//===- ADCE.cpp - Code to perform dead code elimination -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Aggressive Dead Code Elimination pass. This pass // optimistically assumes that all instructions are dead until proven otherwise, // allowing it to eliminate dead computations that other DCE passes do not // catch, particularly involving loop computations. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/ADCE.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "adce" STATISTIC(NumRemoved, "Number of instructions removed"); static void collectLiveScopes(const DILocalScope &LS, SmallPtrSetImpl<const Metadata *> &AliveScopes) { if (!AliveScopes.insert(&LS).second) return; if (isa<DISubprogram>(LS)) return; // Tail-recurse through the scope chain. collectLiveScopes(cast<DILocalScope>(*LS.getScope()), AliveScopes); } static void collectLiveScopes(const DILocation &DL, SmallPtrSetImpl<const Metadata *> &AliveScopes) { // Even though DILocations are not scopes, shove them into AliveScopes so we // don't revisit them. if (!AliveScopes.insert(&DL).second) return; // Collect live scopes from the scope chain. collectLiveScopes(*DL.getScope(), AliveScopes); // Tail-recurse through the inlined-at chain. if (const DILocation *IA = DL.getInlinedAt()) collectLiveScopes(*IA, AliveScopes); } // Check if this instruction is a runtime call for value profiling and // if it's instrumenting a constant. static bool isInstrumentsConstant(Instruction &I) { if (CallInst *CI = dyn_cast<CallInst>(&I)) if (Function *Callee = CI->getCalledFunction()) if (Callee->getName().equals(getInstrProfValueProfFuncName())) if (isa<Constant>(CI->getArgOperand(0))) return true; return false; } static bool aggressiveDCE(Function& F) { SmallPtrSet<Instruction*, 32> Alive; SmallVector<Instruction*, 128> Worklist; // Collect the set of "root" instructions that are known live. for (Instruction &I : instructions(F)) { if (isa<TerminatorInst>(I) || I.isEHPad() || I.mayHaveSideEffects()) { // Skip any value profile instrumentation calls if they are // instrumenting constants. if (isInstrumentsConstant(I)) continue; Alive.insert(&I); Worklist.push_back(&I); } } // Propagate liveness backwards to operands. Keep track of live debug info // scopes. SmallPtrSet<const Metadata *, 32> AliveScopes; while (!Worklist.empty()) { Instruction *Curr = Worklist.pop_back_val(); // Collect the live debug info scopes attached to this instruction. if (const DILocation *DL = Curr->getDebugLoc()) collectLiveScopes(*DL, AliveScopes); for (Use &OI : Curr->operands()) { if (Instruction *Inst = dyn_cast<Instruction>(OI)) if (Alive.insert(Inst).second) Worklist.push_back(Inst); } } // The inverse of the live set is the dead set. These are those instructions // which have no side effects and do not influence the control flow or return // value of the function, and may therefore be deleted safely. // NOTE: We reuse the Worklist vector here for memory efficiency. for (Instruction &I : instructions(F)) { // Check if the instruction is alive. if (Alive.count(&I)) continue; if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { // Check if the scope of this variable location is alive. if (AliveScopes.count(DII->getDebugLoc()->getScope())) continue; // Fallthrough and drop the intrinsic. DEBUG({ // If intrinsic is pointing at a live SSA value, there may be an // earlier optimization bug: if we know the location of the variable, // why isn't the scope of the location alive? if (Value *V = DII->getVariableLocation()) if (Instruction *II = dyn_cast<Instruction>(V)) if (Alive.count(II)) dbgs() << "Dropping debug info for " << *DII << "\n"; }); } // Prepare to delete. Worklist.push_back(&I); I.dropAllReferences(); } for (Instruction *&I : Worklist) { ++NumRemoved; I->eraseFromParent(); } return !Worklist.empty(); } PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &) { if (!aggressiveDCE(F)) return PreservedAnalyses::all(); // FIXME: This should also 'preserve the CFG'. auto PA = PreservedAnalyses(); PA.preserve<GlobalsAA>(); return PA; } namespace { struct ADCELegacyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid ADCELegacyPass() : FunctionPass(ID) { initializeADCELegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function& F) override { if (skipFunction(F)) return false; return aggressiveDCE(F); } void getAnalysisUsage(AnalysisUsage& AU) const override { AU.setPreservesCFG(); AU.addPreserved<GlobalsAAWrapperPass>(); } }; } char ADCELegacyPass::ID = 0; INITIALIZE_PASS(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination", false, false) FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }