//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements a TargetTransformInfo analysis pass specific to the /// X86 target machine. It uses the target's detailed information to provide /// more precise answers to certain TTI queries, while letting the target /// independent and default TTI implementations handle the rest. /// //===----------------------------------------------------------------------===// #include "X86TargetTransformInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; #define DEBUG_TYPE "x86tti" //===----------------------------------------------------------------------===// // // X86 cost model. // //===----------------------------------------------------------------------===// TargetTransformInfo::PopcntSupportKind X86TTIImpl::getPopcntSupport(unsigned TyWidth) { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); // TODO: Currently the __builtin_popcount() implementation using SSE3 // instructions is inefficient. Once the problem is fixed, we should // call ST->hasSSE3() instead of ST->hasPOPCNT(). return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software; } unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) { if (Vector && !ST->hasSSE1()) return 0; if (ST->is64Bit()) { if (Vector && ST->hasAVX512()) return 32; return 16; } return 8; } unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) { if (Vector) { if (ST->hasAVX512()) return 512; if (ST->hasAVX()) return 256; if (ST->hasSSE1()) return 128; return 0; } if (ST->is64Bit()) return 64; return 32; } unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { // If the loop will not be vectorized, don't interleave the loop. // Let regular unroll to unroll the loop, which saves the overflow // check and memory check cost. if (VF == 1) return 1; if (ST->isAtom()) return 1; // Sandybridge and Haswell have multiple execution ports and pipelined // vector units. if (ST->hasAVX()) return 4; return 2; } int X86TTIImpl::getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo) { // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); if (ISD == ISD::SDIV && Op2Info == TargetTransformInfo::OK_UniformConstantValue && Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { // On X86, vector signed division by constants power-of-two are // normally expanded to the sequence SRA + SRL + ADD + SRA. // The OperandValue properties many not be same as that of previous // operation;conservatively assume OP_None. int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info, TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info, TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info, TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); return Cost; } static const CostTblEntry AVX2UniformConstCostTable[] = { { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle. { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence }; if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && ST->hasAVX2()) { if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second)) return LT.first * Entry->Cost; } static const CostTblEntry AVX512CostTable[] = { { ISD::SHL, MVT::v16i32, 1 }, { ISD::SRL, MVT::v16i32, 1 }, { ISD::SRA, MVT::v16i32, 1 }, { ISD::SHL, MVT::v8i64, 1 }, { ISD::SRL, MVT::v8i64, 1 }, { ISD::SRA, MVT::v8i64, 1 }, }; if (ST->hasAVX512()) { if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second)) return LT.first * Entry->Cost; } static const CostTblEntry AVX2CostTable[] = { // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to // customize them to detect the cases where shift amount is a scalar one. { ISD::SHL, MVT::v4i32, 1 }, { ISD::SRL, MVT::v4i32, 1 }, { ISD::SRA, MVT::v4i32, 1 }, { ISD::SHL, MVT::v8i32, 1 }, { ISD::SRL, MVT::v8i32, 1 }, { ISD::SRA, MVT::v8i32, 1 }, { ISD::SHL, MVT::v2i64, 1 }, { ISD::SRL, MVT::v2i64, 1 }, { ISD::SHL, MVT::v4i64, 1 }, { ISD::SRL, MVT::v4i64, 1 }, }; // Look for AVX2 lowering tricks. if (ST->hasAVX2()) { if (ISD == ISD::SHL && LT.second == MVT::v16i16 && (Op2Info == TargetTransformInfo::OK_UniformConstantValue || Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) // On AVX2, a packed v16i16 shift left by a constant build_vector // is lowered into a vector multiply (vpmullw). return LT.first; if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second)) return LT.first * Entry->Cost; } static const CostTblEntry XOPCostTable[] = { // 128bit shifts take 1cy, but right shifts require negation beforehand. { ISD::SHL, MVT::v16i8, 1 }, { ISD::SRL, MVT::v16i8, 2 }, { ISD::SRA, MVT::v16i8, 2 }, { ISD::SHL, MVT::v8i16, 1 }, { ISD::SRL, MVT::v8i16, 2 }, { ISD::SRA, MVT::v8i16, 2 }, { ISD::SHL, MVT::v4i32, 1 }, { ISD::SRL, MVT::v4i32, 2 }, { ISD::SRA, MVT::v4i32, 2 }, { ISD::SHL, MVT::v2i64, 1 }, { ISD::SRL, MVT::v2i64, 2 }, { ISD::SRA, MVT::v2i64, 2 }, // 256bit shifts require splitting if AVX2 didn't catch them above. { ISD::SHL, MVT::v32i8, 2 }, { ISD::SRL, MVT::v32i8, 4 }, { ISD::SRA, MVT::v32i8, 4 }, { ISD::SHL, MVT::v16i16, 2 }, { ISD::SRL, MVT::v16i16, 4 }, { ISD::SRA, MVT::v16i16, 4 }, { ISD::SHL, MVT::v8i32, 2 }, { ISD::SRL, MVT::v8i32, 4 }, { ISD::SRA, MVT::v8i32, 4 }, { ISD::SHL, MVT::v4i64, 2 }, { ISD::SRL, MVT::v4i64, 4 }, { ISD::SRA, MVT::v4i64, 4 }, }; // Look for XOP lowering tricks. if (ST->hasXOP()) { if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second)) return LT.first * Entry->Cost; } static const CostTblEntry AVX2CustomCostTable[] = { { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence. { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence. { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence. { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence. { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence. { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence. // Vectorizing division is a bad idea. See the SSE2 table for more comments. { ISD::SDIV, MVT::v32i8, 32*20 }, { ISD::SDIV, MVT::v16i16, 16*20 }, { ISD::SDIV, MVT::v8i32, 8*20 }, { ISD::SDIV, MVT::v4i64, 4*20 }, { ISD::UDIV, MVT::v32i8, 32*20 }, { ISD::UDIV, MVT::v16i16, 16*20 }, { ISD::UDIV, MVT::v8i32, 8*20 }, { ISD::UDIV, MVT::v4i64, 4*20 }, }; // Look for AVX2 lowering tricks for custom cases. if (ST->hasAVX2()) { if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD, LT.second)) return LT.first * Entry->Cost; } static const CostTblEntry SSE2UniformConstCostTable[] = { // We don't correctly identify costs of casts because they are marked as // custom. // Constant splats are cheaper for the following instructions. { ISD::SHL, MVT::v16i8, 1 }, // psllw. { ISD::SHL, MVT::v32i8, 2 }, // psllw. { ISD::SHL, MVT::v8i16, 1 }, // psllw. { ISD::SHL, MVT::v16i16, 2 }, // psllw. { ISD::SHL, MVT::v4i32, 1 }, // pslld { ISD::SHL, MVT::v8i32, 2 }, // pslld { ISD::SHL, MVT::v2i64, 1 }, // psllq. { ISD::SHL, MVT::v4i64, 2 }, // psllq. { ISD::SRL, MVT::v16i8, 1 }, // psrlw. { ISD::SRL, MVT::v32i8, 2 }, // psrlw. { ISD::SRL, MVT::v8i16, 1 }, // psrlw. { ISD::SRL, MVT::v16i16, 2 }, // psrlw. { ISD::SRL, MVT::v4i32, 1 }, // psrld. { ISD::SRL, MVT::v8i32, 2 }, // psrld. { ISD::SRL, MVT::v2i64, 1 }, // psrlq. { ISD::SRL, MVT::v4i64, 2 }, // psrlq. { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb. { ISD::SRA, MVT::v8i16, 1 }, // psraw. { ISD::SRA, MVT::v16i16, 2 }, // psraw. { ISD::SRA, MVT::v4i32, 1 }, // psrad. { ISD::SRA, MVT::v8i32, 2 }, // psrad. { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle. { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle. { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence }; if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && ST->hasSSE2()) { // pmuldq sequence. if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) return LT.first * 15; if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second)) return LT.first * Entry->Cost; } if (ISD == ISD::SHL && Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { MVT VT = LT.second; // Vector shift left by non uniform constant can be lowered // into vector multiply (pmullw/pmulld). if ((VT == MVT::v8i16 && ST->hasSSE2()) || (VT == MVT::v4i32 && ST->hasSSE41())) return LT.first; // v16i16 and v8i32 shifts by non-uniform constants are lowered into a // sequence of extract + two vector multiply + insert. if ((VT == MVT::v8i32 || VT == MVT::v16i16) && (ST->hasAVX() && !ST->hasAVX2())) ISD = ISD::MUL; // A vector shift left by non uniform constant is converted // into a vector multiply; the new multiply is eventually // lowered into a sequence of shuffles and 2 x pmuludq. if (VT == MVT::v4i32 && ST->hasSSE2()) ISD = ISD::MUL; } static const CostTblEntry SSE2CostTable[] = { // We don't correctly identify costs of casts because they are marked as // custom. // For some cases, where the shift amount is a scalar we would be able // to generate better code. Unfortunately, when this is the case the value // (the splat) will get hoisted out of the loop, thereby making it invisible // to ISel. The cost model must return worst case assumptions because it is // used for vectorization and we don't want to make vectorized code worse // than scalar code. { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence. { ISD::SHL, MVT::v32i8, 2*26 }, // cmpgtb sequence. { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence. { ISD::SHL, MVT::v16i16, 2*32 }, // cmpgtb sequence. { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul. { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence. { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence. { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence. { ISD::SRL, MVT::v32i8, 2*26 }, // cmpgtb sequence. { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence. { ISD::SRL, MVT::v16i16, 2*32 }, // cmpgtb sequence. { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend. { ISD::SRL, MVT::v8i32, 2*16 }, // Shift each lane + blend. { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence. { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence. { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence. { ISD::SRA, MVT::v32i8, 2*54 }, // unpacked cmpgtb sequence. { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence. { ISD::SRA, MVT::v16i16, 2*32 }, // cmpgtb sequence. { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend. { ISD::SRA, MVT::v8i32, 2*16 }, // Shift each lane + blend. { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence. { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence. // It is not a good idea to vectorize division. We have to scalarize it and // in the process we will often end up having to spilling regular // registers. The overhead of division is going to dominate most kernels // anyways so try hard to prevent vectorization of division - it is // generally a bad idea. Assume somewhat arbitrarily that we have to be able // to hide "20 cycles" for each lane. { ISD::SDIV, MVT::v16i8, 16*20 }, { ISD::SDIV, MVT::v8i16, 8*20 }, { ISD::SDIV, MVT::v4i32, 4*20 }, { ISD::SDIV, MVT::v2i64, 2*20 }, { ISD::UDIV, MVT::v16i8, 16*20 }, { ISD::UDIV, MVT::v8i16, 8*20 }, { ISD::UDIV, MVT::v4i32, 4*20 }, { ISD::UDIV, MVT::v2i64, 2*20 }, }; if (ST->hasSSE2()) { if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second)) return LT.first * Entry->Cost; } static const CostTblEntry AVX1CostTable[] = { // We don't have to scalarize unsupported ops. We can issue two half-sized // operations and we only need to extract the upper YMM half. // Two ops + 1 extract + 1 insert = 4. { ISD::MUL, MVT::v16i16, 4 }, { ISD::MUL, MVT::v8i32, 4 }, { ISD::SUB, MVT::v8i32, 4 }, { ISD::ADD, MVT::v8i32, 4 }, { ISD::SUB, MVT::v4i64, 4 }, { ISD::ADD, MVT::v4i64, 4 }, // A v4i64 multiply is custom lowered as two split v2i64 vectors that then // are lowered as a series of long multiplies(3), shifts(4) and adds(2) // Because we believe v4i64 to be a legal type, we must also include the // split factor of two in the cost table. Therefore, the cost here is 18 // instead of 9. { ISD::MUL, MVT::v4i64, 18 }, }; // Look for AVX1 lowering tricks. if (ST->hasAVX() && !ST->hasAVX2()) { MVT VT = LT.second; if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT)) return LT.first * Entry->Cost; } // Custom lowering of vectors. static const CostTblEntry CustomLowered[] = { // A v2i64/v4i64 and multiply is custom lowered as a series of long // multiplies(3), shifts(4) and adds(2). { ISD::MUL, MVT::v2i64, 9 }, { ISD::MUL, MVT::v4i64, 9 }, }; if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second)) return LT.first * Entry->Cost; // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle, // 2x pmuludq, 2x shuffle. if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() && !ST->hasSSE41()) return LT.first * 6; // Fallback to the default implementation. return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); } int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) { // We only estimate the cost of reverse and alternate shuffles. if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate) return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); if (Kind == TTI::SK_Reverse) { std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); int Cost = 1; if (LT.second.getSizeInBits() > 128) Cost = 3; // Extract + insert + copy. // Multiple by the number of parts. return Cost * LT.first; } if (Kind == TTI::SK_Alternate) { // 64-bit packed float vectors (v2f32) are widened to type v4f32. // 64-bit packed integer vectors (v2i32) are promoted to type v2i64. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); // The backend knows how to generate a single VEX.256 version of // instruction VPBLENDW if the target supports AVX2. if (ST->hasAVX2() && LT.second == MVT::v16i16) return LT.first; static const CostTblEntry AVXAltShuffleTbl[] = { {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vblendps {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vblendps // This shuffle is custom lowered into a sequence of: // 2x vextractf128 , 2x vpblendw , 1x vinsertf128 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5}, // This shuffle is custom lowered into a long sequence of: // 2x vextractf128 , 4x vpshufb , 2x vpor , 1x vinsertf128 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9} }; if (ST->hasAVX()) if (const auto *Entry = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; static const CostTblEntry SSE41AltShuffleTbl[] = { // These are lowered into movsd. {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // packed float vectors with four elements are lowered into BLENDI dag // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'. {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, // This shuffle generates a single pshufw. {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, // There is no instruction that matches a v16i8 alternate shuffle. // The backend will expand it into the sequence 'pshufb + pshufb + or'. {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} }; if (ST->hasSSE41()) if (const auto *Entry = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; static const CostTblEntry SSSE3AltShuffleTbl[] = { {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd // SSE3 doesn't have 'blendps'. The following shuffles are expanded into // the sequence 'shufps + pshufd' {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or }; if (ST->hasSSSE3()) if (const auto *Entry = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; static const CostTblEntry SSEAltShuffleTbl[] = { {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd // This is expanded into a long sequence of four extract + four insert. {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw. // 8 x (pinsrw + pextrw + and + movb + movzb + or) {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48} }; // Fall-back (SSE3 and SSE2). if (const auto *Entry = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // FIXME: Need a better design of the cost table to handle non-simple types of // potential massive combinations (elem_num x src_type x dst_type). static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = { { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 }, { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 }, { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 }, { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 }, { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 }, }; // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and // 256-bit wide vectors. static const TypeConversionCostTblEntry AVX512FConversionTbl[] = { { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 }, { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 }, { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 }, { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 }, { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 }, { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, // v16i1 -> v16i32 - load + broadcast { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 }, { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 }, { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 }, { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 }, { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 }, { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 }, { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 }, { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 }, }; static const TypeConversionCostTblEntry AVX2ConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 }, { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 }, { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 }, { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 }, }; static const TypeConversionCostTblEntry AVXConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 }, { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 }, { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 }, // The generic code to compute the scalar overhead is currently broken. // Workaround this limitation by estimating the scalarization overhead // here. We have roughly 10 instructions per scalar element. // Multiply that by the vector width. // FIXME: remove that when PR19268 is fixed. { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 }, // This node is expanded into scalarized operations but BasicTTI is overly // optimistic estimating its cost. It computes 3 per element (one // vector-extract, one scalar conversion and one vector-insert). The // problem is that the inserts form a read-modify-write chain so latency // should be factored in too. Inflating the cost per element by 1. { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 }, { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 }, { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 }, }; static const TypeConversionCostTblEntry SSE41ConversionTbl[] = { { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 }, { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 }, }; static const TypeConversionCostTblEntry SSE2ConversionTbl[] = { // These are somewhat magic numbers justified by looking at the output of // Intel's IACA, running some kernels and making sure when we take // legalization into account the throughput will be overestimated. { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 }, { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 }, }; std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst); if (ST->hasSSE2() && !ST->hasAVX()) { if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, LTDest.second, LTSrc.second)) return LTSrc.first * Entry->Cost; } EVT SrcTy = TLI->getValueType(DL, Src); EVT DstTy = TLI->getValueType(DL, Dst); // The function getSimpleVT only handles simple value types. if (!SrcTy.isSimple() || !DstTy.isSimple()) return BaseT::getCastInstrCost(Opcode, Dst, Src); if (ST->hasDQI()) if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; if (ST->hasAVX512()) if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; if (ST->hasAVX2()) { if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } if (ST->hasAVX()) { if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } if (ST->hasSSE41()) { if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } if (ST->hasSSE2()) { if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } return BaseT::getCastInstrCost(Opcode, Dst, Src); } int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); MVT MTy = LT.second; int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); static const CostTblEntry SSE2CostTbl[] = { { ISD::SETCC, MVT::v2i64, 8 }, { ISD::SETCC, MVT::v4i32, 1 }, { ISD::SETCC, MVT::v8i16, 1 }, { ISD::SETCC, MVT::v16i8, 1 }, }; static const CostTblEntry SSE42CostTbl[] = { { ISD::SETCC, MVT::v2f64, 1 }, { ISD::SETCC, MVT::v4f32, 1 }, { ISD::SETCC, MVT::v2i64, 1 }, }; static const CostTblEntry AVX1CostTbl[] = { { ISD::SETCC, MVT::v4f64, 1 }, { ISD::SETCC, MVT::v8f32, 1 }, // AVX1 does not support 8-wide integer compare. { ISD::SETCC, MVT::v4i64, 4 }, { ISD::SETCC, MVT::v8i32, 4 }, { ISD::SETCC, MVT::v16i16, 4 }, { ISD::SETCC, MVT::v32i8, 4 }, }; static const CostTblEntry AVX2CostTbl[] = { { ISD::SETCC, MVT::v4i64, 1 }, { ISD::SETCC, MVT::v8i32, 1 }, { ISD::SETCC, MVT::v16i16, 1 }, { ISD::SETCC, MVT::v32i8, 1 }, }; static const CostTblEntry AVX512CostTbl[] = { { ISD::SETCC, MVT::v8i64, 1 }, { ISD::SETCC, MVT::v16i32, 1 }, { ISD::SETCC, MVT::v8f64, 1 }, { ISD::SETCC, MVT::v16f32, 1 }, }; if (ST->hasAVX512()) if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasAVX2()) if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasAVX()) if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasSSE42()) if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasSSE2()) if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) return LT.first * Entry->Cost; return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); } int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF) { static const CostTblEntry XOPCostTbl[] = { { ISD::BITREVERSE, MVT::v4i64, 4 }, { ISD::BITREVERSE, MVT::v8i32, 4 }, { ISD::BITREVERSE, MVT::v16i16, 4 }, { ISD::BITREVERSE, MVT::v32i8, 4 }, { ISD::BITREVERSE, MVT::v2i64, 1 }, { ISD::BITREVERSE, MVT::v4i32, 1 }, { ISD::BITREVERSE, MVT::v8i16, 1 }, { ISD::BITREVERSE, MVT::v16i8, 1 }, { ISD::BITREVERSE, MVT::i64, 3 }, { ISD::BITREVERSE, MVT::i32, 3 }, { ISD::BITREVERSE, MVT::i16, 3 }, { ISD::BITREVERSE, MVT::i8, 3 } }; static const CostTblEntry AVX2CostTbl[] = { { ISD::BITREVERSE, MVT::v4i64, 5 }, { ISD::BITREVERSE, MVT::v8i32, 5 }, { ISD::BITREVERSE, MVT::v16i16, 5 }, { ISD::BITREVERSE, MVT::v32i8, 5 }, { ISD::BSWAP, MVT::v4i64, 1 }, { ISD::BSWAP, MVT::v8i32, 1 }, { ISD::BSWAP, MVT::v16i16, 1 } }; static const CostTblEntry AVX1CostTbl[] = { { ISD::BITREVERSE, MVT::v4i64, 10 }, { ISD::BITREVERSE, MVT::v8i32, 10 }, { ISD::BITREVERSE, MVT::v16i16, 10 }, { ISD::BITREVERSE, MVT::v32i8, 10 }, { ISD::BSWAP, MVT::v4i64, 4 }, { ISD::BSWAP, MVT::v8i32, 4 }, { ISD::BSWAP, MVT::v16i16, 4 } }; static const CostTblEntry SSSE3CostTbl[] = { { ISD::BITREVERSE, MVT::v2i64, 5 }, { ISD::BITREVERSE, MVT::v4i32, 5 }, { ISD::BITREVERSE, MVT::v8i16, 5 }, { ISD::BITREVERSE, MVT::v16i8, 5 }, { ISD::BSWAP, MVT::v2i64, 1 }, { ISD::BSWAP, MVT::v4i32, 1 }, { ISD::BSWAP, MVT::v8i16, 1 } }; static const CostTblEntry SSE2CostTbl[] = { { ISD::BSWAP, MVT::v2i64, 7 }, { ISD::BSWAP, MVT::v4i32, 7 }, { ISD::BSWAP, MVT::v8i16, 7 } }; unsigned ISD = ISD::DELETED_NODE; switch (IID) { default: break; case Intrinsic::bitreverse: ISD = ISD::BITREVERSE; break; case Intrinsic::bswap: ISD = ISD::BSWAP; break; } // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); MVT MTy = LT.second; // Attempt to lookup cost. if (ST->hasXOP()) if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasAVX2()) if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasAVX()) if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasSSSE3()) if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasSSE2()) if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) return LT.first * Entry->Cost; return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF); } int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, ArrayRef<Value *> Args, FastMathFlags FMF) { return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF); } int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { assert(Val->isVectorTy() && "This must be a vector type"); Type *ScalarType = Val->getScalarType(); if (Index != -1U) { // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); // This type is legalized to a scalar type. if (!LT.second.isVector()) return 0; // The type may be split. Normalize the index to the new type. unsigned Width = LT.second.getVectorNumElements(); Index = Index % Width; // Floating point scalars are already located in index #0. if (ScalarType->isFloatingPointTy() && Index == 0) return 0; } // Add to the base cost if we know that the extracted element of a vector is // destined to be moved to and used in the integer register file. int RegisterFileMoveCost = 0; if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy()) RegisterFileMoveCost = 1; return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost; } int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) { assert (Ty->isVectorTy() && "Can only scalarize vectors"); int Cost = 0; for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { if (Insert) Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i); if (Extract) Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i); } return Cost; } int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) { // Handle non-power-of-two vectors such as <3 x float> if (VectorType *VTy = dyn_cast<VectorType>(Src)) { unsigned NumElem = VTy->getVectorNumElements(); // Handle a few common cases: // <3 x float> if (NumElem == 3 && VTy->getScalarSizeInBits() == 32) // Cost = 64 bit store + extract + 32 bit store. return 3; // <3 x double> if (NumElem == 3 && VTy->getScalarSizeInBits() == 64) // Cost = 128 bit store + unpack + 64 bit store. return 3; // Assume that all other non-power-of-two numbers are scalarized. if (!isPowerOf2_32(NumElem)) { int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment, AddressSpace); int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load, Opcode == Instruction::Store); return NumElem * Cost + SplitCost; } } // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && "Invalid Opcode"); // Each load/store unit costs 1. int Cost = LT.first * 1; // This isn't exactly right. We're using slow unaligned 32-byte accesses as a // proxy for a double-pumped AVX memory interface such as on Sandybridge. if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow()) Cost *= 2; return Cost; } int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, unsigned Alignment, unsigned AddressSpace) { VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy); if (!SrcVTy) // To calculate scalar take the regular cost, without mask return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace); unsigned NumElem = SrcVTy->getVectorNumElements(); VectorType *MaskTy = VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem); if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) || (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) || !isPowerOf2_32(NumElem)) { // Scalarization int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true); int ScalarCompareCost = getCmpSelInstrCost( Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr); int BranchCost = getCFInstrCost(Instruction::Br); int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); int ValueSplitCost = getScalarizationOverhead( SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store); int MemopCost = NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(), Alignment, AddressSpace); return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost; } // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); auto VT = TLI->getValueType(DL, SrcVTy); int Cost = 0; if (VT.isSimple() && LT.second != VT.getSimpleVT() && LT.second.getVectorNumElements() == NumElem) // Promotion requires expand/truncate for data and a shuffle for mask. Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) + getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr); else if (LT.second.getVectorNumElements() > NumElem) { VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(), LT.second.getVectorNumElements()); // Expanding requires fill mask with zeroes Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy); } if (!ST->hasAVX512()) return Cost + LT.first*4; // Each maskmov costs 4 // AVX-512 masked load/store is cheapper return Cost+LT.first; } int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting // extra micro-ops can significantly decrease throughput. unsigned NumVectorInstToHideOverhead = 10; if (Ty->isVectorTy() && IsComplex) return NumVectorInstToHideOverhead; return BaseT::getAddressComputationCost(Ty, IsComplex); } int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, bool IsPairwise) { std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); MVT MTy = LT.second; int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput // and make it as the cost. static const CostTblEntry SSE42CostTblPairWise[] = { { ISD::FADD, MVT::v2f64, 2 }, { ISD::FADD, MVT::v4f32, 4 }, { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5". { ISD::ADD, MVT::v8i16, 5 }, }; static const CostTblEntry AVX1CostTblPairWise[] = { { ISD::FADD, MVT::v4f32, 4 }, { ISD::FADD, MVT::v4f64, 5 }, { ISD::FADD, MVT::v8f32, 7 }, { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5". { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8". { ISD::ADD, MVT::v8i16, 5 }, { ISD::ADD, MVT::v8i32, 5 }, }; static const CostTblEntry SSE42CostTblNoPairWise[] = { { ISD::FADD, MVT::v2f64, 2 }, { ISD::FADD, MVT::v4f32, 4 }, { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3". { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". }; static const CostTblEntry AVX1CostTblNoPairWise[] = { { ISD::FADD, MVT::v4f32, 3 }, { ISD::FADD, MVT::v4f64, 3 }, { ISD::FADD, MVT::v8f32, 4 }, { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8". { ISD::ADD, MVT::v4i64, 3 }, { ISD::ADD, MVT::v8i16, 4 }, { ISD::ADD, MVT::v8i32, 5 }, }; if (IsPairwise) { if (ST->hasAVX()) if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasSSE42()) if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy)) return LT.first * Entry->Cost; } else { if (ST->hasAVX()) if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) return LT.first * Entry->Cost; if (ST->hasSSE42()) if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy)) return LT.first * Entry->Cost; } return BaseT::getReductionCost(Opcode, ValTy, IsPairwise); } /// \brief Calculate the cost of materializing a 64-bit value. This helper /// method might only calculate a fraction of a larger immediate. Therefore it /// is valid to return a cost of ZERO. int X86TTIImpl::getIntImmCost(int64_t Val) { if (Val == 0) return TTI::TCC_Free; if (isInt<32>(Val)) return TTI::TCC_Basic; return 2 * TTI::TCC_Basic; } int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; // Never hoist constants larger than 128bit, because this might lead to // incorrect code generation or assertions in codegen. // Fixme: Create a cost model for types larger than i128 once the codegen // issues have been fixed. if (BitSize > 128) return TTI::TCC_Free; if (Imm == 0) return TTI::TCC_Free; // Sign-extend all constants to a multiple of 64-bit. APInt ImmVal = Imm; if (BitSize & 0x3f) ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); // Split the constant into 64-bit chunks and calculate the cost for each // chunk. int Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); int64_t Val = Tmp.getSExtValue(); Cost += getIntImmCost(Val); } // We need at least one instruction to materialize the constant. return std::max(1, Cost); } int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TTI::TCC_Free; unsigned ImmIdx = ~0U; switch (Opcode) { default: return TTI::TCC_Free; case Instruction::GetElementPtr: // Always hoist the base address of a GetElementPtr. This prevents the // creation of new constants for every base constant that gets constant // folded with the offset. if (Idx == 0) return 2 * TTI::TCC_Basic; return TTI::TCC_Free; case Instruction::Store: ImmIdx = 0; break; case Instruction::ICmp: // This is an imperfect hack to prevent constant hoisting of // compares that might be trying to check if a 64-bit value fits in // 32-bits. The backend can optimize these cases using a right shift by 32. // Ideally we would check the compare predicate here. There also other // similar immediates the backend can use shifts for. if (Idx == 1 && Imm.getBitWidth() == 64) { uint64_t ImmVal = Imm.getZExtValue(); if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff) return TTI::TCC_Free; } ImmIdx = 1; break; case Instruction::And: // We support 64-bit ANDs with immediates with 32-bits of leading zeroes // by using a 32-bit operation with implicit zero extension. Detect such // immediates here as the normal path expects bit 31 to be sign extended. if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue())) return TTI::TCC_Free; // Fallthrough case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::Or: case Instruction::Xor: ImmIdx = 1; break; // Always return TCC_Free for the shift value of a shift instruction. case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: if (Idx == 1) return TTI::TCC_Free; break; case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::BitCast: case Instruction::PHI: case Instruction::Call: case Instruction::Select: case Instruction::Ret: case Instruction::Load: break; } if (Idx == ImmIdx) { int NumConstants = (BitSize + 63) / 64; int Cost = X86TTIImpl::getIntImmCost(Imm, Ty); return (Cost <= NumConstants * TTI::TCC_Basic) ? static_cast<int>(TTI::TCC_Free) : Cost; } return X86TTIImpl::getIntImmCost(Imm, Ty); } int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TTI::TCC_Free; switch (IID) { default: return TTI::TCC_Free; case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue())) return TTI::TCC_Free; break; case Intrinsic::experimental_stackmap: if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TTI::TCC_Free; break; case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint_i64: if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TTI::TCC_Free; break; } return X86TTIImpl::getIntImmCost(Imm, Ty); } // Return an average cost of Gather / Scatter instruction, maybe improved later int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr, unsigned Alignment, unsigned AddressSpace) { assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost"); unsigned VF = SrcVTy->getVectorNumElements(); // Try to reduce index size from 64 bit (default for GEP) // to 32. It is essential for VF 16. If the index can't be reduced to 32, the // operation will use 16 x 64 indices which do not fit in a zmm and needs // to split. Also check that the base pointer is the same for all lanes, // and that there's at most one variable index. auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) { unsigned IndexSize = DL.getPointerSizeInBits(); GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); if (IndexSize < 64 || !GEP) return IndexSize; unsigned NumOfVarIndices = 0; Value *Ptrs = GEP->getPointerOperand(); if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs)) return IndexSize; for (unsigned i = 1; i < GEP->getNumOperands(); ++i) { if (isa<Constant>(GEP->getOperand(i))) continue; Type *IndxTy = GEP->getOperand(i)->getType(); if (IndxTy->isVectorTy()) IndxTy = IndxTy->getVectorElementType(); if ((IndxTy->getPrimitiveSizeInBits() == 64 && !isa<SExtInst>(GEP->getOperand(i))) || ++NumOfVarIndices > 1) return IndexSize; // 64 } return (unsigned)32; }; // Trying to reduce IndexSize to 32 bits for vector 16. // By default the IndexSize is equal to pointer size. unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) : DL.getPointerSizeInBits(); Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(), IndexSize), VF); std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy); std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy); int SplitFactor = std::max(IdxsLT.first, SrcLT.first); if (SplitFactor > 1) { // Handle splitting of vector of pointers Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor); return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment, AddressSpace); } // The gather / scatter cost is given by Intel architects. It is a rough // number since we are looking at one instruction in a time. const int GSOverhead = 2; return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), Alignment, AddressSpace); } /// Return the cost of full scalarization of gather / scatter operation. /// /// Opcode - Load or Store instruction. /// SrcVTy - The type of the data vector that should be gathered or scattered. /// VariableMask - The mask is non-constant at compile time. /// Alignment - Alignment for one element. /// AddressSpace - pointer[s] address space. /// int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy, bool VariableMask, unsigned Alignment, unsigned AddressSpace) { unsigned VF = SrcVTy->getVectorNumElements(); int MaskUnpackCost = 0; if (VariableMask) { VectorType *MaskTy = VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF); MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true); int ScalarCompareCost = getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr); int BranchCost = getCFInstrCost(Instruction::Br); MaskUnpackCost += VF * (BranchCost + ScalarCompareCost); } // The cost of the scalar loads/stores. int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), Alignment, AddressSpace); int InsertExtractCost = 0; if (Opcode == Instruction::Load) for (unsigned i = 0; i < VF; ++i) // Add the cost of inserting each scalar load into the vector InsertExtractCost += getVectorInstrCost(Instruction::InsertElement, SrcVTy, i); else for (unsigned i = 0; i < VF; ++i) // Add the cost of extracting each element out of the data vector InsertExtractCost += getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i); return MemoryOpCost + MaskUnpackCost + InsertExtractCost; } /// Calculate the cost of Gather / Scatter operation int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy, Value *Ptr, bool VariableMask, unsigned Alignment) { assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter"); unsigned VF = SrcVTy->getVectorNumElements(); PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); if (!PtrTy && Ptr->getType()->isVectorTy()) PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType()); assert(PtrTy && "Unexpected type for Ptr argument"); unsigned AddressSpace = PtrTy->getAddressSpace(); bool Scalarize = false; if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) || (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy))) Scalarize = true; // Gather / Scatter for vector 2 is not profitable on KNL / SKX // Vector-4 of gather/scatter instruction does not exist on KNL. // We can extend it to 8 elements, but zeroing upper bits of // the mask vector will add more instructions. Right now we give the scalar // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction is // better in the VariableMask case. if (VF == 2 || (VF == 4 && !ST->hasVLX())) Scalarize = true; if (Scalarize) return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, AddressSpace); return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace); } bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) { Type *ScalarTy = DataTy->getScalarType(); int DataWidth = isa<PointerType>(ScalarTy) ? DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits(); return (DataWidth >= 32 && ST->hasAVX()) || (DataWidth >= 8 && ST->hasBWI()); } bool X86TTIImpl::isLegalMaskedStore(Type *DataType) { return isLegalMaskedLoad(DataType); } bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) { // This function is called now in two cases: from the Loop Vectorizer // and from the Scalarizer. // When the Loop Vectorizer asks about legality of the feature, // the vectorization factor is not calculated yet. The Loop Vectorizer // sends a scalar type and the decision is based on the width of the // scalar element. // Later on, the cost model will estimate usage this intrinsic based on // the vector type. // The Scalarizer asks again about legality. It sends a vector type. // In this case we can reject non-power-of-2 vectors. if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements())) return false; Type *ScalarTy = DataTy->getScalarType(); int DataWidth = isa<PointerType>(ScalarTy) ? DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits(); // AVX-512 allows gather and scatter return DataWidth >= 32 && ST->hasAVX512(); } bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) { return isLegalMaskedGather(DataType); } bool X86TTIImpl::areInlineCompatible(const Function *Caller, const Function *Callee) const { const TargetMachine &TM = getTLI()->getTargetMachine(); // Work this as a subsetting of subtarget features. const FeatureBitset &CallerBits = TM.getSubtargetImpl(*Caller)->getFeatureBits(); const FeatureBitset &CalleeBits = TM.getSubtargetImpl(*Callee)->getFeatureBits(); // FIXME: This is likely too limiting as it will include subtarget features // that we might not care about for inlining, but it is conservatively // correct. return (CallerBits & CalleeBits) == CalleeBits; }