//===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the pass that performs some optimizations with LEA // instructions in order to improve performance and code size. // Currently, it does two things: // 1) If there are two LEA instructions calculating addresses which only differ // by displacement inside a basic block, one of them is removed. // 2) Address calculations in load and store instructions are replaced by // existing LEA def registers where possible. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "x86-optimize-LEAs" static cl::opt<bool> DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, cl::desc("X86: Disable LEA optimizations."), cl::init(false)); STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); class MemOpKey; /// \brief Returns a hash table key based on memory operands of \p MI. The /// number of the first memory operand of \p MI is specified through \p N. static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N); /// \brief Returns true if two machine operands are identical and they are not /// physical registers. static inline bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2); /// \brief Returns true if two address displacement operands are of the same /// type and use the same symbol/index/address regardless of the offset. static bool isSimilarDispOp(const MachineOperand &MO1, const MachineOperand &MO2); /// \brief Returns true if the instruction is LEA. static inline bool isLEA(const MachineInstr &MI); /// A key based on instruction's memory operands. class MemOpKey { public: MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, const MachineOperand *Index, const MachineOperand *Segment, const MachineOperand *Disp) : Disp(Disp) { Operands[0] = Base; Operands[1] = Scale; Operands[2] = Index; Operands[3] = Segment; } bool operator==(const MemOpKey &Other) const { // Addresses' bases, scales, indices and segments must be identical. for (int i = 0; i < 4; ++i) if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) return false; // Addresses' displacements don't have to be exactly the same. It only // matters that they use the same symbol/index/address. Immediates' or // offsets' differences will be taken care of during instruction // substitution. return isSimilarDispOp(*Disp, *Other.Disp); } // Address' base, scale, index and segment operands. const MachineOperand *Operands[4]; // Address' displacement operand. const MachineOperand *Disp; }; /// Provide DenseMapInfo for MemOpKey. namespace llvm { template <> struct DenseMapInfo<MemOpKey> { typedef DenseMapInfo<const MachineOperand *> PtrInfo; static inline MemOpKey getEmptyKey() { return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey()); } static inline MemOpKey getTombstoneKey() { return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey()); } static unsigned getHashValue(const MemOpKey &Val) { // Checking any field of MemOpKey is enough to determine if the key is // empty or tombstone. assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); assert(Val.Disp != PtrInfo::getTombstoneKey() && "Cannot hash the tombstone key"); hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], *Val.Operands[2], *Val.Operands[3]); // If the address displacement is an immediate, it should not affect the // hash so that memory operands which differ only be immediate displacement // would have the same hash. If the address displacement is something else, // we should reflect symbol/index/address in the hash. switch (Val.Disp->getType()) { case MachineOperand::MO_Immediate: break; case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_JumpTableIndex: Hash = hash_combine(Hash, Val.Disp->getIndex()); break; case MachineOperand::MO_ExternalSymbol: Hash = hash_combine(Hash, Val.Disp->getSymbolName()); break; case MachineOperand::MO_GlobalAddress: Hash = hash_combine(Hash, Val.Disp->getGlobal()); break; case MachineOperand::MO_BlockAddress: Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); break; case MachineOperand::MO_MCSymbol: Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); break; case MachineOperand::MO_MachineBasicBlock: Hash = hash_combine(Hash, Val.Disp->getMBB()); break; default: llvm_unreachable("Invalid address displacement operand"); } return (unsigned)Hash; } static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { // Checking any field of MemOpKey is enough to determine if the key is // empty or tombstone. if (RHS.Disp == PtrInfo::getEmptyKey()) return LHS.Disp == PtrInfo::getEmptyKey(); if (RHS.Disp == PtrInfo::getTombstoneKey()) return LHS.Disp == PtrInfo::getTombstoneKey(); return LHS == RHS; } }; } static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { assert((isLEA(MI) || MI.mayLoadOrStore()) && "The instruction must be a LEA, a load or a store"); return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), &MI.getOperand(N + X86::AddrScaleAmt), &MI.getOperand(N + X86::AddrIndexReg), &MI.getOperand(N + X86::AddrSegmentReg), &MI.getOperand(N + X86::AddrDisp)); } static inline bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2) { return MO1.isIdenticalTo(MO2) && (!MO1.isReg() || !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); } #ifndef NDEBUG static bool isValidDispOp(const MachineOperand &MO) { return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); } #endif static bool isSimilarDispOp(const MachineOperand &MO1, const MachineOperand &MO2) { assert(isValidDispOp(MO1) && isValidDispOp(MO2) && "Address displacement operand is not valid"); return (MO1.isImm() && MO2.isImm()) || (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || (MO1.isSymbol() && MO2.isSymbol() && MO1.getSymbolName() == MO2.getSymbolName()) || (MO1.isGlobal() && MO2.isGlobal() && MO1.getGlobal() == MO2.getGlobal()) || (MO1.isBlockAddress() && MO2.isBlockAddress() && MO1.getBlockAddress() == MO2.getBlockAddress()) || (MO1.isMCSymbol() && MO2.isMCSymbol() && MO1.getMCSymbol() == MO2.getMCSymbol()) || (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); } static inline bool isLEA(const MachineInstr &MI) { unsigned Opcode = MI.getOpcode(); return Opcode == X86::LEA16r || Opcode == X86::LEA32r || Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; } namespace { class OptimizeLEAPass : public MachineFunctionPass { public: OptimizeLEAPass() : MachineFunctionPass(ID) {} const char *getPassName() const override { return "X86 LEA Optimize"; } /// \brief Loop over all of the basic blocks, replacing address /// calculations in load and store instructions, if it's already /// been calculated by LEA. Also, remove redundant LEAs. bool runOnMachineFunction(MachineFunction &MF) override; private: typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap; /// \brief Returns a distance between two instructions inside one basic block. /// Negative result means, that instructions occur in reverse order. int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); /// \brief Choose the best \p LEA instruction from the \p List to replace /// address calculation in \p MI instruction. Return the address displacement /// and the distance between \p MI and the choosen \p BestLEA in /// \p AddrDispShift and \p Dist. bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI, MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist); /// \brief Returns the difference between addresses' displacements of \p MI1 /// and \p MI2. The numbers of the first memory operands for the instructions /// are specified through \p N1 and \p N2. int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, const MachineInstr &MI2, unsigned N2) const; /// \brief Returns true if the \p Last LEA instruction can be replaced by the /// \p First. The difference between displacements of the addresses calculated /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper /// replacement of the \p Last LEA's uses with the \p First's def register. bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, int64_t &AddrDispShift) const; /// \brief Find all LEA instructions in the basic block. Also, assign position /// numbers to all instructions in the basic block to speed up calculation of /// distance between them. void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); /// \brief Removes redundant address calculations. bool removeRedundantAddrCalc(MemOpMap &LEAs); /// \brief Removes LEAs which calculate similar addresses. bool removeRedundantLEAs(MemOpMap &LEAs); DenseMap<const MachineInstr *, unsigned> InstrPos; MachineRegisterInfo *MRI; const X86InstrInfo *TII; const X86RegisterInfo *TRI; static char ID; }; char OptimizeLEAPass::ID = 0; } FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, const MachineInstr &Last) { // Both instructions must be in the same basic block and they must be // presented in InstrPos. assert(Last.getParent() == First.getParent() && "Instructions are in different basic blocks"); assert(InstrPos.find(&First) != InstrPos.end() && InstrPos.find(&Last) != InstrPos.end() && "Instructions' positions are undefined"); return InstrPos[&Last] - InstrPos[&First]; } // Find the best LEA instruction in the List to replace address recalculation in // MI. Such LEA must meet these requirements: // 1) The address calculated by the LEA differs only by the displacement from // the address used in MI. // 2) The register class of the definition of the LEA is compatible with the // register class of the address base register of MI. // 3) Displacement of the new memory operand should fit in 1 byte if possible. // 4) The LEA should be as close to MI as possible, and prior to it if // possible. bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI, MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) { const MachineFunction *MF = MI.getParent()->getParent(); const MCInstrDesc &Desc = MI.getDesc(); int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + X86II::getOperandBias(Desc); BestLEA = nullptr; // Loop over all LEA instructions. for (auto DefMI : List) { // Get new address displacement. int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); // Make sure address displacement fits 4 bytes. if (!isInt<32>(AddrDispShiftTemp)) continue; // Check that LEA def register can be used as MI address base. Some // instructions can use a limited set of registers as address base, for // example MOV8mr_NOREX. We could constrain the register class of the LEA // def to suit MI, however since this case is very rare and hard to // reproduce in a test it's just more reliable to skip the LEA. if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != MRI->getRegClass(DefMI->getOperand(0).getReg())) continue; // Choose the closest LEA instruction from the list, prior to MI if // possible. Note that we took into account resulting address displacement // as well. Also note that the list is sorted by the order in which the LEAs // occur, so the break condition is pretty simple. int DistTemp = calcInstrDist(*DefMI, MI); assert(DistTemp != 0 && "The distance between two different instructions cannot be zero"); if (DistTemp > 0 || BestLEA == nullptr) { // Do not update return LEA, if the current one provides a displacement // which fits in 1 byte, while the new candidate does not. if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && isInt<8>(AddrDispShift)) continue; BestLEA = DefMI; AddrDispShift = AddrDispShiftTemp; Dist = DistTemp; } // FIXME: Maybe we should not always stop at the first LEA after MI. if (DistTemp < 0) break; } return BestLEA != nullptr; } // Get the difference between the addresses' displacements of the two // instructions \p MI1 and \p MI2. The numbers of the first memory operands are // passed through \p N1 and \p N2. int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1, const MachineInstr &MI2, unsigned N2) const { const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); assert(isSimilarDispOp(Op1, Op2) && "Address displacement operands are not compatible"); // After the assert above we can be sure that both operands are of the same // valid type and use the same symbol/index/address, thus displacement shift // calculation is rather simple. if (Op1.isJTI()) return 0; return Op1.isImm() ? Op1.getImm() - Op2.getImm() : Op1.getOffset() - Op2.getOffset(); } // Check that the Last LEA can be replaced by the First LEA. To be so, // these requirements must be met: // 1) Addresses calculated by LEAs differ only by displacement. // 2) Def registers of LEAs belong to the same class. // 3) All uses of the Last LEA def register are replaceable, thus the // register is used only as address base. bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, const MachineInstr &Last, int64_t &AddrDispShift) const { assert(isLEA(First) && isLEA(Last) && "The function works only with LEA instructions"); // Get new address displacement. AddrDispShift = getAddrDispShift(Last, 1, First, 1); // Make sure that LEA def registers belong to the same class. There may be // instructions (like MOV8mr_NOREX) which allow a limited set of registers to // be used as their operands, so we must be sure that replacing one LEA // with another won't lead to putting a wrong register in the instruction. if (MRI->getRegClass(First.getOperand(0).getReg()) != MRI->getRegClass(Last.getOperand(0).getReg())) return false; // Loop over all uses of the Last LEA to check that its def register is // used only as address base for memory accesses. If so, it can be // replaced, otherwise - no. for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) { MachineInstr &MI = *MO.getParent(); // Get the number of the first memory operand. const MCInstrDesc &Desc = MI.getDesc(); int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); // If the use instruction has no memory operand - the LEA is not // replaceable. if (MemOpNo < 0) return false; MemOpNo += X86II::getOperandBias(Desc); // If the address base of the use instruction is not the LEA def register - // the LEA is not replaceable. if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) return false; // If the LEA def register is used as any other operand of the use // instruction - the LEA is not replaceable. for (unsigned i = 0; i < MI.getNumOperands(); i++) if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && isIdenticalOp(MI.getOperand(i), MO)) return false; // Check that the new address displacement will fit 4 bytes. if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + AddrDispShift)) return false; } return true; } void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) { unsigned Pos = 0; for (auto &MI : MBB) { // Assign the position number to the instruction. Note that we are going to // move some instructions during the optimization however there will never // be a need to move two instructions before any selected instruction. So to // avoid multiple positions' updates during moves we just increase position // counter by two leaving a free space for instructions which will be moved. InstrPos[&MI] = Pos += 2; if (isLEA(MI)) LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); } } // Try to find load and store instructions which recalculate addresses already // calculated by some LEA and replace their memory operands with its def // register. bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { bool Changed = false; assert(!LEAs.empty()); MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); // Process all instructions in basic block. for (auto I = MBB->begin(), E = MBB->end(); I != E;) { MachineInstr &MI = *I++; // Instruction must be load or store. if (!MI.mayLoadOrStore()) continue; // Get the number of the first memory operand. const MCInstrDesc &Desc = MI.getDesc(); int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); // If instruction has no memory operand - skip it. if (MemOpNo < 0) continue; MemOpNo += X86II::getOperandBias(Desc); // Get the best LEA instruction to replace address calculation. MachineInstr *DefMI; int64_t AddrDispShift; int Dist; if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift, Dist)) continue; // If LEA occurs before current instruction, we can freely replace // the instruction. If LEA occurs after, we can lift LEA above the // instruction and this way to be able to replace it. Since LEA and the // instruction have similar memory operands (thus, the same def // instructions for these operands), we can always do that, without // worries of using registers before their defs. if (Dist < 0) { DefMI->removeFromParent(); MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); InstrPos[DefMI] = InstrPos[&MI] - 1; // Make sure the instructions' position numbers are sane. assert(((InstrPos[DefMI] == 1 && MachineBasicBlock::iterator(DefMI) == MBB->begin()) || InstrPos[DefMI] > InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && "Instruction positioning is broken"); } // Since we can possibly extend register lifetime, clear kill flags. MRI->clearKillFlags(DefMI->getOperand(0).getReg()); ++NumSubstLEAs; DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); // Change instruction operands. MI.getOperand(MemOpNo + X86::AddrBaseReg) .ChangeToRegister(DefMI->getOperand(0).getReg(), false); MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); MI.getOperand(MemOpNo + X86::AddrIndexReg) .ChangeToRegister(X86::NoRegister, false); MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); MI.getOperand(MemOpNo + X86::AddrSegmentReg) .ChangeToRegister(X86::NoRegister, false); DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); Changed = true; } return Changed; } // Try to find similar LEAs in the list and replace one with another. bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { bool Changed = false; // Loop over all entries in the table. for (auto &E : LEAs) { auto &List = E.second; // Loop over all LEA pairs. auto I1 = List.begin(); while (I1 != List.end()) { MachineInstr &First = **I1; auto I2 = std::next(I1); while (I2 != List.end()) { MachineInstr &Last = **I2; int64_t AddrDispShift; // LEAs should be in occurence order in the list, so we can freely // replace later LEAs with earlier ones. assert(calcInstrDist(First, Last) > 0 && "LEAs must be in occurence order in the list"); // Check that the Last LEA instruction can be replaced by the First. if (!isReplaceable(First, Last, AddrDispShift)) { ++I2; continue; } // Loop over all uses of the Last LEA and update their operands. Note // that the correctness of this has already been checked in the // isReplaceable function. for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()), UE = MRI->use_end(); UI != UE;) { MachineOperand &MO = *UI++; MachineInstr &MI = *MO.getParent(); // Get the number of the first memory operand. const MCInstrDesc &Desc = MI.getDesc(); int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + X86II::getOperandBias(Desc); // Update address base. MO.setReg(First.getOperand(0).getReg()); // Update address disp. MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); if (Op.isImm()) Op.setImm(Op.getImm() + AddrDispShift); else if (!Op.isJTI()) Op.setOffset(Op.getOffset() + AddrDispShift); } // Since we can possibly extend register lifetime, clear kill flags. MRI->clearKillFlags(First.getOperand(0).getReg()); ++NumRedundantLEAs; DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump();); // By this moment, all of the Last LEA's uses must be replaced. So we // can freely remove it. assert(MRI->use_empty(Last.getOperand(0).getReg()) && "The LEA's def register must have no uses"); Last.eraseFromParent(); // Erase removed LEA from the list. I2 = List.erase(I2); Changed = true; } ++I1; } } return Changed; } bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; if (DisableX86LEAOpt || skipFunction(*MF.getFunction())) return false; MRI = &MF.getRegInfo(); TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); // Process all basic blocks. for (auto &MBB : MF) { MemOpMap LEAs; InstrPos.clear(); // Find all LEA instructions in basic block. findLEAs(MBB, LEAs); // If current basic block has no LEAs, move on to the next one. if (LEAs.empty()) continue; // Remove redundant LEA instructions. Changed |= removeRedundantLEAs(LEAs); // Remove redundant address calculations. Do it only for -Os/-Oz since only // a code size gain is expected from this part of the pass. if (MF.getFunction()->optForSize()) Changed |= removeRedundantAddrCalc(LEAs); } return Changed; }