//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler. // It contains code to translate the data produced by the decoder into // MCInsts. // // // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and // 64-bit X86 instruction sets. The main decode sequence for an assembly // instruction in this disassembler is: // // 1. Read the prefix bytes and determine the attributes of the instruction. // These attributes, recorded in enum attributeBits // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM // provides a mapping from bitmasks to contexts, which are represented by // enum InstructionContext (ibid.). // // 2. Read the opcode, and determine what kind of opcode it is. The // disassembler distinguishes four kinds of opcodes, which are enumerated in // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. // // 3. Depending on the opcode type, look in one of four ClassDecision structures // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get // a ModRMDecision (ibid.). // // 4. Some instructions, such as escape opcodes or extended opcodes, or even // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the // ModR/M byte to complete decode. The ModRMDecision's type is an entry from // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the // ModR/M byte is required and how to interpret it. // // 5. After resolving the ModRMDecision, the disassembler has a unique ID // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and // meanings of its operands. // // 6. For each operand, its encoding is an entry from OperandEncoding // (X86DisassemblerDecoderCommon.h) and its type is an entry from // OperandType (ibid.). The encoding indicates how to read it from the // instruction; the type indicates how to interpret the value once it has // been read. For example, a register operand could be stored in the R/M // field of the ModR/M byte, the REG field of the ModR/M byte, or added to // the main opcode. This is orthogonal from its meaning (an GPR or an XMM // register, for instance). Given this information, the operands can be // extracted and interpreted. // // 7. As the last step, the disassembler translates the instruction information // and operands into a format understandable by the client - in this case, an // MCInst for use by the MC infrastructure. // // The disassembler is broken broadly into two parts: the table emitter that // emits the instruction decode tables discussed above during compilation, and // the disassembler itself. The table emitter is documented in more detail in // utils/TableGen/X86DisassemblerEmitter.h. // // X86Disassembler.cpp contains the code responsible for step 7, and for // invoking the decoder to execute steps 1-6. // X86DisassemblerDecoderCommon.h contains the definitions needed by both the // table emitter and the disassembler. // X86DisassemblerDecoder.h contains the public interface of the decoder, // factored out into C for possible use by other projects. // X86DisassemblerDecoder.c contains the source code of the decoder, which is // responsible for steps 1-6. // //===----------------------------------------------------------------------===// #include "X86DisassemblerDecoder.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::X86Disassembler; #define DEBUG_TYPE "x86-disassembler" void llvm::X86Disassembler::Debug(const char *file, unsigned line, const char *s) { dbgs() << file << ":" << line << ": " << s; } const char *llvm::X86Disassembler::GetInstrName(unsigned Opcode, const void *mii) { const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii); return MII->getName(Opcode); } #define debug(s) DEBUG(Debug(__FILE__, __LINE__, s)); namespace llvm { // Fill-ins to make the compiler happy. These constants are never actually // assigned; they are just filler to make an automatically-generated switch // statement work. namespace X86 { enum { BX_SI = 500, BX_DI = 501, BP_SI = 502, BP_DI = 503, sib = 504, sib64 = 505 }; } } static bool translateInstruction(MCInst &target, InternalInstruction &source, const MCDisassembler *Dis); namespace { /// Generic disassembler for all X86 platforms. All each platform class should /// have to do is subclass the constructor, and provide a different /// disassemblerMode value. class X86GenericDisassembler : public MCDisassembler { std::unique_ptr<const MCInstrInfo> MII; public: X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, std::unique_ptr<const MCInstrInfo> MII); public: DecodeStatus getInstruction(MCInst &instr, uint64_t &size, ArrayRef<uint8_t> Bytes, uint64_t Address, raw_ostream &vStream, raw_ostream &cStream) const override; private: DisassemblerMode fMode; }; } X86GenericDisassembler::X86GenericDisassembler( const MCSubtargetInfo &STI, MCContext &Ctx, std::unique_ptr<const MCInstrInfo> MII) : MCDisassembler(STI, Ctx), MII(std::move(MII)) { const FeatureBitset &FB = STI.getFeatureBits(); if (FB[X86::Mode16Bit]) { fMode = MODE_16BIT; return; } else if (FB[X86::Mode32Bit]) { fMode = MODE_32BIT; return; } else if (FB[X86::Mode64Bit]) { fMode = MODE_64BIT; return; } llvm_unreachable("Invalid CPU mode"); } namespace { struct Region { ArrayRef<uint8_t> Bytes; uint64_t Base; Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {} }; } // end anonymous namespace /// A callback function that wraps the readByte method from Region. /// /// @param Arg - The generic callback parameter. In this case, this should /// be a pointer to a Region. /// @param Byte - A pointer to the byte to be read. /// @param Address - The address to be read. static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) { auto *R = static_cast<const Region *>(Arg); ArrayRef<uint8_t> Bytes = R->Bytes; unsigned Index = Address - R->Base; if (Bytes.size() <= Index) return -1; *Byte = Bytes[Index]; return 0; } /// logger - a callback function that wraps the operator<< method from /// raw_ostream. /// /// @param arg - The generic callback parameter. This should be a pointe /// to a raw_ostream. /// @param log - A string to be logged. logger() adds a newline. static void logger(void* arg, const char* log) { if (!arg) return; raw_ostream &vStream = *(static_cast<raw_ostream*>(arg)); vStream << log << "\n"; } // // Public interface for the disassembler // MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, raw_ostream &VStream, raw_ostream &CStream) const { CommentStream = &CStream; InternalInstruction InternalInstr; dlog_t LoggerFn = logger; if (&VStream == &nulls()) LoggerFn = nullptr; // Disable logging completely if it's going to nulls(). Region R(Bytes, Address); int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R, LoggerFn, (void *)&VStream, (const void *)MII.get(), Address, fMode); if (Ret) { Size = InternalInstr.readerCursor - Address; return Fail; } else { Size = InternalInstr.length; return (!translateInstruction(Instr, InternalInstr, this)) ? Success : Fail; } } // // Private code that translates from struct InternalInstructions to MCInsts. // /// translateRegister - Translates an internal register to the appropriate LLVM /// register, and appends it as an operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param reg - The Reg to append. static void translateRegister(MCInst &mcInst, Reg reg) { #define ENTRY(x) X86::x, uint8_t llvmRegnums[] = { ALL_REGS 0 }; #undef ENTRY uint8_t llvmRegnum = llvmRegnums[reg]; mcInst.addOperand(MCOperand::createReg(llvmRegnum)); } /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the /// immediate Value in the MCInst. /// /// @param Value - The immediate Value, has had any PC adjustment made by /// the caller. /// @param isBranch - If the instruction is a branch instruction /// @param Address - The starting address of the instruction /// @param Offset - The byte offset to this immediate in the instruction /// @param Width - The byte width of this immediate in the instruction /// /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was /// called then that function is called to get any symbolic information for the /// immediate in the instruction using the Address, Offset and Width. If that /// returns non-zero then the symbolic information it returns is used to create /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() /// returns zero and isBranch is true then a symbol look up for immediate Value /// is done and if a symbol is found an MCExpr is created with that, else /// an MCExpr with the immediate Value is created. This function returns true /// if it adds an operand to the MCInst and false otherwise. static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, uint64_t Address, uint64_t Offset, uint64_t Width, MCInst &MI, const MCDisassembler *Dis) { return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, Offset, Width); } /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being /// referenced by a load instruction with the base register that is the rip. /// These can often be addresses in a literal pool. The Address of the /// instruction and its immediate Value are used to determine the address /// being referenced in the literal pool entry. The SymbolLookUp call back will /// return a pointer to a literal 'C' string if the referenced address is an /// address into a section with 'C' string literals. static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, const void *Decoder) { const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); Dis->tryAddingPcLoadReferenceComment(Value, Address); } static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 0, // SEG_OVERRIDE_NONE X86::CS, X86::SS, X86::DS, X86::ES, X86::FS, X86::GS }; /// translateSrcIndex - Appends a source index operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param insn - The internal instruction. static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { unsigned baseRegNo; if (insn.mode == MODE_64BIT) baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::RSI; else if (insn.mode == MODE_32BIT) baseRegNo = insn.prefixPresent[0x67] ? X86::SI : X86::ESI; else { assert(insn.mode == MODE_16BIT); baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::SI; } MCOperand baseReg = MCOperand::createReg(baseRegNo); mcInst.addOperand(baseReg); MCOperand segmentReg; segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); mcInst.addOperand(segmentReg); return false; } /// translateDstIndex - Appends a destination index operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param insn - The internal instruction. static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { unsigned baseRegNo; if (insn.mode == MODE_64BIT) baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::RDI; else if (insn.mode == MODE_32BIT) baseRegNo = insn.prefixPresent[0x67] ? X86::DI : X86::EDI; else { assert(insn.mode == MODE_16BIT); baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::DI; } MCOperand baseReg = MCOperand::createReg(baseRegNo); mcInst.addOperand(baseReg); return false; } /// translateImmediate - Appends an immediate operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param immediate - The immediate value to append. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The internal instruction. static void translateImmediate(MCInst &mcInst, uint64_t immediate, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis) { // Sign-extend the immediate if necessary. OperandType type = (OperandType)operand.type; bool isBranch = false; uint64_t pcrel = 0; if (type == TYPE_RELv) { isBranch = true; pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; switch (insn.displacementSize) { default: break; case 1: if(immediate & 0x80) immediate |= ~(0xffull); break; case 2: if(immediate & 0x8000) immediate |= ~(0xffffull); break; case 4: if(immediate & 0x80000000) immediate |= ~(0xffffffffull); break; case 8: break; } } // By default sign-extend all X86 immediates based on their encoding. else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 || type == TYPE_IMM64 || type == TYPE_IMMv) { switch (operand.encoding) { default: break; case ENCODING_IB: if(immediate & 0x80) immediate |= ~(0xffull); break; case ENCODING_IW: if(immediate & 0x8000) immediate |= ~(0xffffull); break; case ENCODING_ID: if(immediate & 0x80000000) immediate |= ~(0xffffffffull); break; case ENCODING_IO: break; } } else if (type == TYPE_IMM3) { // Check for immediates that printSSECC can't handle. if (immediate >= 8) { unsigned NewOpc; switch (mcInst.getOpcode()) { default: llvm_unreachable("unexpected opcode"); case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break; case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break; case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break; case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break; case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break; case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break; case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break; case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break; case X86::VPCOMBri: NewOpc = X86::VPCOMBri_alt; break; case X86::VPCOMBmi: NewOpc = X86::VPCOMBmi_alt; break; case X86::VPCOMWri: NewOpc = X86::VPCOMWri_alt; break; case X86::VPCOMWmi: NewOpc = X86::VPCOMWmi_alt; break; case X86::VPCOMDri: NewOpc = X86::VPCOMDri_alt; break; case X86::VPCOMDmi: NewOpc = X86::VPCOMDmi_alt; break; case X86::VPCOMQri: NewOpc = X86::VPCOMQri_alt; break; case X86::VPCOMQmi: NewOpc = X86::VPCOMQmi_alt; break; case X86::VPCOMUBri: NewOpc = X86::VPCOMUBri_alt; break; case X86::VPCOMUBmi: NewOpc = X86::VPCOMUBmi_alt; break; case X86::VPCOMUWri: NewOpc = X86::VPCOMUWri_alt; break; case X86::VPCOMUWmi: NewOpc = X86::VPCOMUWmi_alt; break; case X86::VPCOMUDri: NewOpc = X86::VPCOMUDri_alt; break; case X86::VPCOMUDmi: NewOpc = X86::VPCOMUDmi_alt; break; case X86::VPCOMUQri: NewOpc = X86::VPCOMUQri_alt; break; case X86::VPCOMUQmi: NewOpc = X86::VPCOMUQmi_alt; break; } // Switch opcode to the one that doesn't get special printing. mcInst.setOpcode(NewOpc); } } else if (type == TYPE_IMM5) { // Check for immediates that printAVXCC can't handle. if (immediate >= 32) { unsigned NewOpc; switch (mcInst.getOpcode()) { default: llvm_unreachable("unexpected opcode"); case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break; case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break; case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break; case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break; case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break; case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break; case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break; case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break; case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break; case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break; case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break; case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break; case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break; case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break; case X86::VCMPPDZrrib: NewOpc = X86::VCMPPDZrrib_alt; break; case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break; case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break; case X86::VCMPPSZrrib: NewOpc = X86::VCMPPSZrrib_alt; break; case X86::VCMPSDZrm: NewOpc = X86::VCMPSDZrmi_alt; break; case X86::VCMPSDZrr: NewOpc = X86::VCMPSDZrri_alt; break; case X86::VCMPSSZrm: NewOpc = X86::VCMPSSZrmi_alt; break; case X86::VCMPSSZrr: NewOpc = X86::VCMPSSZrri_alt; break; } // Switch opcode to the one that doesn't get special printing. mcInst.setOpcode(NewOpc); } } else if (type == TYPE_AVX512ICC) { if (immediate >= 8 || ((immediate & 0x3) == 3)) { unsigned NewOpc; switch (mcInst.getOpcode()) { default: llvm_unreachable("unexpected opcode"); case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPBZ128rmi_alt; break; case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPBZ128rmik_alt; break; case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPBZ128rri_alt; break; case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPBZ128rrik_alt; break; case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPBZ256rmi_alt; break; case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPBZ256rmik_alt; break; case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPBZ256rri_alt; break; case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPBZ256rrik_alt; break; case X86::VPCMPBZrmi: NewOpc = X86::VPCMPBZrmi_alt; break; case X86::VPCMPBZrmik: NewOpc = X86::VPCMPBZrmik_alt; break; case X86::VPCMPBZrri: NewOpc = X86::VPCMPBZrri_alt; break; case X86::VPCMPBZrrik: NewOpc = X86::VPCMPBZrrik_alt; break; case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPDZ128rmi_alt; break; case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPDZ128rmib_alt; break; case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPDZ128rmibk_alt; break; case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPDZ128rmik_alt; break; case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPDZ128rri_alt; break; case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPDZ128rrik_alt; break; case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPDZ256rmi_alt; break; case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPDZ256rmib_alt; break; case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPDZ256rmibk_alt; break; case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPDZ256rmik_alt; break; case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPDZ256rri_alt; break; case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPDZ256rrik_alt; break; case X86::VPCMPDZrmi: NewOpc = X86::VPCMPDZrmi_alt; break; case X86::VPCMPDZrmib: NewOpc = X86::VPCMPDZrmib_alt; break; case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPDZrmibk_alt; break; case X86::VPCMPDZrmik: NewOpc = X86::VPCMPDZrmik_alt; break; case X86::VPCMPDZrri: NewOpc = X86::VPCMPDZrri_alt; break; case X86::VPCMPDZrrik: NewOpc = X86::VPCMPDZrrik_alt; break; case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPQZ128rmi_alt; break; case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPQZ128rmib_alt; break; case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPQZ128rmibk_alt; break; case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPQZ128rmik_alt; break; case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPQZ128rri_alt; break; case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPQZ128rrik_alt; break; case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPQZ256rmi_alt; break; case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPQZ256rmib_alt; break; case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPQZ256rmibk_alt; break; case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPQZ256rmik_alt; break; case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPQZ256rri_alt; break; case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPQZ256rrik_alt; break; case X86::VPCMPQZrmi: NewOpc = X86::VPCMPQZrmi_alt; break; case X86::VPCMPQZrmib: NewOpc = X86::VPCMPQZrmib_alt; break; case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPQZrmibk_alt; break; case X86::VPCMPQZrmik: NewOpc = X86::VPCMPQZrmik_alt; break; case X86::VPCMPQZrri: NewOpc = X86::VPCMPQZrri_alt; break; case X86::VPCMPQZrrik: NewOpc = X86::VPCMPQZrrik_alt; break; case X86::VPCMPUBZ128rmi: NewOpc = X86::VPCMPUBZ128rmi_alt; break; case X86::VPCMPUBZ128rmik: NewOpc = X86::VPCMPUBZ128rmik_alt; break; case X86::VPCMPUBZ128rri: NewOpc = X86::VPCMPUBZ128rri_alt; break; case X86::VPCMPUBZ128rrik: NewOpc = X86::VPCMPUBZ128rrik_alt; break; case X86::VPCMPUBZ256rmi: NewOpc = X86::VPCMPUBZ256rmi_alt; break; case X86::VPCMPUBZ256rmik: NewOpc = X86::VPCMPUBZ256rmik_alt; break; case X86::VPCMPUBZ256rri: NewOpc = X86::VPCMPUBZ256rri_alt; break; case X86::VPCMPUBZ256rrik: NewOpc = X86::VPCMPUBZ256rrik_alt; break; case X86::VPCMPUBZrmi: NewOpc = X86::VPCMPUBZrmi_alt; break; case X86::VPCMPUBZrmik: NewOpc = X86::VPCMPUBZrmik_alt; break; case X86::VPCMPUBZrri: NewOpc = X86::VPCMPUBZrri_alt; break; case X86::VPCMPUBZrrik: NewOpc = X86::VPCMPUBZrrik_alt; break; case X86::VPCMPUDZ128rmi: NewOpc = X86::VPCMPUDZ128rmi_alt; break; case X86::VPCMPUDZ128rmib: NewOpc = X86::VPCMPUDZ128rmib_alt; break; case X86::VPCMPUDZ128rmibk: NewOpc = X86::VPCMPUDZ128rmibk_alt; break; case X86::VPCMPUDZ128rmik: NewOpc = X86::VPCMPUDZ128rmik_alt; break; case X86::VPCMPUDZ128rri: NewOpc = X86::VPCMPUDZ128rri_alt; break; case X86::VPCMPUDZ128rrik: NewOpc = X86::VPCMPUDZ128rrik_alt; break; case X86::VPCMPUDZ256rmi: NewOpc = X86::VPCMPUDZ256rmi_alt; break; case X86::VPCMPUDZ256rmib: NewOpc = X86::VPCMPUDZ256rmib_alt; break; case X86::VPCMPUDZ256rmibk: NewOpc = X86::VPCMPUDZ256rmibk_alt; break; case X86::VPCMPUDZ256rmik: NewOpc = X86::VPCMPUDZ256rmik_alt; break; case X86::VPCMPUDZ256rri: NewOpc = X86::VPCMPUDZ256rri_alt; break; case X86::VPCMPUDZ256rrik: NewOpc = X86::VPCMPUDZ256rrik_alt; break; case X86::VPCMPUDZrmi: NewOpc = X86::VPCMPUDZrmi_alt; break; case X86::VPCMPUDZrmib: NewOpc = X86::VPCMPUDZrmib_alt; break; case X86::VPCMPUDZrmibk: NewOpc = X86::VPCMPUDZrmibk_alt; break; case X86::VPCMPUDZrmik: NewOpc = X86::VPCMPUDZrmik_alt; break; case X86::VPCMPUDZrri: NewOpc = X86::VPCMPUDZrri_alt; break; case X86::VPCMPUDZrrik: NewOpc = X86::VPCMPUDZrrik_alt; break; case X86::VPCMPUQZ128rmi: NewOpc = X86::VPCMPUQZ128rmi_alt; break; case X86::VPCMPUQZ128rmib: NewOpc = X86::VPCMPUQZ128rmib_alt; break; case X86::VPCMPUQZ128rmibk: NewOpc = X86::VPCMPUQZ128rmibk_alt; break; case X86::VPCMPUQZ128rmik: NewOpc = X86::VPCMPUQZ128rmik_alt; break; case X86::VPCMPUQZ128rri: NewOpc = X86::VPCMPUQZ128rri_alt; break; case X86::VPCMPUQZ128rrik: NewOpc = X86::VPCMPUQZ128rrik_alt; break; case X86::VPCMPUQZ256rmi: NewOpc = X86::VPCMPUQZ256rmi_alt; break; case X86::VPCMPUQZ256rmib: NewOpc = X86::VPCMPUQZ256rmib_alt; break; case X86::VPCMPUQZ256rmibk: NewOpc = X86::VPCMPUQZ256rmibk_alt; break; case X86::VPCMPUQZ256rmik: NewOpc = X86::VPCMPUQZ256rmik_alt; break; case X86::VPCMPUQZ256rri: NewOpc = X86::VPCMPUQZ256rri_alt; break; case X86::VPCMPUQZ256rrik: NewOpc = X86::VPCMPUQZ256rrik_alt; break; case X86::VPCMPUQZrmi: NewOpc = X86::VPCMPUQZrmi_alt; break; case X86::VPCMPUQZrmib: NewOpc = X86::VPCMPUQZrmib_alt; break; case X86::VPCMPUQZrmibk: NewOpc = X86::VPCMPUQZrmibk_alt; break; case X86::VPCMPUQZrmik: NewOpc = X86::VPCMPUQZrmik_alt; break; case X86::VPCMPUQZrri: NewOpc = X86::VPCMPUQZrri_alt; break; case X86::VPCMPUQZrrik: NewOpc = X86::VPCMPUQZrrik_alt; break; case X86::VPCMPUWZ128rmi: NewOpc = X86::VPCMPUWZ128rmi_alt; break; case X86::VPCMPUWZ128rmik: NewOpc = X86::VPCMPUWZ128rmik_alt; break; case X86::VPCMPUWZ128rri: NewOpc = X86::VPCMPUWZ128rri_alt; break; case X86::VPCMPUWZ128rrik: NewOpc = X86::VPCMPUWZ128rrik_alt; break; case X86::VPCMPUWZ256rmi: NewOpc = X86::VPCMPUWZ256rmi_alt; break; case X86::VPCMPUWZ256rmik: NewOpc = X86::VPCMPUWZ256rmik_alt; break; case X86::VPCMPUWZ256rri: NewOpc = X86::VPCMPUWZ256rri_alt; break; case X86::VPCMPUWZ256rrik: NewOpc = X86::VPCMPUWZ256rrik_alt; break; case X86::VPCMPUWZrmi: NewOpc = X86::VPCMPUWZrmi_alt; break; case X86::VPCMPUWZrmik: NewOpc = X86::VPCMPUWZrmik_alt; break; case X86::VPCMPUWZrri: NewOpc = X86::VPCMPUWZrri_alt; break; case X86::VPCMPUWZrrik: NewOpc = X86::VPCMPUWZrrik_alt; break; case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPWZ128rmi_alt; break; case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPWZ128rmik_alt; break; case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPWZ128rri_alt; break; case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPWZ128rrik_alt; break; case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPWZ256rmi_alt; break; case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPWZ256rmik_alt; break; case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPWZ256rri_alt; break; case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPWZ256rrik_alt; break; case X86::VPCMPWZrmi: NewOpc = X86::VPCMPWZrmi_alt; break; case X86::VPCMPWZrmik: NewOpc = X86::VPCMPWZrmik_alt; break; case X86::VPCMPWZrri: NewOpc = X86::VPCMPWZrri_alt; break; case X86::VPCMPWZrrik: NewOpc = X86::VPCMPWZrrik_alt; break; } // Switch opcode to the one that doesn't get special printing. mcInst.setOpcode(NewOpc); } } switch (type) { case TYPE_XMM32: case TYPE_XMM64: case TYPE_XMM128: mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); return; case TYPE_XMM256: mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); return; case TYPE_XMM512: mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); return; case TYPE_BNDR: mcInst.addOperand(MCOperand::createReg(X86::BND0 + (immediate >> 4))); case TYPE_REL8: isBranch = true; pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; if (immediate & 0x80) immediate |= ~(0xffull); break; case TYPE_REL16: isBranch = true; pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; if (immediate & 0x8000) immediate |= ~(0xffffull); break; case TYPE_REL32: case TYPE_REL64: isBranch = true; pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; if(immediate & 0x80000000) immediate |= ~(0xffffffffull); break; default: // operand is 64 bits wide. Do nothing. break; } if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, insn.immediateOffset, insn.immediateSize, mcInst, Dis)) mcInst.addOperand(MCOperand::createImm(immediate)); if (type == TYPE_MOFFS8 || type == TYPE_MOFFS16 || type == TYPE_MOFFS32 || type == TYPE_MOFFS64) { MCOperand segmentReg; segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); mcInst.addOperand(segmentReg); } } /// translateRMRegister - Translates a register stored in the R/M field of the /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. /// @param mcInst - The MCInst to append to. /// @param insn - The internal instruction to extract the R/M field /// from. /// @return - 0 on success; -1 otherwise static bool translateRMRegister(MCInst &mcInst, InternalInstruction &insn) { if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { debug("A R/M register operand may not have a SIB byte"); return true; } switch (insn.eaBase) { default: debug("Unexpected EA base register"); return true; case EA_BASE_NONE: debug("EA_BASE_NONE for ModR/M base"); return true; #define ENTRY(x) case EA_BASE_##x: ALL_EA_BASES #undef ENTRY debug("A R/M register operand may not have a base; " "the operand must be a register."); return true; #define ENTRY(x) \ case EA_REG_##x: \ mcInst.addOperand(MCOperand::createReg(X86::x)); break; ALL_REGS #undef ENTRY } return false; } /// translateRMMemory - Translates a memory operand stored in the Mod and R/M /// fields of an internal instruction (and possibly its SIB byte) to a memory /// operand in LLVM's format, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param insn - The instruction to extract Mod, R/M, and SIB fields /// from. /// @return - 0 on success; nonzero otherwise static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, const MCDisassembler *Dis) { // Addresses in an MCInst are represented as five operands: // 1. basereg (register) The R/M base, or (if there is a SIB) the // SIB base // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified // scale amount // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) // the index (which is multiplied by the // scale amount) // 4. displacement (immediate) 0, or the displacement if there is one // 5. segmentreg (register) x86_registerNONE for now, but could be set // if we have segment overrides MCOperand baseReg; MCOperand scaleAmount; MCOperand indexReg; MCOperand displacement; MCOperand segmentReg; uint64_t pcrel = 0; if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { if (insn.sibBase != SIB_BASE_NONE) { switch (insn.sibBase) { default: debug("Unexpected sibBase"); return true; #define ENTRY(x) \ case SIB_BASE_##x: \ baseReg = MCOperand::createReg(X86::x); break; ALL_SIB_BASES #undef ENTRY } } else { baseReg = MCOperand::createReg(0); } // Check whether we are handling VSIB addressing mode for GATHER. // If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and // we should use SIB_INDEX_XMM4|YMM4 for VSIB. // I don't see a way to get the correct IndexReg in readSIB: // We can tell whether it is VSIB or SIB after instruction ID is decoded, // but instruction ID may not be decoded yet when calling readSIB. uint32_t Opcode = mcInst.getOpcode(); bool IndexIs128 = (Opcode == X86::VGATHERDPDrm || Opcode == X86::VGATHERDPDYrm || Opcode == X86::VGATHERQPDrm || Opcode == X86::VGATHERDPSrm || Opcode == X86::VGATHERQPSrm || Opcode == X86::VPGATHERDQrm || Opcode == X86::VPGATHERDQYrm || Opcode == X86::VPGATHERQQrm || Opcode == X86::VPGATHERDDrm || Opcode == X86::VPGATHERQDrm); bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm || Opcode == X86::VGATHERDPSYrm || Opcode == X86::VGATHERQPSYrm || Opcode == X86::VGATHERDPDZrm || Opcode == X86::VPGATHERDQZrm || Opcode == X86::VPGATHERQQYrm || Opcode == X86::VPGATHERDDYrm || Opcode == X86::VPGATHERQDYrm); bool IndexIs512 = (Opcode == X86::VGATHERQPDZrm || Opcode == X86::VGATHERDPSZrm || Opcode == X86::VGATHERQPSZrm || Opcode == X86::VPGATHERQQZrm || Opcode == X86::VPGATHERDDZrm || Opcode == X86::VPGATHERQDZrm); if (IndexIs128 || IndexIs256 || IndexIs512) { unsigned IndexOffset = insn.sibIndex - (insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX); SIBIndex IndexBase = IndexIs512 ? SIB_INDEX_ZMM0 : IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0; insn.sibIndex = (SIBIndex)(IndexBase + (insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset)); } if (insn.sibIndex != SIB_INDEX_NONE) { switch (insn.sibIndex) { default: debug("Unexpected sibIndex"); return true; #define ENTRY(x) \ case SIB_INDEX_##x: \ indexReg = MCOperand::createReg(X86::x); break; EA_BASES_32BIT EA_BASES_64BIT REGS_XMM REGS_YMM REGS_ZMM #undef ENTRY } } else { indexReg = MCOperand::createReg(0); } scaleAmount = MCOperand::createImm(insn.sibScale); } else { switch (insn.eaBase) { case EA_BASE_NONE: if (insn.eaDisplacement == EA_DISP_NONE) { debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); return true; } if (insn.mode == MODE_64BIT){ pcrel = insn.startLocation + insn.displacementOffset + insn.displacementSize; tryAddingPcLoadReferenceComment(insn.startLocation + insn.displacementOffset, insn.displacement + pcrel, Dis); baseReg = MCOperand::createReg(X86::RIP); // Section 2.2.1.6 } else baseReg = MCOperand::createReg(0); indexReg = MCOperand::createReg(0); break; case EA_BASE_BX_SI: baseReg = MCOperand::createReg(X86::BX); indexReg = MCOperand::createReg(X86::SI); break; case EA_BASE_BX_DI: baseReg = MCOperand::createReg(X86::BX); indexReg = MCOperand::createReg(X86::DI); break; case EA_BASE_BP_SI: baseReg = MCOperand::createReg(X86::BP); indexReg = MCOperand::createReg(X86::SI); break; case EA_BASE_BP_DI: baseReg = MCOperand::createReg(X86::BP); indexReg = MCOperand::createReg(X86::DI); break; default: indexReg = MCOperand::createReg(0); switch (insn.eaBase) { default: debug("Unexpected eaBase"); return true; // Here, we will use the fill-ins defined above. However, // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and // sib and sib64 were handled in the top-level if, so they're only // placeholders to keep the compiler happy. #define ENTRY(x) \ case EA_BASE_##x: \ baseReg = MCOperand::createReg(X86::x); break; ALL_EA_BASES #undef ENTRY #define ENTRY(x) case EA_REG_##x: ALL_REGS #undef ENTRY debug("A R/M memory operand may not be a register; " "the base field must be a base."); return true; } } scaleAmount = MCOperand::createImm(1); } displacement = MCOperand::createImm(insn.displacement); segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); mcInst.addOperand(baseReg); mcInst.addOperand(scaleAmount); mcInst.addOperand(indexReg); if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, insn.startLocation, insn.displacementOffset, insn.displacementSize, mcInst, Dis)) mcInst.addOperand(displacement); mcInst.addOperand(segmentReg); return false; } /// translateRM - Translates an operand stored in the R/M (and possibly SIB) /// byte of an instruction to LLVM form, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The instruction to extract Mod, R/M, and SIB fields /// from. /// @return - 0 on success; nonzero otherwise static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis) { switch (operand.type) { default: debug("Unexpected type for a R/M operand"); return true; case TYPE_R8: case TYPE_R16: case TYPE_R32: case TYPE_R64: case TYPE_Rv: case TYPE_MM64: case TYPE_XMM32: case TYPE_XMM64: case TYPE_XMM128: case TYPE_XMM256: case TYPE_XMM512: case TYPE_VK1: case TYPE_VK2: case TYPE_VK4: case TYPE_VK8: case TYPE_VK16: case TYPE_VK32: case TYPE_VK64: case TYPE_DEBUGREG: case TYPE_CONTROLREG: case TYPE_BNDR: return translateRMRegister(mcInst, insn); case TYPE_M: case TYPE_M8: case TYPE_M16: case TYPE_M32: case TYPE_M64: case TYPE_M128: case TYPE_M256: case TYPE_M512: case TYPE_Mv: case TYPE_M32FP: case TYPE_M64FP: case TYPE_M80FP: case TYPE_M1616: case TYPE_M1632: case TYPE_M1664: case TYPE_LEA: return translateRMMemory(mcInst, insn, Dis); } } /// translateFPRegister - Translates a stack position on the FPU stack to its /// LLVM form, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param stackPos - The stack position to translate. static void translateFPRegister(MCInst &mcInst, uint8_t stackPos) { mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); } /// translateMaskRegister - Translates a 3-bit mask register number to /// LLVM form, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param maskRegNum - Number of mask register from 0 to 7. /// @return - false on success; true otherwise. static bool translateMaskRegister(MCInst &mcInst, uint8_t maskRegNum) { if (maskRegNum >= 8) { debug("Invalid mask register number"); return true; } mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); return false; } /// translateOperand - Translates an operand stored in an internal instruction /// to LLVM's format and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The internal instruction. /// @return - false on success; true otherwise. static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis) { switch (operand.encoding) { default: debug("Unhandled operand encoding during translation"); return true; case ENCODING_REG: translateRegister(mcInst, insn.reg); return false; case ENCODING_WRITEMASK: return translateMaskRegister(mcInst, insn.writemask); CASE_ENCODING_RM: return translateRM(mcInst, operand, insn, Dis); case ENCODING_IB: case ENCODING_IW: case ENCODING_ID: case ENCODING_IO: case ENCODING_Iv: case ENCODING_Ia: translateImmediate(mcInst, insn.immediates[insn.numImmediatesTranslated++], operand, insn, Dis); return false; case ENCODING_SI: return translateSrcIndex(mcInst, insn); case ENCODING_DI: return translateDstIndex(mcInst, insn); case ENCODING_RB: case ENCODING_RW: case ENCODING_RD: case ENCODING_RO: case ENCODING_Rv: translateRegister(mcInst, insn.opcodeRegister); return false; case ENCODING_FP: translateFPRegister(mcInst, insn.modRM & 7); return false; case ENCODING_VVVV: translateRegister(mcInst, insn.vvvv); return false; case ENCODING_DUP: return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], insn, Dis); } } /// translateInstruction - Translates an internal instruction and all its /// operands to an MCInst. /// /// @param mcInst - The MCInst to populate with the instruction's data. /// @param insn - The internal instruction. /// @return - false on success; true otherwise. static bool translateInstruction(MCInst &mcInst, InternalInstruction &insn, const MCDisassembler *Dis) { if (!insn.spec) { debug("Instruction has no specification"); return true; } mcInst.clear(); mcInst.setOpcode(insn.instructionID); // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 // prefix bytes should be disassembled as xrelease and xacquire then set the // opcode to those instead of the rep and repne opcodes. if (insn.xAcquireRelease) { if(mcInst.getOpcode() == X86::REP_PREFIX) mcInst.setOpcode(X86::XRELEASE_PREFIX); else if(mcInst.getOpcode() == X86::REPNE_PREFIX) mcInst.setOpcode(X86::XACQUIRE_PREFIX); } insn.numImmediatesTranslated = 0; for (const auto &Op : insn.operands) { if (Op.encoding != ENCODING_NONE) { if (translateOperand(mcInst, Op, insn, Dis)) { return true; } } } return false; } static MCDisassembler *createX86Disassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx) { std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); return new X86GenericDisassembler(STI, Ctx, std::move(MII)); } extern "C" void LLVMInitializeX86Disassembler() { // Register the disassembler. TargetRegistry::RegisterMCDisassembler(TheX86_32Target, createX86Disassembler); TargetRegistry::RegisterMCDisassembler(TheX86_64Target, createX86Disassembler); }