uses of WideDef here. // No further widening is needed. The deceased [sz]ext had done it for us. return nullptr; } // Does this user itself evaluate to a recurrence after widening? const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); if (!WideAddRec) WideAddRec = getExtendedOperandRecurrence(DU); if (!WideAddRec) { // If use is a loop condition, try to promote the condition instead of // truncating the IV first. if (widenLoopCompare(DU)) return nullptr; // This user does not evaluate to a recurence after widening, so don't // follow it. Instead insert a Trunc to kill off the original use, // eventually isolating the original narrow IV so it can be removed. truncateIVUse(DU, DT, LI); return nullptr; } // Assume block terminators cannot evaluate to a recurrence. We can't to // insert a Trunc after a terminator if there happens to be a critical edge. assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && "SCEV is not expected to evaluate a block terminator"); // Reuse the IV increment that SCEVExpander created as long as it dominates // NarrowUse. Instruction *WideUse = nullptr; if (WideAddRec == WideIncExpr && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) WideUse = WideInc; else { WideUse = cloneIVUser(DU, WideAddRec); if (!WideUse) return nullptr; } // Evaluation of WideAddRec ensured that the narrow expression could be // extended outside the loop without overflow. This suggests that the wide use // evaluates to the same expression as the extended narrow use, but doesn't // absolutely guarantee it. Hence the following failsafe check. In rare cases // where it fails, we simply throw away the newly created wide use. if (WideAddRec != SE->getSCEV(WideUse)) { DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); DeadInsts.emplace_back(WideUse); return nullptr; } // Returning WideUse pushes it on the worklist. return WideUse; } /// Add eligible users of NarrowDef to NarrowIVUsers. /// void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); bool NeverNegative = SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, SE->getConstant(NarrowSCEV->getType(), 0)); for (User *U : NarrowDef->users()) { Instruction *NarrowUser = cast<Instruction>(U); // Handle data flow merges and bizarre phi cycles. if (!Widened.insert(NarrowUser).second) continue; NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); } } /// Process a single induction variable. First use the SCEVExpander to create a /// wide induction variable that evaluates to the same recurrence as the /// original narrow IV. Then use a worklist to forward traverse the narrow IV's /// def-use chain. After widenIVUse has processed all interesting IV users, the /// narrow IV will be isolated for removal by DeleteDeadPHIs. /// /// It would be simpler to delete uses as they are processed, but we must avoid /// invalidating SCEV expressions. /// PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { // Is this phi an induction variable? const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); if (!AddRec) return nullptr; // Widen the induction variable expression. const SCEV *WideIVExpr = IsSigned ? SE->getSignExtendExpr(AddRec, WideType) : SE->getZeroExtendExpr(AddRec, WideType); assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && "Expect the new IV expression to preserve its type"); // Can the IV be extended outside the loop without overflow? AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); if (!AddRec || AddRec->getLoop() != L) return nullptr; // An AddRec must have loop-invariant operands. Since this AddRec is // materialized by a loop header phi, the expression cannot have any post-loop // operands, so they must dominate the loop header. assert( SE->properlyDominates(AddRec->getStart(), L->getHeader()) && SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && "Loop header phi recurrence inputs do not dominate the loop"); // The rewriter provides a value for the desired IV expression. This may // either find an existing phi or materialize a new one. Either way, we // expect a well-formed cyclic phi-with-increments. i.e. any operand not part // of the phi-SCC dominates the loop entry. Instruction *InsertPt = &L->getHeader()->front(); WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); // Remembering the WideIV increment generated by SCEVExpander allows // widenIVUse to reuse it when widening the narrow IV's increment. We don't // employ a general reuse mechanism because the call above is the only call to // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. if (BasicBlock *LatchBlock = L->getLoopLatch()) { WideInc = cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); WideIncExpr = SE->getSCEV(WideInc); } DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); ++NumWidened; // Traverse the def-use chain using a worklist starting at the original IV. assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); Widened.insert(OrigPhi); pushNarrowIVUsers(OrigPhi, WidePhi); while (!NarrowIVUsers.empty()) { NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); // Process a def-use edge. This may replace the use, so don't hold a // use_iterator across it. Instruction *WideUse = widenIVUse(DU, Rewriter); // Follow all def-use edges from the previous narrow use. if (WideUse) pushNarrowIVUsers(DU.NarrowUse, WideUse); // widenIVUse may have removed the def-use edge. if (DU.NarrowDef->use_empty()) DeadInsts.emplace_back(DU.NarrowDef); } return WidePhi; } //===----------------------------------------------------------------------===// // Live IV Reduction - Minimize IVs live across the loop. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Simplification of IV users based on SCEV evaluation. //===----------------------------------------------------------------------===// namespace { class IndVarSimplifyVisitor : public IVVisitor { ScalarEvolution *SE; const TargetTransformInfo *TTI; PHINode *IVPhi; public: WideIVInfo WI; IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, const TargetTransformInfo *TTI, const DominatorTree *DTree) : SE(SCEV), TTI(TTI), IVPhi(IV) { DT = DTree; WI.NarrowIV = IVPhi; } // Implement the interface used by simplifyUsersOfIV. void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } }; } /// Iteratively perform simplification on a worklist of IV users. Each /// successive simplification may push more users which may themselves be /// candidates for simplification. /// /// Sign/Zero extend elimination is interleaved with IV simplification. /// void IndVarSimplify::simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI) { SmallVector<WideIVInfo, 8> WideIVs; SmallVector<PHINode*, 8> LoopPhis; for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { LoopPhis.push_back(cast<PHINode>(I)); } // Each round of simplification iterates through the SimplifyIVUsers worklist // for all current phis, then determines whether any IVs can be // widened. Widening adds new phis to LoopPhis, inducing another round of // simplification on the wide IVs. while (!LoopPhis.empty()) { // Evaluate as many IV expressions as possible before widening any IVs. This // forces SCEV to set no-wrap flags before evaluating sign/zero // extension. The first time SCEV attempts to normalize sign/zero extension, // the result becomes final. So for the most predictable results, we delay // evaluation of sign/zero extend evaluation until needed, and avoid running // other SCEV based analysis prior to simplifyAndExtend. do { PHINode *CurrIV = LoopPhis.pop_back_val(); // Information about sign/zero extensions of CurrIV. IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); if (Visitor.WI.WidestNativeType) { WideIVs.push_back(Visitor.WI); } } while(!LoopPhis.empty()); for (; !WideIVs.empty(); WideIVs.pop_back()) { WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { Changed = true; LoopPhis.push_back(WidePhi); } } } } //===----------------------------------------------------------------------===// // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. //===----------------------------------------------------------------------===// /// Return true if this loop's backedge taken count expression can be safely and /// cheaply expanded into an instruction sequence that can be used by /// linearFunctionTestReplace. /// /// TODO: This fails for pointer-type loop counters with greater than one byte /// strides, consequently preventing LFTR from running. For the purpose of LFTR /// we could skip this check in the case that the LFTR loop counter (chosen by /// FindLoopCounter) is also pointer type. Instead, we could directly convert /// the loop test to an inequality test by checking the target data's alignment /// of element types (given that the initial pointer value originates from or is /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). /// However, we don't yet have a strong motivation for converting loop tests /// into inequality tests. static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, SCEVExpander &Rewriter) { const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || BackedgeTakenCount->isZero()) return false; if (!L->getExitingBlock()) return false; // Can't rewrite non-branch yet. if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) return false; if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) return false; return true; } /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { Instruction *IncI = dyn_cast<Instruction>(IncV); if (!IncI) return nullptr; switch (IncI->getOpcode()) { case Instruction::Add: case Instruction::Sub: break; case Instruction::GetElementPtr: // An IV counter must preserve its type. if (IncI->getNumOperands() == 2) break; default: return nullptr; } PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); if (Phi && Phi->getParent() == L->getHeader()) { if (isLoopInvariant(IncI->getOperand(1), L, DT)) return Phi; return nullptr; } if (IncI->getOpcode() == Instruction::GetElementPtr) return nullptr; // Allow add/sub to be commuted. Phi = dyn_cast<PHINode>(IncI->getOperand(1)); if (Phi && Phi->getParent() == L->getHeader()) { if (isLoopInvariant(IncI->getOperand(0), L, DT)) return Phi; } return nullptr; } /// Return the compare guarding the loop latch, or NULL for unrecognized tests. static ICmpInst *getLoopTest(Loop *L) { assert(L->getExitingBlock() && "expected loop exit"); BasicBlock *LatchBlock = L->getLoopLatch(); // Don't bother with LFTR if the loop is not properly simplified. if (!LatchBlock) return nullptr; BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); assert(BI && "expected exit branch"); return dyn_cast<ICmpInst>(BI->getCondition()); } /// linearFunctionTestReplace policy. Return true unless we can show that the /// current exit test is already sufficiently canonical. static bool needsLFTR(Loop *L, DominatorTree *DT) { // Do LFTR to simplify the exit condition to an ICMP. ICmpInst *Cond = getLoopTest(L); if (!Cond) return true; // Do LFTR to simplify the exit ICMP to EQ/NE ICmpInst::Predicate Pred = Cond->getPredicate(); if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) return true; // Look for a loop invariant RHS Value *LHS = Cond->getOperand(0); Value *RHS = Cond->getOperand(1); if (!isLoopInvariant(RHS, L, DT)) { if (!isLoopInvariant(LHS, L, DT)) return true; std::swap(LHS, RHS); } // Look for a simple IV counter LHS PHINode *Phi = dyn_cast<PHINode>(LHS); if (!Phi) Phi = getLoopPhiForCounter(LHS, L, DT); if (!Phi) return true; // Do LFTR if PHI node is defined in the loop, but is *not* a counter. int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); if (Idx < 0) return true; // Do LFTR if the exit condition's IV is *not* a simple counter. Value *IncV = Phi->getIncomingValue(Idx); return Phi != getLoopPhiForCounter(IncV, L, DT); } /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils /// down to checking that all operands are constant and listing instructions /// that may hide undef. static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, unsigned Depth) { if (isa<Constant>(V)) return !isa<UndefValue>(V); if (Depth >= 6) return false; // Conservatively handle non-constant non-instructions. For example, Arguments // may be undef. Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; // Load and return values may be undef. if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) return false; // Optimistically handle other instructions. for (Value *Op : I->operands()) { if (!Visited.insert(Op).second) continue; if (!hasConcreteDefImpl(Op, Visited, Depth+1)) return false; } return true; } /// Return true if the given value is concrete. We must prove that undef can /// never reach it. /// /// TODO: If we decide that this is a good approach to checking for undef, we /// may factor it into a common location. static bool hasConcreteDef(Value *V) { SmallPtrSet<Value*, 8> Visited; Visited.insert(V); return hasConcreteDefImpl(V, Visited, 0); } /// Return true if this IV has any uses other than the (soon to be rewritten) /// loop exit test. static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); Value *IncV = Phi->getIncomingValue(LatchIdx); for (User *U : Phi->users()) if (U != Cond && U != IncV) return false; for (User *U : IncV->users()) if (U != Cond && U != Phi) return false; return true; } /// Find an affine IV in canonical form. /// /// BECount may be an i8* pointer type. The pointer difference is already /// valid count without scaling the address stride, so it remains a pointer /// expression as far as SCEV is concerned. /// /// Currently only valid for LFTR. See the comments on hasConcreteDef below. /// /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount /// /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. /// This is difficult in general for SCEV because of potential overflow. But we /// could at least handle constant BECounts. static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, ScalarEvolution *SE, DominatorTree *DT) { uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); Value *Cond = cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); // Loop over all of the PHI nodes, looking for a simple counter. PHINode *BestPhi = nullptr; const SCEV *BestInit = nullptr; BasicBlock *LatchBlock = L->getLoopLatch(); assert(LatchBlock && "needsLFTR should guarantee a loop latch"); const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { PHINode *Phi = cast<PHINode>(I); if (!SE->isSCEVable(Phi->getType())) continue; // Avoid comparing an integer IV against a pointer Limit. if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) continue; const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); if (!AR || AR->getLoop() != L || !AR->isAffine()) continue; // AR may be a pointer type, while BECount is an integer type. // AR may be wider than BECount. With eq/ne tests overflow is immaterial. // AR may not be a narrower type, or we may never exit. uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) continue; const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); if (!Step || !Step->isOne()) continue; int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); Value *IncV = Phi->getIncomingValue(LatchIdx); if (getLoopPhiForCounter(IncV, L, DT) != Phi) continue; // Avoid reusing a potentially undef value to compute other values that may // have originally had a concrete definition. if (!hasConcreteDef(Phi)) { // We explicitly allow unknown phis as long as they are already used by // the loop test. In this case we assume that performing LFTR could not // increase the number of undef users. if (ICmpInst *Cond = getLoopTest(L)) { if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { continue; } } } const SCEV *Init = AR->getStart(); if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { // Don't force a live loop counter if another IV can be used. if (AlmostDeadIV(Phi, LatchBlock, Cond)) continue; // Prefer to count-from-zero. This is a more "canonical" counter form. It // also prefers integer to pointer IVs. if (BestInit->isZero() != Init->isZero()) { if (BestInit->isZero()) continue; } // If two IVs both count from zero or both count from nonzero then the // narrower is likely a dead phi that has been widened. Use the wider phi // to allow the other to be eliminated. else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) continue; } BestPhi = Phi; BestInit = Init; } return BestPhi; } /// Help linearFunctionTestReplace by generating a value that holds the RHS of /// the new loop test. static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, SCEVExpander &Rewriter, ScalarEvolution *SE) { const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); const SCEV *IVInit = AR->getStart(); // IVInit may be a pointer while IVCount is an integer when FindLoopCounter // finds a valid pointer IV. Sign extend BECount in order to materialize a // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing // the existing GEPs whenever possible. if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { // IVOffset will be the new GEP offset that is interpreted by GEP as a // signed value. IVCount on the other hand represents the loop trip count, // which is an unsigned value. FindLoopCounter only allows induction // variables that have a positive unit stride of one. This means we don't // have to handle the case of negative offsets (yet) and just need to zero // extend IVCount. Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); // Expand the code for the iteration count. assert(SE->isLoopInvariant(IVOffset, L) && "Computed iteration count is not loop invariant!"); BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); // We could handle pointer IVs other than i8*, but we need to compensate for // gep index scaling. See canExpandBackedgeTakenCount comments. assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), cast<PointerType>(GEPBase->getType()) ->getElementType())->isOne() && "unit stride pointer IV must be i8*"); IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); } else { // In any other case, convert both IVInit and IVCount to integers before // comparing. This may result in SCEV expension of pointers, but in practice // SCEV will fold the pointer arithmetic away as such: // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). // // Valid Cases: (1) both integers is most common; (2) both may be pointers // for simple memset-style loops. // // IVInit integer and IVCount pointer would only occur if a canonical IV // were generated on top of case #2, which is not expected. const SCEV *IVLimit = nullptr; // For unit stride, IVCount = Start + BECount with 2's complement overflow. // For non-zero Start, compute IVCount here. if (AR->getStart()->isZero()) IVLimit = IVCount; else { assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); const SCEV *IVInit = AR->getStart(); // For integer IVs, truncate the IV before computing IVInit + BECount. if (SE->getTypeSizeInBits(IVInit->getType()) > SE->getTypeSizeInBits(IVCount->getType())) IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); IVLimit = SE->getAddExpr(IVInit, IVCount); } // Expand the code for the iteration count. BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); IRBuilder<> Builder(BI); assert(SE->isLoopInvariant(IVLimit, L) && "Computed iteration count is not loop invariant!"); // Ensure that we generate the same type as IndVar, or a smaller integer // type. In the presence of null pointer values, we have an integer type // SCEV expression (IVInit) for a pointer type IV value (IndVar). Type *LimitTy = IVCount->getType()->isPointerTy() ? IndVar->getType() : IVCount->getType(); return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); } } /// This method rewrites the exit condition of the loop to be a canonical != /// comparison against the incremented loop induction variable. This pass is /// able to rewrite the exit tests of any loop where the SCEV analysis can /// determine a loop-invariant trip count of the loop, which is actually a much /// broader range than just linear tests. Value *IndVarSimplify:: linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar, SCEVExpander &Rewriter) { assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); // Initialize CmpIndVar and IVCount to their preincremented values. Value *CmpIndVar = IndVar; const SCEV *IVCount = BackedgeTakenCount; // If the exiting block is the same as the backedge block, we prefer to // compare against the post-incremented value, otherwise we must compare // against the preincremented value. if (L->getExitingBlock() == L->getLoopLatch()) { // Add one to the "backedge-taken" count to get the trip count. // This addition may overflow, which is valid as long as the comparison is // truncated to BackedgeTakenCount->getType(). IVCount = SE->getAddExpr(BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); // The BackedgeTaken expression contains the number of times that the // backedge branches to the loop header. This is one less than the // number of times the loop executes, so use the incremented indvar. CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); } Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() && "genLoopLimit missed a cast"); // Insert a new icmp_ne or icmp_eq instruction before the branch. BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); ICmpInst::Predicate P; if (L->contains(BI->getSuccessor(0))) P = ICmpInst::ICMP_NE; else P = ICmpInst::ICMP_EQ; DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" << " LHS:" << *CmpIndVar << '\n' << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" << " RHS:\t" << *ExitCnt << "\n" << " IVCount:\t" << *IVCount << "\n"); IRBuilder<> Builder(BI); // LFTR can ignore IV overflow and truncate to the width of // BECount. This avoids materializing the add(zext(add)) expression. unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); if (CmpIndVarSize > ExitCntSize) { const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); const SCEV *ARStart = AR->getStart(); const SCEV *ARStep = AR->getStepRecurrence(*SE); // For constant IVCount, avoid truncation. if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); // Note that the post-inc value of BackedgeTakenCount may have overflowed // above such that IVCount is now zero. if (IVCount != BackedgeTakenCount && Count == 0) { Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); ++Count; } else Count = Count.zext(CmpIndVarSize); APInt NewLimit; if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) NewLimit = Start - Count; else NewLimit = Start + Count; ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); } else { CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), "lftr.wideiv"); } } Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); Value *OrigCond = BI->getCondition(); // It's tempting to use replaceAllUsesWith here to fully replace the old // comparison, but that's not immediately safe, since users of the old // comparison may not be dominated by the new comparison. Instead, just // update the branch to use the new comparison; in the common case this // will make old comparison dead. BI->setCondition(Cond); DeadInsts.push_back(OrigCond); ++NumLFTR; Changed = true; return Cond; } //===----------------------------------------------------------------------===// // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. //===----------------------------------------------------------------------===// /// If there's a single exit block, sink any loop-invariant values that /// were defined in the preheader but not used inside the loop into the /// exit block to reduce register pressure in the loop. void IndVarSimplify::sinkUnusedInvariants(Loop *L) { BasicBlock *ExitBlock = L->getExitBlock(); if (!ExitBlock) return; BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return; Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); BasicBlock::iterator I(Preheader->getTerminator()); while (I != Preheader->begin()) { --I; // New instructions were inserted at the end of the preheader. if (isa<PHINode>(I)) break; // Don't move instructions which might have side effects, since the side // effects need to complete before instructions inside the loop. Also don't // move instructions which might read memory, since the loop may modify // memory. Note that it's okay if the instruction might have undefined // behavior: LoopSimplify guarantees that the preheader dominates the exit // block. if (I->mayHaveSideEffects() || I->mayReadFromMemory()) continue; // Skip debug info intrinsics. if (isa<DbgInfoIntrinsic>(I)) continue; // Skip eh pad instructions. if (I->isEHPad()) continue; // Don't sink alloca: we never want to sink static alloca's out of the // entry block, and correctly sinking dynamic alloca's requires // checks for stacksave/stackrestore intrinsics. // FIXME: Refactor this check somehow? if (isa<AllocaInst>(I)) continue; // Determine if there is a use in or before the loop (direct or // otherwise). bool UsedInLoop = false; for (Use &U : I->uses()) { Instruction *User = cast<Instruction>(U.getUser()); BasicBlock *UseBB = User->getParent(); if (PHINode *P = dyn_cast<PHINode>(User)) { unsigned i = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); UseBB = P->getIncomingBlock(i); } if (UseBB == Preheader || L->contains(UseBB)) { UsedInLoop = true; break; } } // If there is, the def must remain in the preheader. if (UsedInLoop) continue; // Otherwise, sink it to the exit block. Instruction *ToMove = &*I; bool Done = false; if (I != Preheader->begin()) { // Skip debug info intrinsics. do { --I; } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) Done = true; } else { Done = true; } ToMove->moveBefore(InsertPt); if (Done) break; InsertPt = ToMove; } } //===----------------------------------------------------------------------===// // IndVarSimplify driver. Manage several subpasses of IV simplification. //===----------------------------------------------------------------------===// bool IndVarSimplify::run(Loop *L) { // We need (and expect!) the incoming loop to be in LCSSA. assert(L->isRecursivelyLCSSAForm(*DT) && "LCSSA required to run indvars!"); // If LoopSimplify form is not available, stay out of trouble. Some notes: // - LSR currently only supports LoopSimplify-form loops. Indvars' // canonicalization can be a pessimization without LSR to "clean up" // afterwards. // - We depend on having a preheader; in particular, // Loop::getCanonicalInductionVariable only supports loops with preheaders, // and we're in trouble if we can't find the induction variable even when // we've manually inserted one. if (!L->isLoopSimplifyForm()) return false; // If there are any floating-point recurrences, attempt to // transform them to use integer recurrences. rewriteNonIntegerIVs(L); const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); // Create a rewriter object which we'll use to transform the code with. SCEVExpander Rewriter(*SE, DL, "indvars"); #ifndef NDEBUG Rewriter.setDebugType(DEBUG_TYPE); #endif // Eliminate redundant IV users. // // Simplification works best when run before other consumers of SCEV. We // attempt to avoid evaluating SCEVs for sign/zero extend operations until // other expressions involving loop IVs have been evaluated. This helps SCEV // set no-wrap flags before normalizing sign/zero extension. Rewriter.disableCanonicalMode(); simplifyAndExtend(L, Rewriter, LI); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values of // the current expressions. // if (ReplaceExitValue != NeverRepl && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) rewriteLoopExitValues(L, Rewriter); // Eliminate redundant IV cycles. NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); // If we have a trip count expression, rewrite the loop's exit condition // using it. We can currently only handle loops with a single exit. if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); if (IndVar) { // Check preconditions for proper SCEVExpander operation. SCEV does not // express SCEVExpander's dependencies, such as LoopSimplify. Instead any // pass that uses the SCEVExpander must do it. This does not work well for // loop passes because SCEVExpander makes assumptions about all loops, // while LoopPassManager only forces the current loop to be simplified. // // FIXME: SCEV expansion has no way to bail out, so the caller must // explicitly check any assumptions made by SCEV. Brittle. const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); if (!AR || AR->getLoop()->getLoopPreheader()) (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); } } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted in the loop below, causing the AssertingVH in the cache to // trigger. Rewriter.clear(); // Now that we're done iterating through lists, clean up any instructions // which are now dead. while (!DeadInsts.empty()) if (Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); // The Rewriter may not be used from this point on. // Loop-invariant instructions in the preheader that aren't used in the // loop may be sunk below the loop to reduce register pressure. sinkUnusedInvariants(L); // rewriteFirstIterationLoopExitValues does not rely on the computation of // trip count and therefore can further simplify exit values in addition to // rewriteLoopExitValues. rewriteFirstIterationLoopExitValues(L); // Clean up dead instructions. Changed |= DeleteDeadPHIs(L->getHeader(), TLI); // Check a post-condition. assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); // Verify that LFTR, and any other change have not interfered with SCEV's // ability to compute trip count. #ifndef NDEBUG if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { SE->forgetLoop(L); const SCEV *NewBECount = SE->getBackedgeTakenCount(L); if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < SE->getTypeSizeInBits(NewBECount->getType())) NewBECount = SE->getTruncateOrNoop(NewBECount, BackedgeTakenCount->getType()); else BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, NewBECount->getType()); assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); } #endif return Changed; } PreservedAnalyses IndVarSimplifyPass::run(Loop &L, AnalysisManager<Loop> &AM) { auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); Function *F = L.getHeader()->getParent(); const DataLayout &DL = F->getParent()->getDataLayout(); auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); assert((LI && SE && DT) && "Analyses required for indvarsimplify not available!"); // Optional analyses. auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F); IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); if (!IVS.run(&L)) return PreservedAnalyses::all(); // FIXME: This should also 'preserve the CFG'. return getLoopPassPreservedAnalyses(); } namespace { struct IndVarSimplifyLegacyPass : public LoopPass { static char ID; // Pass identification, replacement for typeid IndVarSimplifyLegacyPass() : LoopPass(ID) { initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); return IVS.run(L); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); getLoopAnalysisUsage(AU); } }; } char IndVarSimplifyLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", "Induction Variable Simplification", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", "Induction Variable Simplification", false, false) Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplifyLegacyPass(); }