//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file defines ObjC ARC optimizations. ARC stands for Automatic /// Reference Counting and is a system for managing reference counts for objects /// in Objective C. /// /// The optimizations performed include elimination of redundant, partially /// redundant, and inconsequential reference count operations, elimination of /// redundant weak pointer operations, and numerous minor simplifications. /// /// WARNING: This file knows about certain library functions. It recognizes them /// by name, and hardwires knowledge of their semantics. /// /// WARNING: This file knows about how certain Objective-C library functions are /// used. Naive LLVM IR transformations which would otherwise be /// behavior-preserving may break these assumptions. /// //===----------------------------------------------------------------------===// #include "ObjCARC.h" #include "ARCRuntimeEntryPoints.h" #include "BlotMapVector.h" #include "DependencyAnalysis.h" #include "ProvenanceAnalysis.h" #include "PtrState.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ObjCARCAliasAnalysis.h" #include "llvm/IR/CFG.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::objcarc; #define DEBUG_TYPE "objc-arc-opts" /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. /// @{ /// \brief This is similar to GetRCIdentityRoot but it stops as soon /// as it finds a value with multiple uses. static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { if (Arg->hasOneUse()) { if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg)) return FindSingleUseIdentifiedObject(BC->getOperand(0)); if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg)) if (GEP->hasAllZeroIndices()) return FindSingleUseIdentifiedObject(GEP->getPointerOperand()); if (IsForwarding(GetBasicARCInstKind(Arg))) return FindSingleUseIdentifiedObject( cast<CallInst>(Arg)->getArgOperand(0)); if (!IsObjCIdentifiedObject(Arg)) return nullptr; return Arg; } // If we found an identifiable object but it has multiple uses, but they are // trivial uses, we can still consider this to be a single-use value. if (IsObjCIdentifiedObject(Arg)) { for (const User *U : Arg->users()) if (!U->use_empty() || GetRCIdentityRoot(U) != Arg) return nullptr; return Arg; } return nullptr; } /// This is a wrapper around getUnderlyingObjCPtr along the lines of /// GetUnderlyingObjects except that it returns early when it sees the first /// alloca. static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V, const DataLayout &DL) { SmallPtrSet<const Value *, 4> Visited; SmallVector<const Value *, 4> Worklist; Worklist.push_back(V); do { const Value *P = Worklist.pop_back_val(); P = GetUnderlyingObjCPtr(P, DL); if (isa<AllocaInst>(P)) return true; if (!Visited.insert(P).second) continue; if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) { Worklist.push_back(SI->getTrueValue()); Worklist.push_back(SI->getFalseValue()); continue; } if (const PHINode *PN = dyn_cast<const PHINode>(P)) { for (Value *IncValue : PN->incoming_values()) Worklist.push_back(IncValue); continue; } } while (!Worklist.empty()); return false; } /// @} /// /// \defgroup ARCOpt ARC Optimization. /// @{ // TODO: On code like this: // // objc_retain(%x) // stuff_that_cannot_release() // objc_autorelease(%x) // stuff_that_cannot_release() // objc_retain(%x) // stuff_that_cannot_release() // objc_autorelease(%x) // // The second retain and autorelease can be deleted. // TODO: It should be possible to delete // objc_autoreleasePoolPush and objc_autoreleasePoolPop // pairs if nothing is actually autoreleased between them. Also, autorelease // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code // after inlining) can be turned into plain release calls. // TODO: Critical-edge splitting. If the optimial insertion point is // a critical edge, the current algorithm has to fail, because it doesn't // know how to split edges. It should be possible to make the optimizer // think in terms of edges, rather than blocks, and then split critical // edges on demand. // TODO: OptimizeSequences could generalized to be Interprocedural. // TODO: Recognize that a bunch of other objc runtime calls have // non-escaping arguments and non-releasing arguments, and may be // non-autoreleasing. // TODO: Sink autorelease calls as far as possible. Unfortunately we // usually can't sink them past other calls, which would be the main // case where it would be useful. // TODO: The pointer returned from objc_loadWeakRetained is retained. // TODO: Delete release+retain pairs (rare). STATISTIC(NumNoops, "Number of no-op objc calls eliminated"); STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases"); STATISTIC(NumRets, "Number of return value forwarding " "retain+autoreleases eliminated"); STATISTIC(NumRRs, "Number of retain+release paths eliminated"); STATISTIC(NumPeeps, "Number of calls peephole-optimized"); #ifndef NDEBUG STATISTIC(NumRetainsBeforeOpt, "Number of retains before optimization"); STATISTIC(NumReleasesBeforeOpt, "Number of releases before optimization"); STATISTIC(NumRetainsAfterOpt, "Number of retains after optimization"); STATISTIC(NumReleasesAfterOpt, "Number of releases after optimization"); #endif namespace { /// \brief Per-BasicBlock state. class BBState { /// The number of unique control paths from the entry which can reach this /// block. unsigned TopDownPathCount; /// The number of unique control paths to exits from this block. unsigned BottomUpPathCount; /// The top-down traversal uses this to record information known about a /// pointer at the bottom of each block. BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown; /// The bottom-up traversal uses this to record information known about a /// pointer at the top of each block. BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp; /// Effective predecessors of the current block ignoring ignorable edges and /// ignored backedges. SmallVector<BasicBlock *, 2> Preds; /// Effective successors of the current block ignoring ignorable edges and /// ignored backedges. SmallVector<BasicBlock *, 2> Succs; public: static const unsigned OverflowOccurredValue; BBState() : TopDownPathCount(0), BottomUpPathCount(0) { } typedef decltype(PerPtrTopDown)::iterator top_down_ptr_iterator; typedef decltype(PerPtrTopDown)::const_iterator const_top_down_ptr_iterator; top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } const_top_down_ptr_iterator top_down_ptr_begin() const { return PerPtrTopDown.begin(); } const_top_down_ptr_iterator top_down_ptr_end() const { return PerPtrTopDown.end(); } bool hasTopDownPtrs() const { return !PerPtrTopDown.empty(); } typedef decltype(PerPtrBottomUp)::iterator bottom_up_ptr_iterator; typedef decltype( PerPtrBottomUp)::const_iterator const_bottom_up_ptr_iterator; bottom_up_ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); } bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } const_bottom_up_ptr_iterator bottom_up_ptr_begin() const { return PerPtrBottomUp.begin(); } const_bottom_up_ptr_iterator bottom_up_ptr_end() const { return PerPtrBottomUp.end(); } bool hasBottomUpPtrs() const { return !PerPtrBottomUp.empty(); } /// Mark this block as being an entry block, which has one path from the /// entry by definition. void SetAsEntry() { TopDownPathCount = 1; } /// Mark this block as being an exit block, which has one path to an exit by /// definition. void SetAsExit() { BottomUpPathCount = 1; } /// Attempt to find the PtrState object describing the top down state for /// pointer Arg. Return a new initialized PtrState describing the top down /// state for Arg if we do not find one. TopDownPtrState &getPtrTopDownState(const Value *Arg) { return PerPtrTopDown[Arg]; } /// Attempt to find the PtrState object describing the bottom up state for /// pointer Arg. Return a new initialized PtrState describing the bottom up /// state for Arg if we do not find one. BottomUpPtrState &getPtrBottomUpState(const Value *Arg) { return PerPtrBottomUp[Arg]; } /// Attempt to find the PtrState object describing the bottom up state for /// pointer Arg. bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) { return PerPtrBottomUp.find(Arg); } void clearBottomUpPointers() { PerPtrBottomUp.clear(); } void clearTopDownPointers() { PerPtrTopDown.clear(); } void InitFromPred(const BBState &Other); void InitFromSucc(const BBState &Other); void MergePred(const BBState &Other); void MergeSucc(const BBState &Other); /// Compute the number of possible unique paths from an entry to an exit /// which pass through this block. This is only valid after both the /// top-down and bottom-up traversals are complete. /// /// Returns true if overflow occurred. Returns false if overflow did not /// occur. bool GetAllPathCountWithOverflow(unsigned &PathCount) const { if (TopDownPathCount == OverflowOccurredValue || BottomUpPathCount == OverflowOccurredValue) return true; unsigned long long Product = (unsigned long long)TopDownPathCount*BottomUpPathCount; // Overflow occurred if any of the upper bits of Product are set or if all // the lower bits of Product are all set. return (Product >> 32) || ((PathCount = Product) == OverflowOccurredValue); } // Specialized CFG utilities. typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator; edge_iterator pred_begin() const { return Preds.begin(); } edge_iterator pred_end() const { return Preds.end(); } edge_iterator succ_begin() const { return Succs.begin(); } edge_iterator succ_end() const { return Succs.end(); } void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); } void addPred(BasicBlock *Pred) { Preds.push_back(Pred); } bool isExit() const { return Succs.empty(); } }; const unsigned BBState::OverflowOccurredValue = 0xffffffff; } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, BBState &BBState) LLVM_ATTRIBUTE_UNUSED; } void BBState::InitFromPred(const BBState &Other) { PerPtrTopDown = Other.PerPtrTopDown; TopDownPathCount = Other.TopDownPathCount; } void BBState::InitFromSucc(const BBState &Other) { PerPtrBottomUp = Other.PerPtrBottomUp; BottomUpPathCount = Other.BottomUpPathCount; } /// The top-down traversal uses this to merge information about predecessors to /// form the initial state for a new block. void BBState::MergePred(const BBState &Other) { if (TopDownPathCount == OverflowOccurredValue) return; // Other.TopDownPathCount can be 0, in which case it is either dead or a // loop backedge. Loop backedges are special. TopDownPathCount += Other.TopDownPathCount; // In order to be consistent, we clear the top down pointers when by adding // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow // has not occurred. if (TopDownPathCount == OverflowOccurredValue) { clearTopDownPointers(); return; } // Check for overflow. If we have overflow, fall back to conservative // behavior. if (TopDownPathCount < Other.TopDownPathCount) { TopDownPathCount = OverflowOccurredValue; clearTopDownPointers(); return; } // For each entry in the other set, if our set has an entry with the same key, // merge the entries. Otherwise, copy the entry and merge it with an empty // entry. for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end(); MI != ME; ++MI) { auto Pair = PerPtrTopDown.insert(*MI); Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second, /*TopDown=*/true); } // For each entry in our set, if the other set doesn't have an entry with the // same key, force it to merge with an empty entry. for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI) if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end()) MI->second.Merge(TopDownPtrState(), /*TopDown=*/true); } /// The bottom-up traversal uses this to merge information about successors to /// form the initial state for a new block. void BBState::MergeSucc(const BBState &Other) { if (BottomUpPathCount == OverflowOccurredValue) return; // Other.BottomUpPathCount can be 0, in which case it is either dead or a // loop backedge. Loop backedges are special. BottomUpPathCount += Other.BottomUpPathCount; // In order to be consistent, we clear the top down pointers when by adding // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow // has not occurred. if (BottomUpPathCount == OverflowOccurredValue) { clearBottomUpPointers(); return; } // Check for overflow. If we have overflow, fall back to conservative // behavior. if (BottomUpPathCount < Other.BottomUpPathCount) { BottomUpPathCount = OverflowOccurredValue; clearBottomUpPointers(); return; } // For each entry in the other set, if our set has an entry with the // same key, merge the entries. Otherwise, copy the entry and merge // it with an empty entry. for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) { auto Pair = PerPtrBottomUp.insert(*MI); Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second, /*TopDown=*/false); } // For each entry in our set, if the other set doesn't have an entry // with the same key, force it to merge with an empty entry. for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME; ++MI) if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end()) MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false); } raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) { // Dump the pointers we are tracking. OS << " TopDown State:\n"; if (!BBInfo.hasTopDownPtrs()) { DEBUG(llvm::dbgs() << " NONE!\n"); } else { for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end(); I != E; ++I) { const PtrState &P = I->second; OS << " Ptr: " << *I->first << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false") << "\n ImpreciseRelease: " << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n" << " HasCFGHazards: " << (P.IsCFGHazardAfflicted()?"true":"false") << "\n" << " KnownPositive: " << (P.HasKnownPositiveRefCount()?"true":"false") << "\n" << " Seq: " << P.GetSeq() << "\n"; } } OS << " BottomUp State:\n"; if (!BBInfo.hasBottomUpPtrs()) { DEBUG(llvm::dbgs() << " NONE!\n"); } else { for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end(); I != E; ++I) { const PtrState &P = I->second; OS << " Ptr: " << *I->first << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false") << "\n ImpreciseRelease: " << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n" << " HasCFGHazards: " << (P.IsCFGHazardAfflicted()?"true":"false") << "\n" << " KnownPositive: " << (P.HasKnownPositiveRefCount()?"true":"false") << "\n" << " Seq: " << P.GetSeq() << "\n"; } } return OS; } namespace { /// \brief The main ARC optimization pass. class ObjCARCOpt : public FunctionPass { bool Changed; ProvenanceAnalysis PA; /// A cache of references to runtime entry point constants. ARCRuntimeEntryPoints EP; /// A cache of MDKinds that can be passed into other functions to propagate /// MDKind identifiers. ARCMDKindCache MDKindCache; // This is used to track if a pointer is stored into an alloca. DenseSet<const Value *> MultiOwnersSet; /// A flag indicating whether this optimization pass should run. bool Run; /// Flags which determine whether each of the interesting runtime functions /// is in fact used in the current function. unsigned UsedInThisFunction; bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, ARCInstKind &Class); void OptimizeIndividualCalls(Function &F); void CheckForCFGHazards(const BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, BBState &MyStates) const; bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains, BBState &MyStates); bool VisitBottomUp(BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains); bool VisitInstructionTopDown(Instruction *Inst, DenseMap<Value *, RRInfo> &Releases, BBState &MyStates); bool VisitTopDown(BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, DenseMap<Value *, RRInfo> &Releases); bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases); void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases, SmallVectorImpl<Instruction *> &DeadInsts, Module *M); bool PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases, Module *M, SmallVectorImpl<Instruction *> &NewRetains, SmallVectorImpl<Instruction *> &NewReleases, SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe, bool &AnyPairsCompletelyEliminated); bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases, Module *M); void OptimizeWeakCalls(Function &F); bool OptimizeSequences(Function &F); void OptimizeReturns(Function &F); #ifndef NDEBUG void GatherStatistics(Function &F, bool AfterOptimization = false); #endif void getAnalysisUsage(AnalysisUsage &AU) const override; bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; void releaseMemory() override; public: static char ID; ObjCARCOpt() : FunctionPass(ID) { initializeObjCARCOptPass(*PassRegistry::getPassRegistry()); } }; } char ObjCARCOpt::ID = 0; INITIALIZE_PASS_BEGIN(ObjCARCOpt, "objc-arc", "ObjC ARC optimization", false, false) INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) INITIALIZE_PASS_END(ObjCARCOpt, "objc-arc", "ObjC ARC optimization", false, false) Pass *llvm::createObjCARCOptPass() { return new ObjCARCOpt(); } void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<ObjCARCAAWrapperPass>(); AU.addRequired<AAResultsWrapperPass>(); // ARC optimization doesn't currently split critical edges. AU.setPreservesCFG(); } /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is /// not a return value. Or, if it can be paired with an /// objc_autoreleaseReturnValue, delete the pair and return true. bool ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { // Check for the argument being from an immediately preceding call or invoke. const Value *Arg = GetArgRCIdentityRoot(RetainRV); ImmutableCallSite CS(Arg); if (const Instruction *Call = CS.getInstruction()) { if (Call->getParent() == RetainRV->getParent()) { BasicBlock::const_iterator I(Call); ++I; while (IsNoopInstruction(&*I)) ++I; if (&*I == RetainRV) return false; } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) { BasicBlock *RetainRVParent = RetainRV->getParent(); if (II->getNormalDest() == RetainRVParent) { BasicBlock::const_iterator I = RetainRVParent->begin(); while (IsNoopInstruction(&*I)) ++I; if (&*I == RetainRV) return false; } } } // Check for being preceded by an objc_autoreleaseReturnValue on the same // pointer. In this case, we can delete the pair. BasicBlock::iterator I = RetainRV->getIterator(), Begin = RetainRV->getParent()->begin(); if (I != Begin) { do --I; while (I != Begin && IsNoopInstruction(&*I)); if (GetBasicARCInstKind(&*I) == ARCInstKind::AutoreleaseRV && GetArgRCIdentityRoot(&*I) == Arg) { Changed = true; ++NumPeeps; DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n" << "Erasing " << *RetainRV << "\n"); EraseInstruction(&*I); EraseInstruction(RetainRV); return true; } } // Turn it to a plain objc_retain. Changed = true; ++NumPeeps; DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => " "objc_retain since the operand is not a return value.\n" "Old = " << *RetainRV << "\n"); Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain); cast<CallInst>(RetainRV)->setCalledFunction(NewDecl); DEBUG(dbgs() << "New = " << *RetainRV << "\n"); return false; } /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not /// used as a return value. void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, ARCInstKind &Class) { // Check for a return of the pointer value. const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV); SmallVector<const Value *, 2> Users; Users.push_back(Ptr); do { Ptr = Users.pop_back_val(); for (const User *U : Ptr->users()) { if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV) return; if (isa<BitCastInst>(U)) Users.push_back(U); } } while (!Users.empty()); Changed = true; ++NumPeeps; DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => " "objc_autorelease since its operand is not used as a return " "value.\n" "Old = " << *AutoreleaseRV << "\n"); CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV); Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease); AutoreleaseRVCI->setCalledFunction(NewDecl); AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. Class = ARCInstKind::Autorelease; DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n"); } /// Visit each call, one at a time, and make simplifications without doing any /// additional analysis. void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n"); // Reset all the flags in preparation for recomputing them. UsedInThisFunction = 0; // Visit all objc_* calls in F. for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; ARCInstKind Class = GetBasicARCInstKind(Inst); DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n"); switch (Class) { default: break; // Delete no-op casts. These function calls have special semantics, but // the semantics are entirely implemented via lowering in the front-end, // so by the time they reach the optimizer, they are just no-op calls // which return their argument. // // There are gray areas here, as the ability to cast reference-counted // pointers to raw void* and back allows code to break ARC assumptions, // however these are currently considered to be unimportant. case ARCInstKind::NoopCast: Changed = true; ++NumNoops; DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n"); EraseInstruction(Inst); continue; // If the pointer-to-weak-pointer is null, it's undefined behavior. case ARCInstKind::StoreWeak: case ARCInstKind::LoadWeak: case ARCInstKind::LoadWeakRetained: case ARCInstKind::InitWeak: case ARCInstKind::DestroyWeak: { CallInst *CI = cast<CallInst>(Inst); if (IsNullOrUndef(CI->getArgOperand(0))) { Changed = true; Type *Ty = CI->getArgOperand(0)->getType(); new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), Constant::getNullValue(Ty), CI); llvm::Value *NewValue = UndefValue::get(CI->getType()); DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior." "\nOld = " << *CI << "\nNew = " << *NewValue << "\n"); CI->replaceAllUsesWith(NewValue); CI->eraseFromParent(); continue; } break; } case ARCInstKind::CopyWeak: case ARCInstKind::MoveWeak: { CallInst *CI = cast<CallInst>(Inst); if (IsNullOrUndef(CI->getArgOperand(0)) || IsNullOrUndef(CI->getArgOperand(1))) { Changed = true; Type *Ty = CI->getArgOperand(0)->getType(); new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), Constant::getNullValue(Ty), CI); llvm::Value *NewValue = UndefValue::get(CI->getType()); DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior." "\nOld = " << *CI << "\nNew = " << *NewValue << "\n"); CI->replaceAllUsesWith(NewValue); CI->eraseFromParent(); continue; } break; } case ARCInstKind::RetainRV: if (OptimizeRetainRVCall(F, Inst)) continue; break; case ARCInstKind::AutoreleaseRV: OptimizeAutoreleaseRVCall(F, Inst, Class); break; } // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. if (IsAutorelease(Class) && Inst->use_empty()) { CallInst *Call = cast<CallInst>(Inst); const Value *Arg = Call->getArgOperand(0); Arg = FindSingleUseIdentifiedObject(Arg); if (Arg) { Changed = true; ++NumAutoreleases; // Create the declaration lazily. LLVMContext &C = Inst->getContext(); Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release); CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "", Call); NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), MDNode::get(C, None)); DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) " "since x is otherwise unused.\nOld: " << *Call << "\nNew: " << *NewCall << "\n"); EraseInstruction(Call); Inst = NewCall; Class = ARCInstKind::Release; } } // For functions which can never be passed stack arguments, add // a tail keyword. if (IsAlwaysTail(Class)) { Changed = true; DEBUG(dbgs() << "Adding tail keyword to function since it can never be " "passed stack args: " << *Inst << "\n"); cast<CallInst>(Inst)->setTailCall(); } // Ensure that functions that can never have a "tail" keyword due to the // semantics of ARC truly do not do so. if (IsNeverTail(Class)) { Changed = true; DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst << "\n"); cast<CallInst>(Inst)->setTailCall(false); } // Set nounwind as needed. if (IsNoThrow(Class)) { Changed = true; DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst << "\n"); cast<CallInst>(Inst)->setDoesNotThrow(); } if (!IsNoopOnNull(Class)) { UsedInThisFunction |= 1 << unsigned(Class); continue; } const Value *Arg = GetArgRCIdentityRoot(Inst); // ARC calls with null are no-ops. Delete them. if (IsNullOrUndef(Arg)) { Changed = true; ++NumNoops; DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst << "\n"); EraseInstruction(Inst); continue; } // Keep track of which of retain, release, autorelease, and retain_block // are actually present in this function. UsedInThisFunction |= 1 << unsigned(Class); // If Arg is a PHI, and one or more incoming values to the // PHI are null, and the call is control-equivalent to the PHI, and there // are no relevant side effects between the PHI and the call, the call // could be pushed up to just those paths with non-null incoming values. // For now, don't bother splitting critical edges for this. SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; Worklist.push_back(std::make_pair(Inst, Arg)); do { std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); Inst = Pair.first; Arg = Pair.second; const PHINode *PN = dyn_cast<PHINode>(Arg); if (!PN) continue; // Determine if the PHI has any null operands, or any incoming // critical edges. bool HasNull = false; bool HasCriticalEdges = false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i)); if (IsNullOrUndef(Incoming)) HasNull = true; else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back()) .getNumSuccessors() != 1) { HasCriticalEdges = true; break; } } // If we have null operands and no critical edges, optimize. if (!HasCriticalEdges && HasNull) { SmallPtrSet<Instruction *, 4> DependingInstructions; SmallPtrSet<const BasicBlock *, 4> Visited; // Check that there is nothing that cares about the reference // count between the call and the phi. switch (Class) { case ARCInstKind::Retain: case ARCInstKind::RetainBlock: // These can always be moved up. break; case ARCInstKind::Release: // These can't be moved across things that care about the retain // count. FindDependencies(NeedsPositiveRetainCount, Arg, Inst->getParent(), Inst, DependingInstructions, Visited, PA); break; case ARCInstKind::Autorelease: // These can't be moved across autorelease pool scope boundaries. FindDependencies(AutoreleasePoolBoundary, Arg, Inst->getParent(), Inst, DependingInstructions, Visited, PA); break; case ARCInstKind::ClaimRV: case ARCInstKind::RetainRV: case ARCInstKind::AutoreleaseRV: // Don't move these; the RV optimization depends on the autoreleaseRV // being tail called, and the retainRV being immediately after a call // (which might still happen if we get lucky with codegen layout, but // it's not worth taking the chance). continue; default: llvm_unreachable("Invalid dependence flavor"); } if (DependingInstructions.size() == 1 && *DependingInstructions.begin() == PN) { Changed = true; ++NumPartialNoops; // Clone the call into each predecessor that has a non-null value. CallInst *CInst = cast<CallInst>(Inst); Type *ParamTy = CInst->getArgOperand(0)->getType(); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i)); if (!IsNullOrUndef(Incoming)) { CallInst *Clone = cast<CallInst>(CInst->clone()); Value *Op = PN->getIncomingValue(i); Instruction *InsertPos = &PN->getIncomingBlock(i)->back(); if (Op->getType() != ParamTy) Op = new BitCastInst(Op, ParamTy, "", InsertPos); Clone->setArgOperand(0, Op); Clone->insertBefore(InsertPos); DEBUG(dbgs() << "Cloning " << *CInst << "\n" "And inserting clone at " << *InsertPos << "\n"); Worklist.push_back(std::make_pair(Clone, Incoming)); } } // Erase the original call. DEBUG(dbgs() << "Erasing: " << *CInst << "\n"); EraseInstruction(CInst); continue; } } } while (!Worklist.empty()); } } /// If we have a top down pointer in the S_Use state, make sure that there are /// no CFG hazards by checking the states of various bottom up pointers. static void CheckForUseCFGHazard(const Sequence SuccSSeq, const bool SuccSRRIKnownSafe, TopDownPtrState &S, bool &SomeSuccHasSame, bool &AllSuccsHaveSame, bool &NotAllSeqEqualButKnownSafe, bool &ShouldContinue) { switch (SuccSSeq) { case S_CanRelease: { if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) { S.ClearSequenceProgress(); break; } S.SetCFGHazardAfflicted(true); ShouldContinue = true; break; } case S_Use: SomeSuccHasSame = true; break; case S_Stop: case S_Release: case S_MovableRelease: if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) AllSuccsHaveSame = false; else NotAllSeqEqualButKnownSafe = true; break; case S_Retain: llvm_unreachable("bottom-up pointer in retain state!"); case S_None: llvm_unreachable("This should have been handled earlier."); } } /// If we have a Top Down pointer in the S_CanRelease state, make sure that /// there are no CFG hazards by checking the states of various bottom up /// pointers. static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq, const bool SuccSRRIKnownSafe, TopDownPtrState &S, bool &SomeSuccHasSame, bool &AllSuccsHaveSame, bool &NotAllSeqEqualButKnownSafe) { switch (SuccSSeq) { case S_CanRelease: SomeSuccHasSame = true; break; case S_Stop: case S_Release: case S_MovableRelease: case S_Use: if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) AllSuccsHaveSame = false; else NotAllSeqEqualButKnownSafe = true; break; case S_Retain: llvm_unreachable("bottom-up pointer in retain state!"); case S_None: llvm_unreachable("This should have been handled earlier."); } } /// Check for critical edges, loop boundaries, irreducible control flow, or /// other CFG structures where moving code across the edge would result in it /// being executed more. void ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, BBState &MyStates) const { // If any top-down local-use or possible-dec has a succ which is earlier in // the sequence, forget it. for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end(); I != E; ++I) { TopDownPtrState &S = I->second; const Sequence Seq = I->second.GetSeq(); // We only care about S_Retain, S_CanRelease, and S_Use. if (Seq == S_None) continue; // Make sure that if extra top down states are added in the future that this // code is updated to handle it. assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) && "Unknown top down sequence state."); const Value *Arg = I->first; const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); bool SomeSuccHasSame = false; bool AllSuccsHaveSame = true; bool NotAllSeqEqualButKnownSafe = false; succ_const_iterator SI(TI), SE(TI, false); for (; SI != SE; ++SI) { // If VisitBottomUp has pointer information for this successor, take // what we know about it. const DenseMap<const BasicBlock *, BBState>::iterator BBI = BBStates.find(*SI); assert(BBI != BBStates.end()); const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); const Sequence SuccSSeq = SuccS.GetSeq(); // If bottom up, the pointer is in an S_None state, clear the sequence // progress since the sequence in the bottom up state finished // suggesting a mismatch in between retains/releases. This is true for // all three cases that we are handling here: S_Retain, S_Use, and // S_CanRelease. if (SuccSSeq == S_None) { S.ClearSequenceProgress(); continue; } // If we have S_Use or S_CanRelease, perform our check for cfg hazard // checks. const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe(); // *NOTE* We do not use Seq from above here since we are allowing for // S.GetSeq() to change while we are visiting basic blocks. switch(S.GetSeq()) { case S_Use: { bool ShouldContinue = false; CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, AllSuccsHaveSame, NotAllSeqEqualButKnownSafe, ShouldContinue); if (ShouldContinue) continue; break; } case S_CanRelease: { CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, AllSuccsHaveSame, NotAllSeqEqualButKnownSafe); break; } case S_Retain: case S_None: case S_Stop: case S_Release: case S_MovableRelease: break; } } // If the state at the other end of any of the successor edges // matches the current state, require all edges to match. This // guards against loops in the middle of a sequence. if (SomeSuccHasSame && !AllSuccsHaveSame) { S.ClearSequenceProgress(); } else if (NotAllSeqEqualButKnownSafe) { // If we would have cleared the state foregoing the fact that we are known // safe, stop code motion. This is because whether or not it is safe to // remove RR pairs via KnownSafe is an orthogonal concept to whether we // are allowed to perform code motion. S.SetCFGHazardAfflicted(true); } } } bool ObjCARCOpt::VisitInstructionBottomUp( Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains, BBState &MyStates) { bool NestingDetected = false; ARCInstKind Class = GetARCInstKind(Inst); const Value *Arg = nullptr; DEBUG(dbgs() << " Class: " << Class << "\n"); switch (Class) { case ARCInstKind::Release: { Arg = GetArgRCIdentityRoot(Inst); BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); NestingDetected |= S.InitBottomUp(MDKindCache, Inst); break; } case ARCInstKind::RetainBlock: // In OptimizeIndividualCalls, we have strength reduced all optimizable // objc_retainBlocks to objc_retains. Thus at this point any // objc_retainBlocks that we see are not optimizable. break; case ARCInstKind::Retain: case ARCInstKind::RetainRV: { Arg = GetArgRCIdentityRoot(Inst); BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); if (S.MatchWithRetain()) { // Don't do retain+release tracking for ARCInstKind::RetainRV, because // it's better to let it remain as the first instruction after a call. if (Class != ARCInstKind::RetainRV) { DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n"); Retains[Inst] = S.GetRRInfo(); } S.ClearSequenceProgress(); } // A retain moving bottom up can be a use. break; } case ARCInstKind::AutoreleasepoolPop: // Conservatively, clear MyStates for all known pointers. MyStates.clearBottomUpPointers(); return NestingDetected; case ARCInstKind::AutoreleasepoolPush: case ARCInstKind::None: // These are irrelevant. return NestingDetected; case ARCInstKind::User: // If we have a store into an alloca of a pointer we are tracking, the // pointer has multiple owners implying that we must be more conservative. // // This comes up in the context of a pointer being ``KnownSafe''. In the // presence of a block being initialized, the frontend will emit the // objc_retain on the original pointer and the release on the pointer loaded // from the alloca. The optimizer will through the provenance analysis // realize that the two are related, but since we only require KnownSafe in // one direction, will match the inner retain on the original pointer with // the guard release on the original pointer. This is fixed by ensuring that // in the presence of allocas we only unconditionally remove pointers if // both our retain and our release are KnownSafe. if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { const DataLayout &DL = BB->getModule()->getDataLayout(); if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand(), DL)) { auto I = MyStates.findPtrBottomUpState( GetRCIdentityRoot(SI->getValueOperand())); if (I != MyStates.bottom_up_ptr_end()) MultiOwnersSet.insert(I->first); } } break; default: break; } // Consider any other possible effects of this instruction on each // pointer being tracked. for (auto MI = MyStates.bottom_up_ptr_begin(), ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) { const Value *Ptr = MI->first; if (Ptr == Arg) continue; // Handled above. BottomUpPtrState &S = MI->second; if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) continue; S.HandlePotentialUse(BB, Inst, Ptr, PA, Class); } return NestingDetected; } bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains) { DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n"); bool NestingDetected = false; BBState &MyStates = BBStates[BB]; // Merge the states from each successor to compute the initial state // for the current block. BBState::edge_iterator SI(MyStates.succ_begin()), SE(MyStates.succ_end()); if (SI != SE) { const BasicBlock *Succ = *SI; DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ); assert(I != BBStates.end()); MyStates.InitFromSucc(I->second); ++SI; for (; SI != SE; ++SI) { Succ = *SI; I = BBStates.find(Succ); assert(I != BBStates.end()); MyStates.MergeSucc(I->second); } } DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n" << "Performing Dataflow:\n"); // Visit all the instructions, bottom-up. for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { Instruction *Inst = &*std::prev(I); // Invoke instructions are visited as part of their successors (below). if (isa<InvokeInst>(Inst)) continue; DEBUG(dbgs() << " Visiting " << *Inst << "\n"); NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); } // If there's a predecessor with an invoke, visit the invoke as if it were // part of this block, since we can't insert code after an invoke in its own // block, and we don't want to split critical edges. for (BBState::edge_iterator PI(MyStates.pred_begin()), PE(MyStates.pred_end()); PI != PE; ++PI) { BasicBlock *Pred = *PI; if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back())) NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates); } DEBUG(llvm::dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n"); return NestingDetected; } bool ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, DenseMap<Value *, RRInfo> &Releases, BBState &MyStates) { bool NestingDetected = false; ARCInstKind Class = GetARCInstKind(Inst); const Value *Arg = nullptr; DEBUG(llvm::dbgs() << " Class: " << Class << "\n"); switch (Class) { case ARCInstKind::RetainBlock: // In OptimizeIndividualCalls, we have strength reduced all optimizable // objc_retainBlocks to objc_retains. Thus at this point any // objc_retainBlocks that we see are not optimizable. We need to break since // a retain can be a potential use. break; case ARCInstKind::Retain: case ARCInstKind::RetainRV: { Arg = GetArgRCIdentityRoot(Inst); TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); NestingDetected |= S.InitTopDown(Class, Inst); // A retain can be a potential use; proceed to the generic checking // code below. break; } case ARCInstKind::Release: { Arg = GetArgRCIdentityRoot(Inst); TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); // Try to form a tentative pair in between this release instruction and the // top down pointers that we are tracking. if (S.MatchWithRelease(MDKindCache, Inst)) { // If we succeed, copy S's RRInfo into the Release -> {Retain Set // Map}. Then we clear S. DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n"); Releases[Inst] = S.GetRRInfo(); S.ClearSequenceProgress(); } break; } case ARCInstKind::AutoreleasepoolPop: // Conservatively, clear MyStates for all known pointers. MyStates.clearTopDownPointers(); return false; case ARCInstKind::AutoreleasepoolPush: case ARCInstKind::None: // These can not be uses of return false; default: break; } // Consider any other possible effects of this instruction on each // pointer being tracked. for (auto MI = MyStates.top_down_ptr_begin(), ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) { const Value *Ptr = MI->first; if (Ptr == Arg) continue; // Handled above. TopDownPtrState &S = MI->second; if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) continue; S.HandlePotentialUse(Inst, Ptr, PA, Class); } return NestingDetected; } bool ObjCARCOpt::VisitTopDown(BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, DenseMap<Value *, RRInfo> &Releases) { DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n"); bool NestingDetected = false; BBState &MyStates = BBStates[BB]; // Merge the states from each predecessor to compute the initial state // for the current block. BBState::edge_iterator PI(MyStates.pred_begin()), PE(MyStates.pred_end()); if (PI != PE) { const BasicBlock *Pred = *PI; DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred); assert(I != BBStates.end()); MyStates.InitFromPred(I->second); ++PI; for (; PI != PE; ++PI) { Pred = *PI; I = BBStates.find(Pred); assert(I != BBStates.end()); MyStates.MergePred(I->second); } } DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n" << "Performing Dataflow:\n"); // Visit all the instructions, top-down. for (Instruction &Inst : *BB) { DEBUG(dbgs() << " Visiting " << Inst << "\n"); NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates); } DEBUG(llvm::dbgs() << "\nState Before Checking for CFG Hazards:\n" << BBStates[BB] << "\n\n"); CheckForCFGHazards(BB, BBStates, MyStates); DEBUG(llvm::dbgs() << "Final State:\n" << BBStates[BB] << "\n"); return NestingDetected; } static void ComputePostOrders(Function &F, SmallVectorImpl<BasicBlock *> &PostOrder, SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, unsigned NoObjCARCExceptionsMDKind, DenseMap<const BasicBlock *, BBState> &BBStates) { /// The visited set, for doing DFS walks. SmallPtrSet<BasicBlock *, 16> Visited; // Do DFS, computing the PostOrder. SmallPtrSet<BasicBlock *, 16> OnStack; SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; // Functions always have exactly one entry block, and we don't have // any other block that we treat like an entry block. BasicBlock *EntryBB = &F.getEntryBlock(); BBState &MyStates = BBStates[EntryBB]; MyStates.SetAsEntry(); TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back()); SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI))); Visited.insert(EntryBB); OnStack.insert(EntryBB); do { dfs_next_succ: BasicBlock *CurrBB = SuccStack.back().first; TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back()); succ_iterator SE(TI, false); while (SuccStack.back().second != SE) { BasicBlock *SuccBB = *SuccStack.back().second++; if (Visited.insert(SuccBB).second) { TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back()); SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI))); BBStates[CurrBB].addSucc(SuccBB); BBState &SuccStates = BBStates[SuccBB]; SuccStates.addPred(CurrBB); OnStack.insert(SuccBB); goto dfs_next_succ; } if (!OnStack.count(SuccBB)) { BBStates[CurrBB].addSucc(SuccBB); BBStates[SuccBB].addPred(CurrBB); } } OnStack.erase(CurrBB); PostOrder.push_back(CurrBB); SuccStack.pop_back(); } while (!SuccStack.empty()); Visited.clear(); // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. // Functions may have many exits, and there also blocks which we treat // as exits due to ignored edges. SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; for (BasicBlock &ExitBB : F) { BBState &MyStates = BBStates[&ExitBB]; if (!MyStates.isExit()) continue; MyStates.SetAsExit(); PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin())); Visited.insert(&ExitBB); while (!PredStack.empty()) { reverse_dfs_next_succ: BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); while (PredStack.back().second != PE) { BasicBlock *BB = *PredStack.back().second++; if (Visited.insert(BB).second) { PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin())); goto reverse_dfs_next_succ; } } ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); } } } // Visit the function both top-down and bottom-up. bool ObjCARCOpt::Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases) { // Use reverse-postorder traversals, because we magically know that loops // will be well behaved, i.e. they won't repeatedly call retain on a single // pointer without doing a release. We can't use the ReversePostOrderTraversal // class here because we want the reverse-CFG postorder to consider each // function exit point, and we want to ignore selected cycle edges. SmallVector<BasicBlock *, 16> PostOrder; SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, MDKindCache.get(ARCMDKindID::NoObjCARCExceptions), BBStates); // Use reverse-postorder on the reverse CFG for bottom-up. bool BottomUpNestingDetected = false; for (BasicBlock *BB : reverse(ReverseCFGPostOrder)) BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains); // Use reverse-postorder for top-down. bool TopDownNestingDetected = false; for (BasicBlock *BB : reverse(PostOrder)) TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases); return TopDownNestingDetected && BottomUpNestingDetected; } /// Move the calls in RetainsToMove and ReleasesToMove. void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases, SmallVectorImpl<Instruction *> &DeadInsts, Module *M) { Type *ArgTy = Arg->getType(); Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext())); DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n"); // Insert the new retain and release calls. for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) { Value *MyArg = ArgTy == ParamTy ? Arg : new BitCastInst(Arg, ParamTy, "", InsertPt); Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); Call->setDoesNotThrow(); Call->setTailCall(); DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n" "At insertion point: " << *InsertPt << "\n"); } for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) { Value *MyArg = ArgTy == ParamTy ? Arg : new BitCastInst(Arg, ParamTy, "", InsertPt); Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release); CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); // Attach a clang.imprecise_release metadata tag, if appropriate. if (MDNode *M = ReleasesToMove.ReleaseMetadata) Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M); Call->setDoesNotThrow(); if (ReleasesToMove.IsTailCallRelease) Call->setTailCall(); DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n" "At insertion point: " << *InsertPt << "\n"); } // Delete the original retain and release calls. for (Instruction *OrigRetain : RetainsToMove.Calls) { Retains.blot(OrigRetain); DeadInsts.push_back(OrigRetain); DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n"); } for (Instruction *OrigRelease : ReleasesToMove.Calls) { Releases.erase(OrigRelease); DeadInsts.push_back(OrigRelease); DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n"); } } bool ObjCARCOpt::PairUpRetainsAndReleases( DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases, Module *M, SmallVectorImpl<Instruction *> &NewRetains, SmallVectorImpl<Instruction *> &NewReleases, SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe, bool &AnyPairsCompletelyEliminated) { // If a pair happens in a region where it is known that the reference count // is already incremented, we can similarly ignore possible decrements unless // we are dealing with a retainable object with multiple provenance sources. bool KnownSafeTD = true, KnownSafeBU = true; bool MultipleOwners = false; bool CFGHazardAfflicted = false; // Connect the dots between the top-down-collected RetainsToMove and // bottom-up-collected ReleasesToMove to form sets of related calls. // This is an iterative process so that we connect multiple releases // to multiple retains if needed. unsigned OldDelta = 0; unsigned NewDelta = 0; unsigned OldCount = 0; unsigned NewCount = 0; bool FirstRelease = true; for (;;) { for (Instruction *NewRetain : NewRetains) { auto It = Retains.find(NewRetain); assert(It != Retains.end()); const RRInfo &NewRetainRRI = It->second; KnownSafeTD &= NewRetainRRI.KnownSafe; MultipleOwners = MultipleOwners || MultiOwnersSet.count(GetArgRCIdentityRoot(NewRetain)); for (Instruction *NewRetainRelease : NewRetainRRI.Calls) { auto Jt = Releases.find(NewRetainRelease); if (Jt == Releases.end()) return false; const RRInfo &NewRetainReleaseRRI = Jt->second; // If the release does not have a reference to the retain as well, // something happened which is unaccounted for. Do not do anything. // // This can happen if we catch an additive overflow during path count // merging. if (!NewRetainReleaseRRI.Calls.count(NewRetain)) return false; if (ReleasesToMove.Calls.insert(NewRetainRelease).second) { // If we overflow when we compute the path count, don't remove/move // anything. const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()]; unsigned PathCount = BBState::OverflowOccurredValue; if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) return false; assert(PathCount != BBState::OverflowOccurredValue && "PathCount at this point can not be " "OverflowOccurredValue."); OldDelta -= PathCount; // Merge the ReleaseMetadata and IsTailCallRelease values. if (FirstRelease) { ReleasesToMove.ReleaseMetadata = NewRetainReleaseRRI.ReleaseMetadata; ReleasesToMove.IsTailCallRelease = NewRetainReleaseRRI.IsTailCallRelease; FirstRelease = false; } else { if (ReleasesToMove.ReleaseMetadata != NewRetainReleaseRRI.ReleaseMetadata) ReleasesToMove.ReleaseMetadata = nullptr; if (ReleasesToMove.IsTailCallRelease != NewRetainReleaseRRI.IsTailCallRelease) ReleasesToMove.IsTailCallRelease = false; } // Collect the optimal insertion points. if (!KnownSafe) for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) { if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) { // If we overflow when we compute the path count, don't // remove/move anything. const BBState &RIPBBState = BBStates[RIP->getParent()]; PathCount = BBState::OverflowOccurredValue; if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) return false; assert(PathCount != BBState::OverflowOccurredValue && "PathCount at this point can not be " "OverflowOccurredValue."); NewDelta -= PathCount; } } NewReleases.push_back(NewRetainRelease); } } } NewRetains.clear(); if (NewReleases.empty()) break; // Back the other way. for (Instruction *NewRelease : NewReleases) { auto It = Releases.find(NewRelease); assert(It != Releases.end()); const RRInfo &NewReleaseRRI = It->second; KnownSafeBU &= NewReleaseRRI.KnownSafe; CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted; for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) { auto Jt = Retains.find(NewReleaseRetain); if (Jt == Retains.end()) return false; const RRInfo &NewReleaseRetainRRI = Jt->second; // If the retain does not have a reference to the release as well, // something happened which is unaccounted for. Do not do anything. // // This can happen if we catch an additive overflow during path count // merging. if (!NewReleaseRetainRRI.Calls.count(NewRelease)) return false; if (RetainsToMove.Calls.insert(NewReleaseRetain).second) { // If we overflow when we compute the path count, don't remove/move // anything. const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()]; unsigned PathCount = BBState::OverflowOccurredValue; if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) return false; assert(PathCount != BBState::OverflowOccurredValue && "PathCount at this point can not be " "OverflowOccurredValue."); OldDelta += PathCount; OldCount += PathCount; // Collect the optimal insertion points. if (!KnownSafe) for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) { if (RetainsToMove.ReverseInsertPts.insert(RIP).second) { // If we overflow when we compute the path count, don't // remove/move anything. const BBState &RIPBBState = BBStates[RIP->getParent()]; PathCount = BBState::OverflowOccurredValue; if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) return false; assert(PathCount != BBState::OverflowOccurredValue && "PathCount at this point can not be " "OverflowOccurredValue."); NewDelta += PathCount; NewCount += PathCount; } } NewRetains.push_back(NewReleaseRetain); } } } NewReleases.clear(); if (NewRetains.empty()) break; } // We can only remove pointers if we are known safe in both directions. bool UnconditionallySafe = KnownSafeTD && KnownSafeBU; if (UnconditionallySafe) { RetainsToMove.ReverseInsertPts.clear(); ReleasesToMove.ReverseInsertPts.clear(); NewCount = 0; } else { // Determine whether the new insertion points we computed preserve the // balance of retain and release calls through the program. // TODO: If the fully aggressive solution isn't valid, try to find a // less aggressive solution which is. if (NewDelta != 0) return false; // At this point, we are not going to remove any RR pairs, but we still are // able to move RR pairs. If one of our pointers is afflicted with // CFGHazards, we cannot perform such code motion so exit early. const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() || ReleasesToMove.ReverseInsertPts.size(); if (CFGHazardAfflicted && WillPerformCodeMotion) return false; } // Determine whether the original call points are balanced in the retain and // release calls through the program. If not, conservatively don't touch // them. // TODO: It's theoretically possible to do code motion in this case, as // long as the existing imbalances are maintained. if (OldDelta != 0) return false; Changed = true; assert(OldCount != 0 && "Unreachable code?"); NumRRs += OldCount - NewCount; // Set to true if we completely removed any RR pairs. AnyPairsCompletelyEliminated = NewCount == 0; // We can move calls! return true; } /// Identify pairings between the retains and releases, and delete and/or move /// them. bool ObjCARCOpt::PerformCodePlacement( DenseMap<const BasicBlock *, BBState> &BBStates, BlotMapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases, Module *M) { DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n"); bool AnyPairsCompletelyEliminated = false; RRInfo RetainsToMove; RRInfo ReleasesToMove; SmallVector<Instruction *, 4> NewRetains; SmallVector<Instruction *, 4> NewReleases; SmallVector<Instruction *, 8> DeadInsts; // Visit each retain. for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), E = Retains.end(); I != E; ++I) { Value *V = I->first; if (!V) continue; // blotted Instruction *Retain = cast<Instruction>(V); DEBUG(dbgs() << "Visiting: " << *Retain << "\n"); Value *Arg = GetArgRCIdentityRoot(Retain); // If the object being released is in static or stack storage, we know it's // not being managed by ObjC reference counting, so we can delete pairs // regardless of what possible decrements or uses lie between them. bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg); // A constant pointer can't be pointing to an object on the heap. It may // be reference-counted, but it won't be deleted. if (const LoadInst *LI = dyn_cast<LoadInst>(Arg)) if (const GlobalVariable *GV = dyn_cast<GlobalVariable>( GetRCIdentityRoot(LI->getPointerOperand()))) if (GV->isConstant()) KnownSafe = true; // Connect the dots between the top-down-collected RetainsToMove and // bottom-up-collected ReleasesToMove to form sets of related calls. NewRetains.push_back(Retain); bool PerformMoveCalls = PairUpRetainsAndReleases( BBStates, Retains, Releases, M, NewRetains, NewReleases, DeadInsts, RetainsToMove, ReleasesToMove, Arg, KnownSafe, AnyPairsCompletelyEliminated); if (PerformMoveCalls) { // Ok, everything checks out and we're all set. Let's move/delete some // code! MoveCalls(Arg, RetainsToMove, ReleasesToMove, Retains, Releases, DeadInsts, M); } // Clean up state for next retain. NewReleases.clear(); NewRetains.clear(); RetainsToMove.clear(); ReleasesToMove.clear(); } // Now that we're done moving everything, we can delete the newly dead // instructions, as we no longer need them as insert points. while (!DeadInsts.empty()) EraseInstruction(DeadInsts.pop_back_val()); return AnyPairsCompletelyEliminated; } /// Weak pointer optimizations. void ObjCARCOpt::OptimizeWeakCalls(Function &F) { DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n"); // First, do memdep-style RLE and S2L optimizations. We can't use memdep // itself because it uses AliasAnalysis and we need to do provenance // queries instead. for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; DEBUG(dbgs() << "Visiting: " << *Inst << "\n"); ARCInstKind Class = GetBasicARCInstKind(Inst); if (Class != ARCInstKind::LoadWeak && Class != ARCInstKind::LoadWeakRetained) continue; // Delete objc_loadWeak calls with no users. if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) { Inst->eraseFromParent(); continue; } // TODO: For now, just look for an earlier available version of this value // within the same block. Theoretically, we could do memdep-style non-local // analysis too, but that would want caching. A better approach would be to // use the technique that EarlyCSE uses. inst_iterator Current = std::prev(I); BasicBlock *CurrentBB = &*Current.getBasicBlockIterator(); for (BasicBlock::iterator B = CurrentBB->begin(), J = Current.getInstructionIterator(); J != B; --J) { Instruction *EarlierInst = &*std::prev(J); ARCInstKind EarlierClass = GetARCInstKind(EarlierInst); switch (EarlierClass) { case ARCInstKind::LoadWeak: case ARCInstKind::LoadWeakRetained: { // If this is loading from the same pointer, replace this load's value // with that one. CallInst *Call = cast<CallInst>(Inst); CallInst *EarlierCall = cast<CallInst>(EarlierInst); Value *Arg = Call->getArgOperand(0); Value *EarlierArg = EarlierCall->getArgOperand(0); switch (PA.getAA()->alias(Arg, EarlierArg)) { case MustAlias: Changed = true; // If the load has a builtin retain, insert a plain retain for it. if (Class == ARCInstKind::LoadWeakRetained) { Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); CI->setTailCall(); } // Zap the fully redundant load. Call->replaceAllUsesWith(EarlierCall); Call->eraseFromParent(); goto clobbered; case MayAlias: case PartialAlias: goto clobbered; case NoAlias: break; } break; } case ARCInstKind::StoreWeak: case ARCInstKind::InitWeak: { // If this is storing to the same pointer and has the same size etc. // replace this load's value with the stored value. CallInst *Call = cast<CallInst>(Inst); CallInst *EarlierCall = cast<CallInst>(EarlierInst); Value *Arg = Call->getArgOperand(0); Value *EarlierArg = EarlierCall->getArgOperand(0); switch (PA.getAA()->alias(Arg, EarlierArg)) { case MustAlias: Changed = true; // If the load has a builtin retain, insert a plain retain for it. if (Class == ARCInstKind::LoadWeakRetained) { Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); CI->setTailCall(); } // Zap the fully redundant load. Call->replaceAllUsesWith(EarlierCall->getArgOperand(1)); Call->eraseFromParent(); goto clobbered; case MayAlias: case PartialAlias: goto clobbered; case NoAlias: break; } break; } case ARCInstKind::MoveWeak: case ARCInstKind::CopyWeak: // TOOD: Grab the copied value. goto clobbered; case ARCInstKind::AutoreleasepoolPush: case ARCInstKind::None: case ARCInstKind::IntrinsicUser: case ARCInstKind::User: // Weak pointers are only modified through the weak entry points // (and arbitrary calls, which could call the weak entry points). break; default: // Anything else could modify the weak pointer. goto clobbered; } } clobbered:; } // Then, for each destroyWeak with an alloca operand, check to see if // the alloca and all its users can be zapped. for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; ARCInstKind Class = GetBasicARCInstKind(Inst); if (Class != ARCInstKind::DestroyWeak) continue; CallInst *Call = cast<CallInst>(Inst); Value *Arg = Call->getArgOperand(0); if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) { for (User *U : Alloca->users()) { const Instruction *UserInst = cast<Instruction>(U); switch (GetBasicARCInstKind(UserInst)) { case ARCInstKind::InitWeak: case ARCInstKind::StoreWeak: case ARCInstKind::DestroyWeak: continue; default: goto done; } } Changed = true; for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) { CallInst *UserInst = cast<CallInst>(*UI++); switch (GetBasicARCInstKind(UserInst)) { case ARCInstKind::InitWeak: case ARCInstKind::StoreWeak: // These functions return their second argument. UserInst->replaceAllUsesWith(UserInst->getArgOperand(1)); break; case ARCInstKind::DestroyWeak: // No return value. break; default: llvm_unreachable("alloca really is used!"); } UserInst->eraseFromParent(); } Alloca->eraseFromParent(); done:; } } } /// Identify program paths which execute sequences of retains and releases which /// can be eliminated. bool ObjCARCOpt::OptimizeSequences(Function &F) { // Releases, Retains - These are used to store the results of the main flow // analysis. These use Value* as the key instead of Instruction* so that the // map stays valid when we get around to rewriting code and calls get // replaced by arguments. DenseMap<Value *, RRInfo> Releases; BlotMapVector<Value *, RRInfo> Retains; // This is used during the traversal of the function to track the // states for each identified object at each block. DenseMap<const BasicBlock *, BBState> BBStates; // Analyze the CFG of the function, and all instructions. bool NestingDetected = Visit(F, BBStates, Retains, Releases); // Transform. bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains, Releases, F.getParent()); // Cleanup. MultiOwnersSet.clear(); return AnyPairsCompletelyEliminated && NestingDetected; } /// Check if there is a dependent call earlier that does not have anything in /// between the Retain and the call that can affect the reference count of their /// shared pointer argument. Note that Retain need not be in BB. static bool HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain, SmallPtrSetImpl<Instruction *> &DepInsts, SmallPtrSetImpl<const BasicBlock *> &Visited, ProvenanceAnalysis &PA) { FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain, DepInsts, Visited, PA); if (DepInsts.size() != 1) return false; auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin()); // Check that the pointer is the return value of the call. if (!Call || Arg != Call) return false; // Check that the call is a regular call. ARCInstKind Class = GetBasicARCInstKind(Call); return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call; } /// Find a dependent retain that precedes the given autorelease for which there /// is nothing in between the two instructions that can affect the ref count of /// Arg. static CallInst * FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB, Instruction *Autorelease, SmallPtrSetImpl<Instruction *> &DepInsts, SmallPtrSetImpl<const BasicBlock *> &Visited, ProvenanceAnalysis &PA) { FindDependencies(CanChangeRetainCount, Arg, BB, Autorelease, DepInsts, Visited, PA); if (DepInsts.size() != 1) return nullptr; auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin()); // Check that we found a retain with the same argument. if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) || GetArgRCIdentityRoot(Retain) != Arg) { return nullptr; } return Retain; } /// Look for an ``autorelease'' instruction dependent on Arg such that there are /// no instructions dependent on Arg that need a positive ref count in between /// the autorelease and the ret. static CallInst * FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB, ReturnInst *Ret, SmallPtrSetImpl<Instruction *> &DepInsts, SmallPtrSetImpl<const BasicBlock *> &V, ProvenanceAnalysis &PA) { FindDependencies(NeedsPositiveRetainCount, Arg, BB, Ret, DepInsts, V, PA); if (DepInsts.size() != 1) return nullptr; auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin()); if (!Autorelease) return nullptr; ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease); if (!IsAutorelease(AutoreleaseClass)) return nullptr; if (GetArgRCIdentityRoot(Autorelease) != Arg) return nullptr; return Autorelease; } /// Look for this pattern: /// \code /// %call = call i8* @something(...) /// %2 = call i8* @objc_retain(i8* %call) /// %3 = call i8* @objc_autorelease(i8* %2) /// ret i8* %3 /// \endcode /// And delete the retain and autorelease. void ObjCARCOpt::OptimizeReturns(Function &F) { if (!F.getReturnType()->isPointerTy()) return; DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n"); SmallPtrSet<Instruction *, 4> DependingInstructions; SmallPtrSet<const BasicBlock *, 4> Visited; for (BasicBlock &BB: F) { ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back()); DEBUG(dbgs() << "Visiting: " << *Ret << "\n"); if (!Ret) continue; const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0)); // Look for an ``autorelease'' instruction that is a predecessor of Ret and // dependent on Arg such that there are no instructions dependent on Arg // that need a positive ref count in between the autorelease and Ret. CallInst *Autorelease = FindPredecessorAutoreleaseWithSafePath( Arg, &BB, Ret, DependingInstructions, Visited, PA); DependingInstructions.clear(); Visited.clear(); if (!Autorelease) continue; CallInst *Retain = FindPredecessorRetainWithSafePath( Arg, &BB, Autorelease, DependingInstructions, Visited, PA); DependingInstructions.clear(); Visited.clear(); if (!Retain) continue; // Check that there is nothing that can affect the reference count // between the retain and the call. Note that Retain need not be in BB. bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain, DependingInstructions, Visited, PA); DependingInstructions.clear(); Visited.clear(); if (!HasSafePathToCall) continue; // If so, we can zap the retain and autorelease. Changed = true; ++NumRets; DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease << "\n"); EraseInstruction(Retain); EraseInstruction(Autorelease); } } #ifndef NDEBUG void ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) { llvm::Statistic &NumRetains = AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt; llvm::Statistic &NumReleases = AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt; for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; switch (GetBasicARCInstKind(Inst)) { default: break; case ARCInstKind::Retain: ++NumRetains; break; case ARCInstKind::Release: ++NumReleases; break; } } } #endif bool ObjCARCOpt::doInitialization(Module &M) { if (!EnableARCOpts) return false; // If nothing in the Module uses ARC, don't do anything. Run = ModuleHasARC(M); if (!Run) return false; // Intuitively, objc_retain and others are nocapture, however in practice // they are not, because they return their argument value. And objc_release // calls finalizers which can have arbitrary side effects. MDKindCache.init(&M); // Initialize our runtime entry point cache. EP.init(&M); return false; } bool ObjCARCOpt::runOnFunction(Function &F) { if (!EnableARCOpts) return false; // If nothing in the Module uses ARC, don't do anything. if (!Run) return false; Changed = false; DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>" "\n"); PA.setAA(&getAnalysis<AAResultsWrapperPass>().getAAResults()); #ifndef NDEBUG if (AreStatisticsEnabled()) { GatherStatistics(F, false); } #endif // This pass performs several distinct transformations. As a compile-time aid // when compiling code that isn't ObjC, skip these if the relevant ObjC // library functions aren't declared. // Preliminary optimizations. This also computes UsedInThisFunction. OptimizeIndividualCalls(F); // Optimizations for weak pointers. if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) | (1 << unsigned(ARCInstKind::LoadWeakRetained)) | (1 << unsigned(ARCInstKind::StoreWeak)) | (1 << unsigned(ARCInstKind::InitWeak)) | (1 << unsigned(ARCInstKind::CopyWeak)) | (1 << unsigned(ARCInstKind::MoveWeak)) | (1 << unsigned(ARCInstKind::DestroyWeak)))) OptimizeWeakCalls(F); // Optimizations for retain+release pairs. if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) | (1 << unsigned(ARCInstKind::RetainRV)) | (1 << unsigned(ARCInstKind::RetainBlock)))) if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release))) // Run OptimizeSequences until it either stops making changes or // no retain+release pair nesting is detected. while (OptimizeSequences(F)) {} // Optimizations if objc_autorelease is used. if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) | (1 << unsigned(ARCInstKind::AutoreleaseRV)))) OptimizeReturns(F); // Gather statistics after optimization. #ifndef NDEBUG if (AreStatisticsEnabled()) { GatherStatistics(F, true); } #endif DEBUG(dbgs() << "\n"); return Changed; } void ObjCARCOpt::releaseMemory() { PA.clear(); } /// @} ///