//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PassManagerBuilder class, which is used to set up a // "standard" optimization sequence suitable for languages like C and C++. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm-c/Transforms/PassManagerBuilder.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CFLAndersAliasAnalysis.h" #include "llvm/Analysis/CFLSteensAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" #include "llvm/Transforms/IPO/FunctionAttrs.h" #include "llvm/Transforms/IPO/InferFunctionAttrs.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Vectorize.h" using namespace llvm; static cl::opt<bool> RunLoopVectorization("vectorize-loops", cl::Hidden, cl::desc("Run the Loop vectorization passes")); static cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::Hidden, cl::desc("Run the SLP vectorization passes")); static cl::opt<bool> RunBBVectorization("vectorize-slp-aggressive", cl::Hidden, cl::desc("Run the BB vectorization passes")); static cl::opt<bool> UseGVNAfterVectorization("use-gvn-after-vectorization", cl::init(false), cl::Hidden, cl::desc("Run GVN instead of Early CSE after vectorization passes")); static cl::opt<bool> ExtraVectorizerPasses( "extra-vectorizer-passes", cl::init(false), cl::Hidden, cl::desc("Run cleanup optimization passes after vectorization.")); static cl::opt<bool> RunLoopRerolling("reroll-loops", cl::Hidden, cl::desc("Run the loop rerolling pass")); static cl::opt<bool> RunFloat2Int("float-to-int", cl::Hidden, cl::init(true), cl::desc("Run the float2int (float demotion) pass")); static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false), cl::Hidden, cl::desc("Run the load combining pass")); static cl::opt<bool> RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization", cl::init(true), cl::Hidden, cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop " "vectorizer instead of before")); // Experimental option to use CFL-AA enum class CFLAAType { None, Steensgaard, Andersen, Both }; static cl::opt<CFLAAType> UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, cl::desc("Enable the new, experimental CFL alias analysis"), cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), clEnumValN(CFLAAType::Steensgaard, "steens", "Enable unification-based CFL-AA"), clEnumValN(CFLAAType::Andersen, "anders", "Enable inclusion-based CFL-AA"), clEnumValN(CFLAAType::Both, "both", "Enable both variants of CFL-aa"), clEnumValEnd)); static cl::opt<bool> EnableMLSM("mlsm", cl::init(true), cl::Hidden, cl::desc("Enable motion of merged load and store")); static cl::opt<bool> EnableLoopInterchange( "enable-loopinterchange", cl::init(false), cl::Hidden, cl::desc("Enable the new, experimental LoopInterchange Pass")); static cl::opt<bool> EnableNonLTOGlobalsModRef( "enable-non-lto-gmr", cl::init(true), cl::Hidden, cl::desc( "Enable the GlobalsModRef AliasAnalysis outside of the LTO pipeline.")); static cl::opt<bool> EnableLoopLoadElim( "enable-loop-load-elim", cl::init(true), cl::Hidden, cl::desc("Enable the LoopLoadElimination Pass")); static cl::opt<std::string> RunPGOInstrGen( "profile-generate", cl::init(""), cl::Hidden, cl::desc("Enable generation phase of PGO instrumentation and specify the " "path of profile data file")); static cl::opt<std::string> RunPGOInstrUse( "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"), cl::desc("Enable use phase of PGO instrumentation and specify the path " "of profile data file")); static cl::opt<bool> UseLoopVersioningLICM( "enable-loop-versioning-licm", cl::init(false), cl::Hidden, cl::desc("Enable the experimental Loop Versioning LICM pass")); PassManagerBuilder::PassManagerBuilder() { OptLevel = 2; SizeLevel = 0; LibraryInfo = nullptr; Inliner = nullptr; ModuleSummary = nullptr; DisableUnitAtATime = false; DisableUnrollLoops = false; BBVectorize = RunBBVectorization; SLPVectorize = RunSLPVectorization; LoopVectorize = RunLoopVectorization; RerollLoops = RunLoopRerolling; LoadCombine = RunLoadCombine; DisableGVNLoadPRE = false; VerifyInput = false; VerifyOutput = false; MergeFunctions = false; PrepareForLTO = false; PGOInstrGen = RunPGOInstrGen; PGOInstrUse = RunPGOInstrUse; PrepareForThinLTO = false; PerformThinLTO = false; } PassManagerBuilder::~PassManagerBuilder() { delete LibraryInfo; delete Inliner; } /// Set of global extensions, automatically added as part of the standard set. static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; void PassManagerBuilder::addGlobalExtension( PassManagerBuilder::ExtensionPointTy Ty, PassManagerBuilder::ExtensionFn Fn) { GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); } void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { Extensions.push_back(std::make_pair(Ty, std::move(Fn))); } void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, legacy::PassManagerBase &PM) const { for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i) if ((*GlobalExtensions)[i].first == ETy) (*GlobalExtensions)[i].second(*this, PM); for (unsigned i = 0, e = Extensions.size(); i != e; ++i) if (Extensions[i].first == ETy) Extensions[i].second(*this, PM); } void PassManagerBuilder::addInitialAliasAnalysisPasses( legacy::PassManagerBase &PM) const { switch (UseCFLAA) { case CFLAAType::Steensgaard: PM.add(createCFLSteensAAWrapperPass()); break; case CFLAAType::Andersen: PM.add(createCFLAndersAAWrapperPass()); break; case CFLAAType::Both: PM.add(createCFLSteensAAWrapperPass()); PM.add(createCFLAndersAAWrapperPass()); break; default: break; } // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. PM.add(createTypeBasedAAWrapperPass()); PM.add(createScopedNoAliasAAWrapperPass()); } void PassManagerBuilder::addInstructionCombiningPass( legacy::PassManagerBase &PM) const { bool ExpensiveCombines = OptLevel > 2; PM.add(createInstructionCombiningPass(ExpensiveCombines)); } void PassManagerBuilder::populateFunctionPassManager( legacy::FunctionPassManager &FPM) { addExtensionsToPM(EP_EarlyAsPossible, FPM); // Add LibraryInfo if we have some. if (LibraryInfo) FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); if (OptLevel == 0) return; addInitialAliasAnalysisPasses(FPM); FPM.add(createCFGSimplificationPass()); FPM.add(createSROAPass()); FPM.add(createEarlyCSEPass()); FPM.add(createLowerExpectIntrinsicPass()); } // Do PGO instrumentation generation or use pass as the option specified. void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) { if (!PGOInstrGen.empty()) { MPM.add(createPGOInstrumentationGenLegacyPass()); // Add the profile lowering pass. InstrProfOptions Options; Options.InstrProfileOutput = PGOInstrGen; MPM.add(createInstrProfilingLegacyPass(Options)); } if (!PGOInstrUse.empty()) MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse)); } void PassManagerBuilder::addFunctionSimplificationPasses( legacy::PassManagerBase &MPM) { // Start of function pass. // Break up aggregate allocas, using SSAUpdater. MPM.add(createSROAPass()); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // Speculative execution if the target has divergent branches; otherwise nop. MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Combine silly seq's addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions // Rotate Loop - disable header duplication at -Oz MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); MPM.add(createLICMPass()); // Hoist loop invariants MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. MPM.add(createLoopDeletionPass()); // Delete dead loops if (EnableLoopInterchange) { MPM.add(createLoopInterchangePass()); // Interchange loops MPM.add(createCFGSimplificationPass()); } if (!DisableUnrollLoops) MPM.add(createSimpleLoopUnrollPass()); // Unroll small loops addExtensionsToPM(EP_LoopOptimizerEnd, MPM); if (OptLevel > 1) { if (EnableMLSM) MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies } MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createLICMPass()); addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (RerollLoops) MPM.add(createLoopRerollPass()); if (!RunSLPAfterLoopVectorization) { if (SLPVectorize) MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (BBVectorize) { MPM.add(createBBVectorizePass()); addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } if (LoadCombine) MPM.add(createLoadCombinePass()); MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Clean up after everything. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); } void PassManagerBuilder::populateModulePassManager( legacy::PassManagerBase &MPM) { // Allow forcing function attributes as a debugging and tuning aid. MPM.add(createForceFunctionAttrsLegacyPass()); // If all optimizations are disabled, just run the always-inline pass and, // if enabled, the function merging pass. if (OptLevel == 0) { addPGOInstrPasses(MPM); if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly // creates a CGSCC pass manager, but we don't want to add extensions into // that pass manager. To prevent this we insert a no-op module pass to reset // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 // builds. The function merging pass is if (MergeFunctions) MPM.add(createMergeFunctionsPass()); else if (!GlobalExtensions->empty() || !Extensions.empty()) MPM.add(createBarrierNoopPass()); addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); if (!DisableUnitAtATime) { // Infer attributes about declarations if possible. MPM.add(createInferFunctionAttrsLegacyPass()); addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createGlobalOptimizerPass()); // Optimize out global vars // Promote any localized global vars. MPM.add(createPromoteMemoryToRegisterPass()); MPM.add(createDeadArgEliminationPass()); // Dead argument elimination addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE } if (!PerformThinLTO) { /// PGO instrumentation is added during the compile phase for ThinLTO, do /// not run it a second time addPGOInstrPasses(MPM); // Indirect call promotion that promotes intra-module targets only. MPM.add(createPGOIndirectCallPromotionLegacyPass()); } if (EnableNonLTOGlobalsModRef) // We add a module alias analysis pass here. In part due to bugs in the // analysis infrastructure this "works" in that the analysis stays alive // for the entire SCC pass run below. MPM.add(createGlobalsAAWrapperPass()); // Start of CallGraph SCC passes. if (!DisableUnitAtATime) MPM.add(createPruneEHPass()); // Remove dead EH info if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } if (!DisableUnitAtATime) MPM.add(createPostOrderFunctionAttrsLegacyPass()); if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args addFunctionSimplificationPasses(MPM); // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager that we are specifically trying to avoid. To prevent this // we must insert a no-op module pass to reset the pass manager. MPM.add(createBarrierNoopPass()); if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) // Remove avail extern fns and globals definitions if we aren't // compiling an object file for later LTO. For LTO we want to preserve // these so they are eligible for inlining at link-time. Note if they // are unreferenced they will be removed by GlobalDCE later, so // this only impacts referenced available externally globals. // Eventually they will be suppressed during codegen, but eliminating // here enables more opportunity for GlobalDCE as it may make // globals referenced by available external functions dead // and saves running remaining passes on the eliminated functions. MPM.add(createEliminateAvailableExternallyPass()); if (!DisableUnitAtATime) MPM.add(createReversePostOrderFunctionAttrsPass()); // If we are planning to perform ThinLTO later, let's not bloat the code with // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes // during ThinLTO and perform the rest of the optimizations afterward. if (PrepareForThinLTO) { // Reduce the size of the IR as much as possible. MPM.add(createGlobalOptimizerPass()); // Rename anon function to be able to export them in the summary. MPM.add(createNameAnonFunctionPass()); return; } if (PerformThinLTO) // Optimize globals now when performing ThinLTO, this enables more // optimizations later. MPM.add(createGlobalOptimizerPass()); // Scheduling LoopVersioningLICM when inlining is over, because after that // we may see more accurate aliasing. Reason to run this late is that too // early versioning may prevent further inlining due to increase of code // size. By placing it just after inlining other optimizations which runs // later might get benefit of no-alias assumption in clone loop. if (UseLoopVersioningLICM) { MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM MPM.add(createLICMPass()); // Hoist loop invariants } if (EnableNonLTOGlobalsModRef) // We add a fresh GlobalsModRef run at this point. This is particularly // useful as the above will have inlined, DCE'ed, and function-attr // propagated everything. We should at this point have a reasonably minimal // and richly annotated call graph. By computing aliasing and mod/ref // information for all local globals here, the late loop passes and notably // the vectorizer will be able to use them to help recognize vectorizable // memory operations. // // Note that this relies on a bug in the pass manager which preserves // a module analysis into a function pass pipeline (and throughout it) so // long as the first function pass doesn't invalidate the module analysis. // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for // this to work. Fortunately, it is trivial to preserve AliasAnalysis // (doing nothing preserves it as it is required to be conservatively // correct in the face of IR changes). MPM.add(createGlobalsAAWrapperPass()); if (RunFloat2Int) MPM.add(createFloat2IntPass()); addExtensionsToPM(EP_VectorizerStart, MPM); // Re-rotate loops in all our loop nests. These may have fallout out of // rotated form due to GVN or other transformations, and the vectorizer relies // on the rotated form. Disable header duplication at -Oz. MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); // Distribute loops to allow partial vectorization. I.e. isolate dependences // into separate loop that would otherwise inhibit vectorization. This is // currently only performed for loops marked with the metadata // llvm.loop.distribute=true or when -enable-loop-distribute is specified. MPM.add(createLoopDistributePass(/*ProcessAllLoopsByDefault=*/false)); MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize)); // Eliminate loads by forwarding stores from the previous iteration to loads // of the current iteration. if (EnableLoopLoadElim) MPM.add(createLoopLoadEliminationPass()); // FIXME: Because of #pragma vectorize enable, the passes below are always // inserted in the pipeline, even when the vectorizer doesn't run (ex. when // on -O1 and no #pragma is found). Would be good to have these two passes // as function calls, so that we can only pass them when the vectorizer // changed the code. addInstructionCombiningPass(MPM); if (OptLevel > 1 && ExtraVectorizerPasses) { // At higher optimization levels, try to clean up any runtime overlap and // alignment checks inserted by the vectorizer. We want to track correllated // runtime checks for two inner loops in the same outer loop, fold any // common computations, hoist loop-invariant aspects out of any outer loop, // and unswitch the runtime checks if possible. Once hoisted, we may have // dead (or speculatable) control flows or more combining opportunities. MPM.add(createEarlyCSEPass()); MPM.add(createCorrelatedValuePropagationPass()); addInstructionCombiningPass(MPM); MPM.add(createLICMPass()); MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); } if (RunSLPAfterLoopVectorization) { if (SLPVectorize) { MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (OptLevel > 1 && ExtraVectorizerPasses) { MPM.add(createEarlyCSEPass()); } } if (BBVectorize) { MPM.add(createBBVectorizePass()); addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); if (!DisableUnrollLoops) { MPM.add(createLoopUnrollPass()); // Unroll small loops // LoopUnroll may generate some redundency to cleanup. addInstructionCombiningPass(MPM); // Runtime unrolling will introduce runtime check in loop prologue. If the // unrolled loop is a inner loop, then the prologue will be inside the // outer loop. LICM pass can help to promote the runtime check out if the // checked value is loop invariant. MPM.add(createLICMPass()); // Get rid of LCSSA nodes. MPM.add(createInstructionSimplifierPass()); } // After vectorization and unrolling, assume intrinsics may tell us more // about pointer alignments. MPM.add(createAlignmentFromAssumptionsPass()); if (!DisableUnitAtATime) { // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O2 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 1) { MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. MPM.add(createConstantMergePass()); // Merge dup global constants } } if (MergeFunctions) MPM.add(createMergeFunctionsPass()); addExtensionsToPM(EP_OptimizerLast, MPM); } void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { // Remove unused virtual tables to improve the quality of code generated by // whole-program devirtualization and bitset lowering. PM.add(createGlobalDCEPass()); // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); if (ModuleSummary) PM.add(createFunctionImportPass(ModuleSummary)); // Allow forcing function attributes as a debugging and tuning aid. PM.add(createForceFunctionAttrsLegacyPass()); // Infer attributes about declarations if possible. PM.add(createInferFunctionAttrsLegacyPass()); if (OptLevel > 1) { // Indirect call promotion. This should promote all the targets that are // left by the earlier promotion pass that promotes intra-module targets. // This two-step promotion is to save the compile time. For LTO, it should // produce the same result as if we only do promotion here. PM.add(createPGOIndirectCallPromotionLegacyPass(true)); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); } // Infer attributes about definitions. The readnone attribute in particular is // required for virtual constant propagation. PM.add(createPostOrderFunctionAttrsLegacyPass()); PM.add(createReversePostOrderFunctionAttrsPass()); // Apply whole-program devirtualization and virtual constant propagation. PM.add(createWholeProgramDevirtPass()); // That's all we need at opt level 1. if (OptLevel == 1) return; // Now that we internalized some globals, see if we can hack on them! PM.add(createGlobalOptimizerPass()); // Promote any localized global vars. PM.add(createPromoteMemoryToRegisterPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); // Inline small functions bool RunInliner = Inliner; if (RunInliner) { PM.add(Inliner); Inliner = nullptr; } PM.add(createPruneEHPass()); // Remove dead EH info. // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); // Break up allocas PM.add(createSROAPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. PM.add(createLICMPass()); // Hoist loop invariants. if (EnableMLSM) PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // More loops are countable; try to optimize them. PM.add(createIndVarSimplifyPass()); PM.add(createLoopDeletionPass()); if (EnableLoopInterchange) PM.add(createLoopInterchangePass()); if (!DisableUnrollLoops) PM.add(createSimpleLoopUnrollPass()); // Unroll small loops PM.add(createLoopVectorizePass(true, LoopVectorize)); // The vectorizer may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) PM.add(createLoopUnrollPass()); // Now that we've optimized loops (in particular loop induction variables), // we may have exposed more scalar opportunities. Run parts of the scalar // optimizer again at this point. addInstructionCombiningPass(PM); // Initial cleanup PM.add(createCFGSimplificationPass()); // if-convert PM.add(createSCCPPass()); // Propagate exposed constants addInstructionCombiningPass(PM); // Clean up again PM.add(createBitTrackingDCEPass()); // More scalar chains could be vectorized due to more alias information if (RunSLPAfterLoopVectorization) if (SLPVectorize) PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. // After vectorization, assume intrinsics may tell us more about pointer // alignments. PM.add(createAlignmentFromAssumptionsPass()); if (LoadCombine) PM.add(createLoadCombinePass()); // Cleanup and simplify the code after the scalar optimizations. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); } void PassManagerBuilder::addLateLTOOptimizationPasses( legacy::PassManagerBase &PM) { // Delete basic blocks, which optimization passes may have killed. PM.add(createCFGSimplificationPass()); // Drop bodies of available externally objects to improve GlobalDCE. PM.add(createEliminateAvailableExternallyPass()); // Now that we have optimized the program, discard unreachable functions. PM.add(createGlobalDCEPass()); // FIXME: this is profitable (for compiler time) to do at -O0 too, but // currently it damages debug info. if (MergeFunctions) PM.add(createMergeFunctionsPass()); } void PassManagerBuilder::populateThinLTOPassManager( legacy::PassManagerBase &PM) { PerformThinLTO = true; if (VerifyInput) PM.add(createVerifierPass()); if (ModuleSummary) PM.add(createFunctionImportPass(ModuleSummary)); populateModulePassManager(PM); if (VerifyOutput) PM.add(createVerifierPass()); PerformThinLTO = false; } void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { if (LibraryInfo) PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); if (VerifyInput) PM.add(createVerifierPass()); if (OptLevel != 0) addLTOOptimizationPasses(PM); // Create a function that performs CFI checks for cross-DSO calls with targets // in the current module. PM.add(createCrossDSOCFIPass()); // Lower type metadata and the type.test intrinsic. This pass supports Clang's // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at // link time if CFI is enabled. The pass does nothing if CFI is disabled. PM.add(createLowerTypeTestsPass()); if (OptLevel != 0) addLateLTOOptimizationPasses(PM); if (VerifyOutput) PM.add(createVerifierPass()); } inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { return reinterpret_cast<PassManagerBuilder*>(P); } inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { return reinterpret_cast<LLVMPassManagerBuilderRef>(P); } LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { PassManagerBuilder *PMB = new PassManagerBuilder(); return wrap(PMB); } void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { PassManagerBuilder *Builder = unwrap(PMB); delete Builder; } void LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, unsigned OptLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->OptLevel = OptLevel; } void LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, unsigned SizeLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->SizeLevel = SizeLevel; } void LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { PassManagerBuilder *Builder = unwrap(PMB); Builder->DisableUnitAtATime = Value; } void LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { PassManagerBuilder *Builder = unwrap(PMB); Builder->DisableUnrollLoops = Value; } void LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { // NOTE: The simplify-libcalls pass has been removed. } void LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, unsigned Threshold) { PassManagerBuilder *Builder = unwrap(PMB); Builder->Inliner = createFunctionInliningPass(Threshold); } void LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); Builder->populateFunctionPassManager(*FPM); } void LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); legacy::PassManagerBase *MPM = unwrap(PM); Builder->populateModulePassManager(*MPM); } void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM, LLVMBool Internalize, LLVMBool RunInliner) { PassManagerBuilder *Builder = unwrap(PMB); legacy::PassManagerBase *LPM = unwrap(PM); // A small backwards compatibility hack. populateLTOPassManager used to take // an RunInliner option. if (RunInliner && !Builder->Inliner) Builder->Inliner = createFunctionInliningPass(); Builder->populateLTOPassManager(*LPM); }