//===- Float2Int.cpp - Demote floating point ops to work on integers ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Float2Int pass, which aims to demote floating // point operations to work on integers, where that is losslessly possible. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "float2int" #include "llvm/Transforms/Scalar/Float2Int.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/IR/Constants.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include <deque> #include <functional> // For std::function using namespace llvm; // The algorithm is simple. Start at instructions that convert from the // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use // graph, using an equivalence datastructure to unify graphs that interfere. // // Mappable instructions are those with an integer corrollary that, given // integer domain inputs, produce an integer output; fadd, for example. // // If a non-mappable instruction is seen, this entire def-use graph is marked // as non-transformable. If we see an instruction that converts from the // integer domain to FP domain (uitofp,sitofp), we terminate our walk. /// The largest integer type worth dealing with. static cl::opt<unsigned> MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, cl::desc("Max integer bitwidth to consider in float2int" "(default=64)")); namespace { struct Float2IntLegacyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid Float2IntLegacyPass() : FunctionPass(ID) { initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; return Impl.runImpl(F); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addPreserved<GlobalsAAWrapperPass>(); } private: Float2IntPass Impl; }; } char Float2IntLegacyPass::ID = 0; INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) // Given a FCmp predicate, return a matching ICmp predicate if one // exists, otherwise return BAD_ICMP_PREDICATE. static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { switch (P) { case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: return CmpInst::ICMP_EQ; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: return CmpInst::ICMP_SGT; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: return CmpInst::ICMP_SGE; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: return CmpInst::ICMP_SLT; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: return CmpInst::ICMP_SLE; case CmpInst::FCMP_ONE: case CmpInst::FCMP_UNE: return CmpInst::ICMP_NE; default: return CmpInst::BAD_ICMP_PREDICATE; } } // Given a floating point binary operator, return the matching // integer version. static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unhandled opcode!"); case Instruction::FAdd: return Instruction::Add; case Instruction::FSub: return Instruction::Sub; case Instruction::FMul: return Instruction::Mul; } } // Find the roots - instructions that convert from the FP domain to // integer domain. void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { for (auto &I : instructions(F)) { if (isa<VectorType>(I.getType())) continue; switch (I.getOpcode()) { default: break; case Instruction::FPToUI: case Instruction::FPToSI: Roots.insert(&I); break; case Instruction::FCmp: if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != CmpInst::BAD_ICMP_PREDICATE) Roots.insert(&I); break; } } } // Helper - mark I as having been traversed, having range R. ConstantRange Float2IntPass::seen(Instruction *I, ConstantRange R) { DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); if (SeenInsts.find(I) != SeenInsts.end()) SeenInsts.find(I)->second = R; else SeenInsts.insert(std::make_pair(I, R)); return R; } // Helper - get a range representing a poison value. ConstantRange Float2IntPass::badRange() { return ConstantRange(MaxIntegerBW + 1, true); } ConstantRange Float2IntPass::unknownRange() { return ConstantRange(MaxIntegerBW + 1, false); } ConstantRange Float2IntPass::validateRange(ConstantRange R) { if (R.getBitWidth() > MaxIntegerBW + 1) return badRange(); return R; } // The most obvious way to structure the search is a depth-first, eager // search from each root. However, that require direct recursion and so // can only handle small instruction sequences. Instead, we split the search // up into two phases: // - walkBackwards: A breadth-first walk of the use-def graph starting from // the roots. Populate "SeenInsts" with interesting // instructions and poison values if they're obvious and // cheap to compute. Calculate the equivalance set structure // while we're here too. // - walkForwards: Iterate over SeenInsts in reverse order, so we visit // defs before their uses. Calculate the real range info. // Breadth-first walk of the use-def graph; determine the set of nodes // we care about and eagerly determine if some of them are poisonous. void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); while (!Worklist.empty()) { Instruction *I = Worklist.back(); Worklist.pop_back(); if (SeenInsts.find(I) != SeenInsts.end()) // Seen already. continue; switch (I->getOpcode()) { // FIXME: Handle select and phi nodes. default: // Path terminated uncleanly. seen(I, badRange()); break; case Instruction::UIToFP: { // Path terminated cleanly. unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1); APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1); seen(I, validateRange(ConstantRange(Min, Max))); continue; } case Instruction::SIToFP: { // Path terminated cleanly. unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1); APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1); seen(I, validateRange(ConstantRange(SMin, SMax))); continue; } case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FCmp: seen(I, unknownRange()); break; } for (Value *O : I->operands()) { if (Instruction *OI = dyn_cast<Instruction>(O)) { // Unify def-use chains if they interfere. ECs.unionSets(I, OI); if (SeenInsts.find(I)->second != badRange()) Worklist.push_back(OI); } else if (!isa<ConstantFP>(O)) { // Not an instruction or ConstantFP? we can't do anything. seen(I, badRange()); } } } } // Walk forwards down the list of seen instructions, so we visit defs before // uses. void Float2IntPass::walkForwards() { for (auto &It : reverse(SeenInsts)) { if (It.second != unknownRange()) continue; Instruction *I = It.first; std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; switch (I->getOpcode()) { // FIXME: Handle select and phi nodes. default: case Instruction::UIToFP: case Instruction::SIToFP: llvm_unreachable("Should have been handled in walkForwards!"); case Instruction::FAdd: Op = [](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 2 && "FAdd is a binary operator!"); return Ops[0].add(Ops[1]); }; break; case Instruction::FSub: Op = [](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 2 && "FSub is a binary operator!"); return Ops[0].sub(Ops[1]); }; break; case Instruction::FMul: Op = [](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 2 && "FMul is a binary operator!"); return Ops[0].multiply(Ops[1]); }; break; // // Root-only instructions - we'll only see these if they're the // first node in a walk. // case Instruction::FPToUI: case Instruction::FPToSI: Op = [](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); return Ops[0]; }; break; case Instruction::FCmp: Op = [](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 2 && "FCmp is a binary operator!"); return Ops[0].unionWith(Ops[1]); }; break; } bool Abort = false; SmallVector<ConstantRange,4> OpRanges; for (Value *O : I->operands()) { if (Instruction *OI = dyn_cast<Instruction>(O)) { assert(SeenInsts.find(OI) != SeenInsts.end() && "def not seen before use!"); OpRanges.push_back(SeenInsts.find(OI)->second); } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { // Work out if the floating point number can be losslessly represented // as an integer. // APFloat::convertToInteger(&Exact) purports to do what we want, but // the exactness can be too precise. For example, negative zero can // never be exactly converted to an integer. // // Instead, we ask APFloat to round itself to an integral value - this // preserves sign-of-zero - then compare the result with the original. // const APFloat &F = CF->getValueAPF(); // First, weed out obviously incorrect values. Non-finite numbers // can't be represented and neither can negative zero, unless // we're in fast math mode. if (!F.isFinite() || (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && !I->hasNoSignedZeros())) { seen(I, badRange()); Abort = true; break; } APFloat NewF = F; auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { seen(I, badRange()); Abort = true; break; } // OK, it's representable. Now get it. APSInt Int(MaxIntegerBW+1, false); bool Exact; CF->getValueAPF().convertToInteger(Int, APFloat::rmNearestTiesToEven, &Exact); OpRanges.push_back(ConstantRange(Int)); } else { llvm_unreachable("Should have already marked this as badRange!"); } } // Reduce the operands' ranges to a single range and return. if (!Abort) seen(I, Op(OpRanges)); } } // If there is a valid transform to be done, do it. bool Float2IntPass::validateAndTransform() { bool MadeChange = false; // Iterate over every disjoint partition of the def-use graph. for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { ConstantRange R(MaxIntegerBW + 1, false); bool Fail = false; Type *ConvertedToTy = nullptr; // For every member of the partition, union all the ranges together. for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); MI != ME; ++MI) { Instruction *I = *MI; auto SeenI = SeenInsts.find(I); if (SeenI == SeenInsts.end()) continue; R = R.unionWith(SeenI->second); // We need to ensure I has no users that have not been seen. // If it does, transformation would be illegal. // // Don't count the roots, as they terminate the graphs. if (Roots.count(I) == 0) { // Set the type of the conversion while we're here. if (!ConvertedToTy) ConvertedToTy = I->getType(); for (User *U : I->users()) { Instruction *UI = dyn_cast<Instruction>(U); if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); Fail = true; break; } } } if (Fail) break; } // If the set was empty, or we failed, or the range is poisonous, // bail out. if (ECs.member_begin(It) == ECs.member_end() || Fail || R.isFullSet() || R.isSignWrappedSet()) continue; assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); // The number of bits required is the maximum of the upper and // lower limits, plus one so it can be signed. unsigned MinBW = std::max(R.getLower().getMinSignedBits(), R.getUpper().getMinSignedBits()) + 1; DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); // If we've run off the realms of the exactly representable integers, // the floating point result will differ from an integer approximation. // Do we need more bits than are in the mantissa of the type we converted // to? semanticsPrecision returns the number of mantissa bits plus one // for the sign bit. unsigned MaxRepresentableBits = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; if (MinBW > MaxRepresentableBits) { DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); continue; } if (MinBW > 64) { DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); continue; } // OK, R is known to be representable. Now pick a type for it. // FIXME: Pick the smallest legal type that will fit. Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); MI != ME; ++MI) convert(*MI, Ty); MadeChange = true; } return MadeChange; } Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { if (ConvertedInsts.find(I) != ConvertedInsts.end()) // Already converted this instruction. return ConvertedInsts[I]; SmallVector<Value*,4> NewOperands; for (Value *V : I->operands()) { // Don't recurse if we're an instruction that terminates the path. if (I->getOpcode() == Instruction::UIToFP || I->getOpcode() == Instruction::SIToFP) { NewOperands.push_back(V); } else if (Instruction *VI = dyn_cast<Instruction>(V)) { NewOperands.push_back(convert(VI, ToTy)); } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false); bool Exact; CF->getValueAPF().convertToInteger(Val, APFloat::rmNearestTiesToEven, &Exact); NewOperands.push_back(ConstantInt::get(ToTy, Val)); } else { llvm_unreachable("Unhandled operand type?"); } } // Now create a new instruction. IRBuilder<> IRB(I); Value *NewV = nullptr; switch (I->getOpcode()) { default: llvm_unreachable("Unhandled instruction!"); case Instruction::FPToUI: NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); break; case Instruction::FPToSI: NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); break; case Instruction::FCmp: { CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); break; } case Instruction::UIToFP: NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); break; case Instruction::SIToFP: NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); break; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), NewOperands[0], NewOperands[1], I->getName()); break; } // If we're a root instruction, RAUW. if (Roots.count(I)) I->replaceAllUsesWith(NewV); ConvertedInsts[I] = NewV; return NewV; } // Perform dead code elimination on the instructions we just modified. void Float2IntPass::cleanup() { for (auto &I : reverse(ConvertedInsts)) I.first->eraseFromParent(); } bool Float2IntPass::runImpl(Function &F) { DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); // Clear out all state. ECs = EquivalenceClasses<Instruction*>(); SeenInsts.clear(); ConvertedInsts.clear(); Roots.clear(); Ctx = &F.getParent()->getContext(); findRoots(F, Roots); walkBackwards(Roots); walkForwards(); bool Modified = validateAndTransform(); if (Modified) cleanup(); return Modified; } namespace llvm { FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) { if (!runImpl(F)) return PreservedAnalyses::all(); else { // FIXME: This should also 'preserve the CFG'. PreservedAnalyses PA; PA.preserve<GlobalsAA>(); return PA; } } } // End namespace llvm