//===-- SparcRegisterInfo.cpp - SPARC Register Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SPARC implementation of the TargetRegisterInfo class. // //===----------------------------------------------------------------------===// #include "SparcRegisterInfo.h" #include "Sparc.h" #include "SparcMachineFunctionInfo.h" #include "SparcSubtarget.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define GET_REGINFO_TARGET_DESC #include "SparcGenRegisterInfo.inc" static cl::opt<bool> ReserveAppRegisters("sparc-reserve-app-registers", cl::Hidden, cl::init(false), cl::desc("Reserve application registers (%g2-%g4)")); SparcRegisterInfo::SparcRegisterInfo() : SparcGenRegisterInfo(SP::O7) {} const MCPhysReg* SparcRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { return CSR_SaveList; } const uint32_t * SparcRegisterInfo::getCallPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { return CSR_RegMask; } const uint32_t* SparcRegisterInfo::getRTCallPreservedMask(CallingConv::ID CC) const { return RTCSR_RegMask; } BitVector SparcRegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); const SparcSubtarget &Subtarget = MF.getSubtarget<SparcSubtarget>(); // FIXME: G1 reserved for now for large imm generation by frame code. Reserved.set(SP::G1); // G1-G4 can be used in applications. if (ReserveAppRegisters) { Reserved.set(SP::G2); Reserved.set(SP::G3); Reserved.set(SP::G4); } // G5 is not reserved in 64 bit mode. if (!Subtarget.is64Bit()) Reserved.set(SP::G5); Reserved.set(SP::O6); Reserved.set(SP::I6); Reserved.set(SP::I7); Reserved.set(SP::G0); Reserved.set(SP::G6); Reserved.set(SP::G7); // Also reserve the register pair aliases covering the above // registers, with the same conditions. Reserved.set(SP::G0_G1); if (ReserveAppRegisters) Reserved.set(SP::G2_G3); if (ReserveAppRegisters || !Subtarget.is64Bit()) Reserved.set(SP::G4_G5); Reserved.set(SP::O6_O7); Reserved.set(SP::I6_I7); Reserved.set(SP::G6_G7); // Unaliased double registers are not available in non-V9 targets. if (!Subtarget.isV9()) { for (unsigned n = 0; n != 16; ++n) { for (MCRegAliasIterator AI(SP::D16 + n, this, true); AI.isValid(); ++AI) Reserved.set(*AI); } } return Reserved; } const TargetRegisterClass* SparcRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) const { const SparcSubtarget &Subtarget = MF.getSubtarget<SparcSubtarget>(); return Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass; } static void replaceFI(MachineFunction &MF, MachineBasicBlock::iterator II, MachineInstr &MI, const DebugLoc &dl, unsigned FIOperandNum, int Offset, unsigned FramePtr) { // Replace frame index with a frame pointer reference. if (Offset >= -4096 && Offset <= 4095) { // If the offset is small enough to fit in the immediate field, directly // encode it. MI.getOperand(FIOperandNum).ChangeToRegister(FramePtr, false); MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset); return; } const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); // FIXME: it would be better to scavenge a register here instead of // reserving G1 all of the time. if (Offset >= 0) { // Emit nonnegaive immediates with sethi + or. // sethi %hi(Offset), %g1 // add %g1, %fp, %g1 // Insert G1+%lo(offset) into the user. BuildMI(*MI.getParent(), II, dl, TII.get(SP::SETHIi), SP::G1) .addImm(HI22(Offset)); // Emit G1 = G1 + I6 BuildMI(*MI.getParent(), II, dl, TII.get(SP::ADDrr), SP::G1).addReg(SP::G1) .addReg(FramePtr); // Insert: G1+%lo(offset) into the user. MI.getOperand(FIOperandNum).ChangeToRegister(SP::G1, false); MI.getOperand(FIOperandNum + 1).ChangeToImmediate(LO10(Offset)); return; } // Emit Negative numbers with sethi + xor // sethi %hix(Offset), %g1 // xor %g1, %lox(offset), %g1 // add %g1, %fp, %g1 // Insert: G1 + 0 into the user. BuildMI(*MI.getParent(), II, dl, TII.get(SP::SETHIi), SP::G1) .addImm(HIX22(Offset)); BuildMI(*MI.getParent(), II, dl, TII.get(SP::XORri), SP::G1) .addReg(SP::G1).addImm(LOX10(Offset)); BuildMI(*MI.getParent(), II, dl, TII.get(SP::ADDrr), SP::G1).addReg(SP::G1) .addReg(FramePtr); // Insert: G1+%lo(offset) into the user. MI.getOperand(FIOperandNum).ChangeToRegister(SP::G1, false); MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0); } void SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const { assert(SPAdj == 0 && "Unexpected"); MachineInstr &MI = *II; DebugLoc dl = MI.getDebugLoc(); int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); MachineFunction &MF = *MI.getParent()->getParent(); const SparcSubtarget &Subtarget = MF.getSubtarget<SparcSubtarget>(); const SparcFrameLowering *TFI = getFrameLowering(MF); unsigned FrameReg; int Offset; Offset = TFI->getFrameIndexReference(MF, FrameIndex, FrameReg); Offset += MI.getOperand(FIOperandNum + 1).getImm(); if (!Subtarget.isV9() || !Subtarget.hasHardQuad()) { if (MI.getOpcode() == SP::STQFri) { const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); unsigned SrcReg = MI.getOperand(2).getReg(); unsigned SrcEvenReg = getSubReg(SrcReg, SP::sub_even64); unsigned SrcOddReg = getSubReg(SrcReg, SP::sub_odd64); MachineInstr *StMI = BuildMI(*MI.getParent(), II, dl, TII.get(SP::STDFri)) .addReg(FrameReg).addImm(0).addReg(SrcEvenReg); replaceFI(MF, II, *StMI, dl, 0, Offset, FrameReg); MI.setDesc(TII.get(SP::STDFri)); MI.getOperand(2).setReg(SrcOddReg); Offset += 8; } else if (MI.getOpcode() == SP::LDQFri) { const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); unsigned DestReg = MI.getOperand(0).getReg(); unsigned DestEvenReg = getSubReg(DestReg, SP::sub_even64); unsigned DestOddReg = getSubReg(DestReg, SP::sub_odd64); MachineInstr *StMI = BuildMI(*MI.getParent(), II, dl, TII.get(SP::LDDFri), DestEvenReg) .addReg(FrameReg).addImm(0); replaceFI(MF, II, *StMI, dl, 1, Offset, FrameReg); MI.setDesc(TII.get(SP::LDDFri)); MI.getOperand(0).setReg(DestOddReg); Offset += 8; } } replaceFI(MF, II, MI, dl, FIOperandNum, Offset, FrameReg); } unsigned SparcRegisterInfo::getFrameRegister(const MachineFunction &MF) const { return SP::I6; } // Sparc has no architectural need for stack realignment support, // except that LLVM unfortunately currently implements overaligned // stack objects by depending upon stack realignment support. // If that ever changes, this can probably be deleted. bool SparcRegisterInfo::canRealignStack(const MachineFunction &MF) const { if (!TargetRegisterInfo::canRealignStack(MF)) return false; // Sparc always has a fixed frame pointer register, so don't need to // worry about needing to reserve it. [even if we don't have a frame // pointer for our frame, it still cannot be used for other things, // or register window traps will be SADNESS.] // If there's a reserved call frame, we can use SP to access locals. if (getFrameLowering(MF)->hasReservedCallFrame(MF)) return true; // Otherwise, we'd need a base pointer, but those aren't implemented // for SPARC at the moment. return false; }