//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides X86 specific target descriptions. // //===----------------------------------------------------------------------===// #include "X86MCTargetDesc.h" #include "InstPrinter/X86ATTInstPrinter.h" #include "InstPrinter/X86IntelInstPrinter.h" #include "X86MCAsmInfo.h" #include "llvm/ADT/Triple.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MachineLocation.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/TargetRegistry.h" #if _MSC_VER #include <intrin.h> #endif using namespace llvm; #define GET_REGINFO_MC_DESC #include "X86GenRegisterInfo.inc" #define GET_INSTRINFO_MC_DESC #include "X86GenInstrInfo.inc" #define GET_SUBTARGETINFO_MC_DESC #include "X86GenSubtargetInfo.inc" std::string X86_MC::ParseX86Triple(const Triple &TT) { std::string FS; if (TT.getArch() == Triple::x86_64) FS = "+64bit-mode,-32bit-mode,-16bit-mode"; else if (TT.getEnvironment() != Triple::CODE16) FS = "-64bit-mode,+32bit-mode,-16bit-mode"; else FS = "-64bit-mode,-32bit-mode,+16bit-mode"; return FS; } unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) { if (TT.getArch() == Triple::x86_64) return DWARFFlavour::X86_64; if (TT.isOSDarwin()) return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic; if (TT.isOSCygMing()) // Unsupported by now, just quick fallback return DWARFFlavour::X86_32_Generic; return DWARFFlavour::X86_32_Generic; } void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) { // FIXME: TableGen these. for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) { unsigned SEH = MRI->getEncodingValue(Reg); MRI->mapLLVMRegToSEHReg(Reg, SEH); } // These CodeView registers are numbered sequentially starting at value 1. static const MCPhysReg LowCVRegs[] = { X86::AL, X86::CL, X86::DL, X86::BL, X86::AH, X86::CH, X86::DH, X86::BH, X86::AX, X86::CX, X86::DX, X86::BX, X86::SP, X86::BP, X86::SI, X86::DI, X86::EAX, X86::ECX, X86::EDX, X86::EBX, X86::ESP, X86::EBP, X86::ESI, X86::EDI, }; unsigned CVLowRegStart = 1; for (unsigned I = 0; I < array_lengthof(LowCVRegs); ++I) MRI->mapLLVMRegToCVReg(LowCVRegs[I], I + CVLowRegStart); MRI->mapLLVMRegToCVReg(X86::EFLAGS, 34); // The x87 registers start at 128 and are numbered sequentially. unsigned FP0Start = 128; for (unsigned I = 0; I < 8; ++I) MRI->mapLLVMRegToCVReg(X86::FP0 + I, FP0Start + I); // The low 8 XMM registers start at 154 and are numbered sequentially. unsigned CVXMM0Start = 154; for (unsigned I = 0; I < 8; ++I) MRI->mapLLVMRegToCVReg(X86::XMM0 + I, CVXMM0Start + I); // The high 8 XMM registers start at 252 and are numbered sequentially. unsigned CVXMM8Start = 252; for (unsigned I = 0; I < 8; ++I) MRI->mapLLVMRegToCVReg(X86::XMM8 + I, CVXMM8Start + I); // FIXME: XMM16 and above from AVX512 not yet documented. // AMD64 registers start at 324 and count up. unsigned CVX64RegStart = 324; static const MCPhysReg CVX64Regs[] = { X86::SIL, X86::DIL, X86::BPL, X86::SPL, X86::RAX, X86::RBX, X86::RCX, X86::RDX, X86::RSI, X86::RDI, X86::RBP, X86::RSP, X86::R8, X86::R9, X86::R10, X86::R11, X86::R12, X86::R13, X86::R14, X86::R15, X86::R8B, X86::R9B, X86::R10B, X86::R11B, X86::R12B, X86::R13B, X86::R14B, X86::R15B, X86::R8W, X86::R9W, X86::R10W, X86::R11W, X86::R12W, X86::R13W, X86::R14W, X86::R15W, X86::R8D, X86::R9D, X86::R10D, X86::R11D, X86::R12D, X86::R13D, X86::R14D, X86::R15D, X86::YMM0, X86::YMM1, X86::YMM2, X86::YMM3, X86::YMM4, X86::YMM5, X86::YMM6, X86::YMM7, X86::YMM8, X86::YMM9, X86::YMM10, X86::YMM11, X86::YMM12, X86::YMM13, X86::YMM14, X86::YMM15, }; for (unsigned I = 0; I < array_lengthof(CVX64Regs); ++I) MRI->mapLLVMRegToCVReg(CVX64Regs[I], CVX64RegStart + I); } MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) { std::string ArchFS = X86_MC::ParseX86Triple(TT); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = (Twine(ArchFS) + "," + FS).str(); else ArchFS = FS; } std::string CPUName = CPU; if (CPUName.empty()) CPUName = "generic"; return createX86MCSubtargetInfoImpl(TT, CPUName, ArchFS); } static MCInstrInfo *createX86MCInstrInfo() { MCInstrInfo *X = new MCInstrInfo(); InitX86MCInstrInfo(X); return X; } static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) { unsigned RA = (TT.getArch() == Triple::x86_64) ? X86::RIP // Should have dwarf #16. : X86::EIP; // Should have dwarf #8. MCRegisterInfo *X = new MCRegisterInfo(); InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false), X86_MC::getDwarfRegFlavour(TT, true), RA); X86_MC::initLLVMToSEHAndCVRegMapping(X); return X; } static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI, const Triple &TheTriple) { bool is64Bit = TheTriple.getArch() == Triple::x86_64; MCAsmInfo *MAI; if (TheTriple.isOSBinFormatMachO()) { if (is64Bit) MAI = new X86_64MCAsmInfoDarwin(TheTriple); else MAI = new X86MCAsmInfoDarwin(TheTriple); } else if (TheTriple.isOSBinFormatELF()) { // Force the use of an ELF container. MAI = new X86ELFMCAsmInfo(TheTriple); } else if (TheTriple.isWindowsMSVCEnvironment() || TheTriple.isWindowsCoreCLREnvironment()) { MAI = new X86MCAsmInfoMicrosoft(TheTriple); } else if (TheTriple.isOSCygMing() || TheTriple.isWindowsItaniumEnvironment()) { MAI = new X86MCAsmInfoGNUCOFF(TheTriple); } else { // The default is ELF. MAI = new X86ELFMCAsmInfo(TheTriple); } // Initialize initial frame state. // Calculate amount of bytes used for return address storing int stackGrowth = is64Bit ? -8 : -4; // Initial state of the frame pointer is esp+stackGrowth. unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP; MCCFIInstruction Inst = MCCFIInstruction::createDefCfa( nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth); MAI->addInitialFrameState(Inst); // Add return address to move list unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP; MCCFIInstruction Inst2 = MCCFIInstruction::createOffset( nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth); MAI->addInitialFrameState(Inst2); return MAI; } static void adjustCodeGenOpts(const Triple &TT, Reloc::Model RM, CodeModel::Model &CM) { bool is64Bit = TT.getArch() == Triple::x86_64; // For static codegen, if we're not already set, use Small codegen. if (CM == CodeModel::Default) CM = CodeModel::Small; else if (CM == CodeModel::JITDefault) // 64-bit JIT places everything in the same buffer except external funcs. CM = is64Bit ? CodeModel::Large : CodeModel::Small; } static MCInstPrinter *createX86MCInstPrinter(const Triple &T, unsigned SyntaxVariant, const MCAsmInfo &MAI, const MCInstrInfo &MII, const MCRegisterInfo &MRI) { if (SyntaxVariant == 0) return new X86ATTInstPrinter(MAI, MII, MRI); if (SyntaxVariant == 1) return new X86IntelInstPrinter(MAI, MII, MRI); return nullptr; } static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple, MCContext &Ctx) { // Default to the stock relocation info. return llvm::createMCRelocationInfo(TheTriple, Ctx); } static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) { return new MCInstrAnalysis(Info); } // Force static initialization. extern "C" void LLVMInitializeX86TargetMC() { for (Target *T : {&TheX86_32Target, &TheX86_64Target}) { // Register the MC asm info. RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo); // Register the MC codegen info. RegisterMCAdjustCodeGenOptsFn Y(*T, adjustCodeGenOpts); // Register the MC instruction info. TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo); // Register the MC register info. TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo); // Register the MC subtarget info. TargetRegistry::RegisterMCSubtargetInfo(*T, X86_MC::createX86MCSubtargetInfo); // Register the MC instruction analyzer. TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis); // Register the code emitter. TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter); // Register the object streamer. TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer); // Register the MCInstPrinter. TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter); // Register the MC relocation info. TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo); } // Register the asm backend. TargetRegistry::RegisterMCAsmBackend(TheX86_32Target, createX86_32AsmBackend); TargetRegistry::RegisterMCAsmBackend(TheX86_64Target, createX86_64AsmBackend); } unsigned llvm::getX86SubSuperRegisterOrZero(unsigned Reg, unsigned Size, bool High) { switch (Size) { default: return 0; case 8: if (High) { switch (Reg) { default: return getX86SubSuperRegisterOrZero(Reg, 64); case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SP; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AH; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DH; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CH; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BH; } } else { switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AL; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DL; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CL; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BL; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SIL; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DIL; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BPL; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SPL; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8B; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9B; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10B; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11B; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12B; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13B; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14B; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15B; } } case 16: switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8W; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9W; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10W; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11W; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12W; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13W; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14W; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15W; } case 32: switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::EAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::EDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::ECX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::EBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::ESI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::EDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::EBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::ESP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8D; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9D; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10D; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11D; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12D; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13D; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14D; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15D; } case 64: switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::RAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::RDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::RCX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::RBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::RSI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::RDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::RBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::RSP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15; } } } unsigned llvm::getX86SubSuperRegister(unsigned Reg, unsigned Size, bool High) { unsigned Res = getX86SubSuperRegisterOrZero(Reg, Size, High); assert(Res != 0 && "Unexpected register or VT"); return Res; }