//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that SystemZ uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H #include "SystemZ.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" namespace llvm { namespace SystemZISD { enum NodeType : unsigned { FIRST_NUMBER = ISD::BUILTIN_OP_END, // Return with a flag operand. Operand 0 is the chain operand. RET_FLAG, // Calls a function. Operand 0 is the chain operand and operand 1 // is the target address. The arguments start at operand 2. // There is an optional glue operand at the end. CALL, SIBCALL, // TLS calls. Like regular calls, except operand 1 is the TLS symbol. // (The call target is implicitly __tls_get_offset.) TLS_GDCALL, TLS_LDCALL, // Wraps a TargetGlobalAddress that should be loaded using PC-relative // accesses (LARL). Operand 0 is the address. PCREL_WRAPPER, // Used in cases where an offset is applied to a TargetGlobalAddress. // Operand 0 is the full TargetGlobalAddress and operand 1 is a // PCREL_WRAPPER for an anchor point. This is used so that we can // cheaply refer to either the full address or the anchor point // as a register base. PCREL_OFFSET, // Integer absolute. IABS, // Integer comparisons. There are three operands: the two values // to compare, and an integer of type SystemZICMP. ICMP, // Floating-point comparisons. The two operands are the values to compare. FCMP, // Test under mask. The first operand is ANDed with the second operand // and the condition codes are set on the result. The third operand is // a boolean that is true if the condition codes need to distinguish // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the // register forms do but the memory forms don't). TM, // Branches if a condition is true. Operand 0 is the chain operand; // operand 1 is the 4-bit condition-code mask, with bit N in // big-endian order meaning "branch if CC=N"; operand 2 is the // target block and operand 3 is the flag operand. BR_CCMASK, // Selects between operand 0 and operand 1. Operand 2 is the // mask of condition-code values for which operand 0 should be // chosen over operand 1; it has the same form as BR_CCMASK. // Operand 3 is the flag operand. SELECT_CCMASK, // Evaluates to the gap between the stack pointer and the // base of the dynamically-allocatable area. ADJDYNALLOC, // Extracts the value of a 32-bit access register. Operand 0 is // the number of the register. EXTRACT_ACCESS, // Count number of bits set in operand 0 per byte. POPCNT, // Wrappers around the ISD opcodes of the same name. The output and // first input operands are GR128s. The trailing numbers are the // widths of the second operand in bits. UMUL_LOHI64, SDIVREM32, SDIVREM64, UDIVREM32, UDIVREM64, // Use a series of MVCs to copy bytes from one memory location to another. // The operands are: // - the target address // - the source address // - the constant length // // This isn't a memory opcode because we'd need to attach two // MachineMemOperands rather than one. MVC, // Like MVC, but implemented as a loop that handles X*256 bytes // followed by straight-line code to handle the rest (if any). // The value of X is passed as an additional operand. MVC_LOOP, // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR). NC, NC_LOOP, OC, OC_LOOP, XC, XC_LOOP, // Use CLC to compare two blocks of memory, with the same comments // as for MVC and MVC_LOOP. CLC, CLC_LOOP, // Use an MVST-based sequence to implement stpcpy(). STPCPY, // Use a CLST-based sequence to implement strcmp(). The two input operands // are the addresses of the strings to compare. STRCMP, // Use an SRST-based sequence to search a block of memory. The first // operand is the end address, the second is the start, and the third // is the character to search for. CC is set to 1 on success and 2 // on failure. SEARCH_STRING, // Store the CC value in bits 29 and 28 of an integer. IPM, // Perform a serialization operation. (BCR 15,0 or BCR 14,0.) SERIALIZE, // Compiler barrier only; generate a no-op. MEMBARRIER, // Transaction begin. The first operand is the chain, the second // the TDB pointer, and the third the immediate control field. // Returns chain and glue. TBEGIN, TBEGIN_NOFLOAT, // Transaction end. Just the chain operand. Returns chain and glue. TEND, // Create a vector constant by filling byte N of the result with bit // 15-N of the single operand. BYTE_MASK, // Create a vector constant by replicating an element-sized RISBG-style mask. // The first operand specifies the starting set bit and the second operand // specifies the ending set bit. Both operands count from the MSB of the // element. ROTATE_MASK, // Replicate a GPR scalar value into all elements of a vector. REPLICATE, // Create a vector from two i64 GPRs. JOIN_DWORDS, // Replicate one element of a vector into all elements. The first operand // is the vector and the second is the index of the element to replicate. SPLAT, // Interleave elements from the high half of operand 0 and the high half // of operand 1. MERGE_HIGH, // Likewise for the low halves. MERGE_LOW, // Concatenate the vectors in the first two operands, shift them left // by the third operand, and take the first half of the result. SHL_DOUBLE, // Take one element of the first v2i64 operand and the one element of // the second v2i64 operand and concatenate them to form a v2i64 result. // The third operand is a 4-bit value of the form 0A0B, where A and B // are the element selectors for the first operand and second operands // respectively. PERMUTE_DWORDS, // Perform a general vector permute on vector operands 0 and 1. // Each byte of operand 2 controls the corresponding byte of the result, // in the same way as a byte-level VECTOR_SHUFFLE mask. PERMUTE, // Pack vector operands 0 and 1 into a single vector with half-sized elements. PACK, // Likewise, but saturate the result and set CC. PACKS_CC does signed // saturation and PACKLS_CC does unsigned saturation. PACKS_CC, PACKLS_CC, // Unpack the first half of vector operand 0 into double-sized elements. // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends. UNPACK_HIGH, UNPACKL_HIGH, // Likewise for the second half. UNPACK_LOW, UNPACKL_LOW, // Shift each element of vector operand 0 by the number of bits specified // by scalar operand 1. VSHL_BY_SCALAR, VSRL_BY_SCALAR, VSRA_BY_SCALAR, // For each element of the output type, sum across all sub-elements of // operand 0 belonging to the corresponding element, and add in the // rightmost sub-element of the corresponding element of operand 1. VSUM, // Compare integer vector operands 0 and 1 to produce the usual 0/-1 // vector result. VICMPE is for equality, VICMPH for "signed greater than" // and VICMPHL for "unsigned greater than". VICMPE, VICMPH, VICMPHL, // Likewise, but also set the condition codes on the result. VICMPES, VICMPHS, VICMPHLS, // Compare floating-point vector operands 0 and 1 to preoduce the usual 0/-1 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and // greater than" and VFCMPHE for "ordered and greater than or equal to". VFCMPE, VFCMPH, VFCMPHE, // Likewise, but also set the condition codes on the result. VFCMPES, VFCMPHS, VFCMPHES, // Test floating-point data class for vectors. VFTCI, // Extend the even f32 elements of vector operand 0 to produce a vector // of f64 elements. VEXTEND, // Round the f64 elements of vector operand 0 to f32s and store them in the // even elements of the result. VROUND, // AND the two vector operands together and set CC based on the result. VTM, // String operations that set CC as a side-effect. VFAE_CC, VFAEZ_CC, VFEE_CC, VFEEZ_CC, VFENE_CC, VFENEZ_CC, VISTR_CC, VSTRC_CC, VSTRCZ_CC, // Test Data Class. // // Operand 0: the value to test // Operand 1: the bit mask TDC, // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or // ATOMIC_LOAD_<op>. // // Operand 0: the address of the containing 32-bit-aligned field // Operand 1: the second operand of <op>, in the high bits of an i32 // for everything except ATOMIC_SWAPW // Operand 2: how many bits to rotate the i32 left to bring the first // operand into the high bits // Operand 3: the negative of operand 2, for rotating the other way // Operand 4: the width of the field in bits (8 or 16) ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE, ATOMIC_LOADW_ADD, ATOMIC_LOADW_SUB, ATOMIC_LOADW_AND, ATOMIC_LOADW_OR, ATOMIC_LOADW_XOR, ATOMIC_LOADW_NAND, ATOMIC_LOADW_MIN, ATOMIC_LOADW_MAX, ATOMIC_LOADW_UMIN, ATOMIC_LOADW_UMAX, // A wrapper around the inner loop of an ATOMIC_CMP_SWAP. // // Operand 0: the address of the containing 32-bit-aligned field // Operand 1: the compare value, in the low bits of an i32 // Operand 2: the swap value, in the low bits of an i32 // Operand 3: how many bits to rotate the i32 left to bring the first // operand into the high bits // Operand 4: the negative of operand 2, for rotating the other way // Operand 5: the width of the field in bits (8 or 16) ATOMIC_CMP_SWAPW, // Byte swapping load. // // Operand 0: the address to load from // Operand 1: the type of load (i16, i32, i64) LRV, // Byte swapping store. // // Operand 0: the value to store // Operand 1: the address to store to // Operand 2: the type of store (i16, i32, i64) STRV, // Prefetch from the second operand using the 4-bit control code in // the first operand. The code is 1 for a load prefetch and 2 for // a store prefetch. PREFETCH }; // Return true if OPCODE is some kind of PC-relative address. inline bool isPCREL(unsigned Opcode) { return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET; } } // end namespace SystemZISD namespace SystemZICMP { // Describes whether an integer comparison needs to be signed or unsigned, // or whether either type is OK. enum { Any, UnsignedOnly, SignedOnly }; } // end namespace SystemZICMP class SystemZSubtarget; class SystemZTargetMachine; class SystemZTargetLowering : public TargetLowering { public: explicit SystemZTargetLowering(const TargetMachine &TM, const SystemZSubtarget &STI); // Override TargetLowering. MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override { return MVT::i32; } MVT getVectorIdxTy(const DataLayout &DL) const override { // Only the lower 12 bits of an element index are used, so we don't // want to clobber the upper 32 bits of a GPR unnecessarily. return MVT::i32; } TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT) const override { // Widen subvectors to the full width rather than promoting integer // elements. This is better because: // // (a) it means that we can handle the ABI for passing and returning // sub-128 vectors without having to handle them as legal types. // // (b) we don't have instructions to extend on load and truncate on store, // so promoting the integers is less efficient. // // (c) there are no multiplication instructions for the widest integer // type (v2i64). if (VT.getVectorElementType().getSizeInBits() % 8 == 0) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } EVT getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT) const override; bool isFMAFasterThanFMulAndFAdd(EVT VT) const override; bool isFPImmLegal(const APFloat &Imm, EVT VT) const override; bool isLegalICmpImmediate(int64_t Imm) const override; bool isLegalAddImmediate(int64_t Imm) const override; bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const override; bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align, bool *Fast) const override; bool isTruncateFree(Type *, Type *) const override; bool isTruncateFree(EVT, EVT) const override; const char *getTargetNodeName(unsigned Opcode) const override; std::pair<unsigned, const TargetRegisterClass *> getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override; TargetLowering::ConstraintType getConstraintType(StringRef Constraint) const override; TargetLowering::ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override; void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, SelectionDAG &DAG) const override; unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override { if (ConstraintCode.size() == 1) { switch(ConstraintCode[0]) { default: break; case 'Q': return InlineAsm::Constraint_Q; case 'R': return InlineAsm::Constraint_R; case 'S': return InlineAsm::Constraint_S; case 'T': return InlineAsm::Constraint_T; } } return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } /// If a physical register, this returns the register that receives the /// exception address on entry to an EH pad. unsigned getExceptionPointerRegister(const Constant *PersonalityFn) const override { return SystemZ::R6D; } /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. unsigned getExceptionSelectorRegister(const Constant *PersonalityFn) const override { return SystemZ::R7D; } /// Override to support customized stack guard loading. bool useLoadStackGuardNode() const override { return true; } void insertSSPDeclarations(Module &M) const override { } MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override; SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; bool allowTruncateForTailCall(Type *, Type *) const override; bool mayBeEmittedAsTailCall(CallInst *CI) const override; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const override; SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const override; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override; SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const override; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; ISD::NodeType getExtendForAtomicOps() const override { return ISD::ANY_EXTEND; } bool supportSwiftError() const override { return true; } private: const SystemZSubtarget &Subtarget; // Implement LowerOperation for individual opcodes. SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGlobalAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node, SelectionDAG &DAG, unsigned Opcode, SDValue GOTOffset) const; SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const; SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerBlockAddress(BlockAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const; SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const; SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const; SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const; SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG, unsigned Opcode) const; SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerLOAD_SEQUENCE_POINT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const; SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, unsigned UnpackHigh) const; SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const; SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp, unsigned Index, DAGCombinerInfo &DCI, bool Force) const; SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const; SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSHIFTROT(SDNode *N, DAGCombinerInfo &DCI) const; // If the last instruction before MBBI in MBB was some form of COMPARE, // try to replace it with a COMPARE AND BRANCH just before MBBI. // CCMask and Target are the BRC-like operands for the branch. // Return true if the change was made. bool convertPrevCompareToBranch(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned CCMask, MachineBasicBlock *Target) const; // Implement EmitInstrWithCustomInserter for individual operation types. MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB, unsigned StoreOpcode, unsigned STOCOpcode, bool Invert) const; MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB, bool ClearEven, unsigned SubReg) const; MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI, MachineBasicBlock *BB, unsigned BinOpcode, unsigned BitSize, bool Invert = false) const; MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, unsigned KeepOldMask, unsigned BitSize) const; MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode) const; MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode) const; MachineBasicBlock *emitTransactionBegin(MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, bool NoFloat) const; MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const; }; } // end namespace llvm #endif