//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 x87 FPU instruction set, defining the // instructions, and properties of the instructions which are needed for code // generation, machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // FPStack specific DAG Nodes. //===----------------------------------------------------------------------===// def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, SDTCisVT<1, f80>]>; def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>; def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, [SDNPHasChain, SDNPInGlue, SDNPMayStore, SDNPMemOperand]>; def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, [SDNPHasChain, SDNPOutGlue, SDNPMayLoad, SDNPMemOperand]>; def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>; def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore, [SDNPHasChain, SDNPMayStore, SDNPSideEffect, SDNPMemOperand]>; //===----------------------------------------------------------------------===// // FPStack pattern fragments //===----------------------------------------------------------------------===// def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; def fpimm1 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+1.0); }]>; def fpimmneg1 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-1.0); }]>; // Some 'special' instructions let usesCustomInserter = 1 in { // Expanded after instruction selection. def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src), [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src), [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src), [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src), [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src), [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src), [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src), [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src), [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src), [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; } // All FP Stack operations are represented with four instructions here. The // first three instructions, generated by the instruction selector, use "RFP32" // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, // 64-bit or 80-bit floating point values. These sizes apply to the values, // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be // copied to each other without losing information. These instructions are all // pseudo instructions and use the "_Fp" suffix. // In some cases there are additional variants with a mixture of different // register sizes. // The second instruction is defined with FPI, which is the actual instruction // emitted by the assembler. These use "RST" registers, although frequently // the actual register(s) used are implicit. These are always 80 bits. // The FP stackifier pass converts one to the other after register allocation // occurs. // // Note that the FpI instruction should have instruction selection info (e.g. // a pattern) and the FPI instruction should have emission info (e.g. opcode // encoding and asm printing info). // FpIf32, FpIf64 - Floating Point Pseudo Instruction template. // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. // f80 instructions cannot use SSE and use neither of these. class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> : FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>; class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> : FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>; // Factoring for arithmetic. multiclass FPBinary_rr<SDNode OpNode> { // Register op register -> register // These are separated out because they have no reversed form. def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; } // The FopST0 series are not included here because of the irregularities // in where the 'r' goes in assembly output. // These instructions cannot address 80-bit memory. multiclass FPBinary<SDNode OpNode, Format fp, string asmstring, bit Forward = 1> { // ST(0) = ST(0) + [mem] def _Fp32m : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP32:$dst, (OpNode RFP32:$src1, (loadf32 addr:$src2))), (set RFP32:$dst, (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>; def _Fp64m : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (loadf64 addr:$src2))), (set RFP64:$dst, (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>; def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))), (set RFP64:$dst, (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>; def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))), (set RFP80:$dst, (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>; def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))), (set RFP80:$dst, (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>; let mayLoad = 1 in def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), !strconcat("f", asmstring, "{s}\t$src")>; let mayLoad = 1 in def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), !strconcat("f", asmstring, "{l}\t$src")>; // ST(0) = ST(0) + [memint] def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW, [!if(Forward, (set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i16))), (set RFP32:$dst, (OpNode (X86fild addr:$src2, i16), RFP32:$src1)))]>; def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i32))), (set RFP32:$dst, (OpNode (X86fild addr:$src2, i32), RFP32:$src1)))]>; def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i16))), (set RFP64:$dst, (OpNode (X86fild addr:$src2, i16), RFP64:$src1)))]>; def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i32))), (set RFP64:$dst, (OpNode (X86fild addr:$src2, i32), RFP64:$src1)))]>; def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (X86fild addr:$src2, i16))), (set RFP80:$dst, (OpNode (X86fild addr:$src2, i16), RFP80:$src1)))]>; def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (X86fild addr:$src2, i32))), (set RFP80:$dst, (OpNode (X86fild addr:$src2, i32), RFP80:$src1)))]>; let mayLoad = 1 in def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), !strconcat("fi", asmstring, "{s}\t$src")>; let mayLoad = 1 in def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), !strconcat("fi", asmstring, "{l}\t$src")>; } let Defs = [FPSW] in { // FPBinary_rr just defines pseudo-instructions, no need to set a scheduling // resources. defm ADD : FPBinary_rr<fadd>; defm SUB : FPBinary_rr<fsub>; defm MUL : FPBinary_rr<fmul>; defm DIV : FPBinary_rr<fdiv>; // Sets the scheduling resources for the actual NAME#_F<size>m defintions. let SchedRW = [WriteFAddLd] in { defm ADD : FPBinary<fadd, MRM0m, "add">; defm SUB : FPBinary<fsub, MRM4m, "sub">; defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>; } let SchedRW = [WriteFMulLd] in { defm MUL : FPBinary<fmul, MRM1m, "mul">; } let SchedRW = [WriteFDivLd] in { defm DIV : FPBinary<fdiv, MRM6m, "div">; defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>; } } class FPST0rInst<Format fp, string asm> : FPI<0xD8, fp, (outs), (ins RST:$op), asm>; class FPrST0Inst<Format fp, string asm> : FPI<0xDC, fp, (outs), (ins RST:$op), asm>; class FPrST0PInst<Format fp, string asm> : FPI<0xDE, fp, (outs), (ins RST:$op), asm>; // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, // we have to put some 'r's in and take them out of weird places. let SchedRW = [WriteFAdd] in { def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t$op">; def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">; def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t$op">; def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t$op">; def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">; def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t$op">; def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t$op">; def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">; def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">; } // SchedRW let SchedRW = [WriteFMul] in { def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t$op">; def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">; def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t$op">; } // SchedRW let SchedRW = [WriteFDiv] in { def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t$op">; def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">; def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">; def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t$op">; def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">; def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">; } // SchedRW def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">; def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">; // Unary operations. multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> { def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src))]>; def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src))]>; def _F : FPI<0xD9, fp, (outs), (ins), asmstring>; } let Defs = [FPSW] in { defm CHS : FPUnary<fneg, MRM_E0, "fchs">; defm ABS : FPUnary<fabs, MRM_E1, "fabs">; let SchedRW = [WriteFSqrt] in { defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">; } defm SIN : FPUnary<fsin, MRM_FE, "fsin">; defm COS : FPUnary<fcos, MRM_FF, "fcos">; let hasSideEffects = 0 in { def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; } def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">; } // Defs = [FPSW] // Versions of FP instructions that take a single memory operand. Added for the // disassembler; remove as they are included with patterns elsewhere. def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">; def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">; def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">; def FSTENVm : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">; def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">; def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">; def FRSTORm : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">; def FSAVEm : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">; def FNSTSWm : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">; def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">; def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">; def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">; def FBSTPm : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">; // Floating point cmovs. class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>; class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>; multiclass FPCMov<PatLeaf cc> { def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), CondMovFP, [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, cc, EFLAGS))]>; def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), CondMovFP, [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, cc, EFLAGS))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), CondMovFP, [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, cc, EFLAGS))]>, Requires<[HasCMov]>; } let Defs = [FPSW] in { let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { defm CMOVB : FPCMov<X86_COND_B>; defm CMOVBE : FPCMov<X86_COND_BE>; defm CMOVE : FPCMov<X86_COND_E>; defm CMOVP : FPCMov<X86_COND_P>; defm CMOVNB : FPCMov<X86_COND_AE>; defm CMOVNBE: FPCMov<X86_COND_A>; defm CMOVNE : FPCMov<X86_COND_NE>; defm CMOVNP : FPCMov<X86_COND_NP>; } // Uses = [EFLAGS], Constraints = "$src1 = $dst" let Predicates = [HasCMov] in { // These are not factored because there's no clean way to pass DA/DB. def CMOVB_F : FPI<0xDA, MRM0r, (outs), (ins RST:$op), "fcmovb\t{$op, %st(0)|st(0), $op}">; def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RST:$op), "fcmovbe\t{$op, %st(0)|st(0), $op}">; def CMOVE_F : FPI<0xDA, MRM1r, (outs), (ins RST:$op), "fcmove\t{$op, %st(0)|st(0), $op}">; def CMOVP_F : FPI<0xDA, MRM3r, (outs), (ins RST:$op), "fcmovu\t{$op, %st(0)|st(0), $op}">; def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RST:$op), "fcmovnb\t{$op, %st(0)|st(0), $op}">; def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RST:$op), "fcmovnbe\t{$op, %st(0)|st(0), $op}">; def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RST:$op), "fcmovne\t{$op, %st(0)|st(0), $op}">; def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RST:$op), "fcmovnu\t{$op, %st(0)|st(0), $op}">; } // Predicates = [HasCMov] // Floating point loads & stores. let canFoldAsLoad = 1 in { def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP32:$dst, (loadf32 addr:$src))]>; let isReMaterializable = 1 in def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP64:$dst, (loadf64 addr:$src))]>; def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, [(set RFP80:$dst, (loadf80 addr:$src))]>; } def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i16))]>; def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i32))]>; def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i64))]>; def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i16))]>; def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i32))]>; def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i64))]>; def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i16))]>; def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i32))]>; def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i64))]>; def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, [(store RFP32:$src, addr:$op)]>; def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, [(truncstoref32 RFP64:$src, addr:$op)]>; def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, [(store RFP64:$src, addr:$op)]>; def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, [(truncstoref32 RFP80:$src, addr:$op)]>; def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, [(truncstoref64 RFP80:$src, addr:$op)]>; // FST does not support 80-bit memory target; FSTP must be used. let mayStore = 1, hasSideEffects = 0 in { def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; } def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, [(store RFP80:$src, addr:$op)]>; let mayStore = 1, hasSideEffects = 0 in { def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; } let mayLoad = 1, SchedRW = [WriteLoad] in { def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src", IIC_FLD>; def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src", IIC_FLD>; def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src", IIC_FLD80>; def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src", IIC_FILD>; def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src", IIC_FILD>; def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src", IIC_FILD>; } let mayStore = 1, SchedRW = [WriteStore] in { def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst", IIC_FST>; def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst", IIC_FST>; def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst", IIC_FST>; def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst", IIC_FST>; def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst", IIC_FST80>; def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst", IIC_FIST>; def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst", IIC_FIST>; def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst", IIC_FIST>; def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst", IIC_FIST>; def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst", IIC_FIST>; } // FISTTP requires SSE3 even though it's a FPStack op. let Predicates = [HasSSE3] in { def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i16mem RFP32:$src, addr:$op)]>; def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i32mem RFP32:$src, addr:$op)]>; def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i64mem RFP32:$src, addr:$op)]>; def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i16mem RFP64:$src, addr:$op)]>; def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i32mem RFP64:$src, addr:$op)]>; def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i64mem RFP64:$src, addr:$op)]>; def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i16mem RFP80:$src, addr:$op)]>; def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i32mem RFP80:$src, addr:$op)]>; def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i64mem RFP80:$src, addr:$op)]>; } // Predicates = [HasSSE3] let mayStore = 1, SchedRW = [WriteStore] in { def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst", IIC_FST>; def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst", IIC_FST>; def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst", IIC_FST>; } // FP Stack manipulation instructions. let SchedRW = [WriteMove] in { def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>; def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>; def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>; def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>; } // Floating point constant loads. let isReMaterializable = 1 in { def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm0)]>; def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm1)]>; def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm0)]>; def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm1)]>; def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm0)]>; def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm1)]>; } let SchedRW = [WriteZero] in { def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>; def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>; } // Floating point compares. let SchedRW = [WriteFAdd] in { def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>; def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>; def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>; } // SchedRW } // Defs = [FPSW] let SchedRW = [WriteFAdd] in { // CC = ST(0) cmp ST(i) let Defs = [EFLAGS, FPSW] in { def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>; def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>; def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>; } let Defs = [FPSW], Uses = [ST0] in { def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i) (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>; def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>; def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop (outs), (ins), "fucompp", IIC_FUCOM>; } let Defs = [EFLAGS, FPSW], Uses = [ST0] in { def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i) (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>; def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>; } let Defs = [EFLAGS, FPSW] in { def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg), "fcomi\t$reg", IIC_FCOMI>; def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg), "fcompi\t$reg", IIC_FCOMI>; } } // SchedRW // Floating point flag ops. let SchedRW = [WriteALU] in { let Defs = [AX], Uses = [FPSW] in def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags (outs), (ins), "fnstsw\t{%ax|ax}", [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>; def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world (outs), (ins i16mem:$dst), "fnstcw\t$dst", [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>; } // SchedRW let mayLoad = 1 in def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>, Sched<[WriteLoad]>; // FPU control instructions let SchedRW = [WriteMicrocoded] in { let Defs = [FPSW] in def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>; def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg), "ffree\t$reg", IIC_FFREE>; // Clear exceptions let Defs = [FPSW] in def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>; } // SchedRW // Operandless floating-point instructions for the disassembler. let SchedRW = [WriteMicrocoded] in { def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>; def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>; def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>; def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>; def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>; def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>; def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>; def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>; def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>; def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>; def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>; def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>; def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>; def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>; def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>; def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>; def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>; def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>; def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>; def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>; def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>; def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>; let Predicates = [HasFXSR] in { def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaque512mem:$dst), "fxsave\t$dst", [(int_x86_fxsave addr:$dst)], IIC_FXSAVE>, TB; def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaque512mem:$dst), "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)], IIC_FXSAVE>, TB, Requires<[In64BitMode]>; def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src), "fxrstor\t$src", [(int_x86_fxrstor addr:$src)], IIC_FXRSTOR>, TB; def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src), "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)], IIC_FXRSTOR>, TB, Requires<[In64BitMode]>; } // Predicates = [FeatureFXSR] } // SchedRW //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Required for RET of f32 / f64 / f80 values. def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; // Required for CALL which return f32 / f64 / f80 values. def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>; def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>; def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>; // Floating point constant -0.0 and -1.0 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; // Used to conv. i64 to f64 since there isn't a SSE version. def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; // FP extensions map onto simple pseudo-value conversions if they are to/from // the FP stack. def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>, Requires<[FPStackf32]>; def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>, Requires<[FPStackf32]>; def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>, Requires<[FPStackf64]>; // FP truncations map onto simple pseudo-value conversions if they are to/from // the FP stack. We have validated that only value-preserving truncations make // it through isel. def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>, Requires<[FPStackf32]>; def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>, Requires<[FPStackf32]>; def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>, Requires<[FPStackf64]>;