//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Sparc instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "SparcInstrFormats.td" //===----------------------------------------------------------------------===// // Feature predicates. //===----------------------------------------------------------------------===// // True when generating 32-bit code. def Is32Bit : Predicate<"!Subtarget->is64Bit()">; // True when generating 64-bit code. This also implies HasV9. def Is64Bit : Predicate<"Subtarget->is64Bit()">; // HasV9 - This predicate is true when the target processor supports V9 // instructions. Note that the machine may be running in 32-bit mode. def HasV9 : Predicate<"Subtarget->isV9()">, AssemblerPredicate<"FeatureV9">; // HasNoV9 - This predicate is true when the target doesn't have V9 // instructions. Use of this is just a hack for the isel not having proper // costs for V8 instructions that are more expensive than their V9 ones. def HasNoV9 : Predicate<"!Subtarget->isV9()">; // HasVIS - This is true when the target processor has VIS extensions. def HasVIS : Predicate<"Subtarget->isVIS()">, AssemblerPredicate<"FeatureVIS">; def HasVIS2 : Predicate<"Subtarget->isVIS2()">, AssemblerPredicate<"FeatureVIS2">; def HasVIS3 : Predicate<"Subtarget->isVIS3()">, AssemblerPredicate<"FeatureVIS3">; // HasHardQuad - This is true when the target processor supports quad floating // point instructions. def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">; // HasLeonCASA - This is true when the target processor supports the CASA // instruction def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">; // HasUMAC_SMAC - This is true when the target processor supports the // UMAC and SMAC instructions def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">; def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">; def HasNoFmulsFix : Predicate<"!Subtarget->replaceFMULS()">; def HasNoFsmuldFix : Predicate<"!Subtarget->fixFSMULD()">; // UseDeprecatedInsts - This predicate is true when the target processor is a // V8, or when it is V9 but the V8 deprecated instructions are efficient enough // to use when appropriate. In either of these cases, the instruction selector // will pick deprecated instructions. def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; def LO10 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N), MVT::i32); }]>; def HI22 : SDNodeXForm<imm, [{ // Transformation function: shift the immediate value down into the low bits. return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N), MVT::i32); }]>; def SETHIimm : PatLeaf<(imm), [{ return isShiftedUInt<22, 10>(N->getZExtValue()); }], HI22>; // Addressing modes. def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>; // Address operands def SparcMEMrrAsmOperand : AsmOperandClass { let Name = "MEMrr"; let ParserMethod = "parseMEMOperand"; } def SparcMEMriAsmOperand : AsmOperandClass { let Name = "MEMri"; let ParserMethod = "parseMEMOperand"; } def MEMrr : Operand<iPTR> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops ptr_rc, ptr_rc); let ParserMatchClass = SparcMEMrrAsmOperand; } def MEMri : Operand<iPTR> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops ptr_rc, i32imm); let ParserMatchClass = SparcMEMriAsmOperand; } def TLSSym : Operand<iPTR>; // Branch targets have OtherVT type. def brtarget : Operand<OtherVT> { let EncoderMethod = "getBranchTargetOpValue"; } def bprtarget : Operand<OtherVT> { let EncoderMethod = "getBranchPredTargetOpValue"; } def bprtarget16 : Operand<OtherVT> { let EncoderMethod = "getBranchOnRegTargetOpValue"; } def calltarget : Operand<i32> { let EncoderMethod = "getCallTargetOpValue"; let DecoderMethod = "DecodeCall"; } def simm13Op : Operand<i32> { let DecoderMethod = "DecodeSIMM13"; } // Operand for printing out a condition code. let PrintMethod = "printCCOperand" in def CCOp : Operand<i32>; def SDTSPcmpicc : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; def SDTSPcmpfcc : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; def SDTSPbrcc : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; def SDTSPselectcc : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; def SDTSPFTOI : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; def SDTSPITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; def SDTSPFTOX : SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; def SDTSPXTOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; def SDTSPtlsadd : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; def SDTSPtlsld : SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; def SDTSPeh_sjlj_setjmp : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>; def SDTSPeh_sjlj_longjmp: SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>; def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>; def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; def SPsjlj_setjmp: SDNode<"SPISD::EH_SJLJ_SETJMP", SDTSPeh_sjlj_setjmp, [SDNPHasChain, SDNPSideEffect]>; def SPsjlj_longjmp: SDNode<"SPISD::EH_SJLJ_LONGJMP", SDTSPeh_sjlj_longjmp, [SDNPHasChain, SDNPSideEffect]>; // These are target-independent nodes, but have target-specific formats. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; def call : SDNode<"SPISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def flushw : SDNode<"SPISD::FLUSHW", SDTNone, [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>; def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def getPCX : Operand<iPTR> { let PrintMethod = "printGetPCX"; } //===----------------------------------------------------------------------===// // SPARC Flag Conditions //===----------------------------------------------------------------------===// // Note that these values must be kept in sync with the CCOp::CondCode enum // values. class ICC_VAL<int N> : PatLeaf<(i32 N)>; def ICC_NE : ICC_VAL< 9>; // Not Equal def ICC_E : ICC_VAL< 1>; // Equal def ICC_G : ICC_VAL<10>; // Greater def ICC_LE : ICC_VAL< 2>; // Less or Equal def ICC_GE : ICC_VAL<11>; // Greater or Equal def ICC_L : ICC_VAL< 3>; // Less def ICC_GU : ICC_VAL<12>; // Greater Unsigned def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned def ICC_POS : ICC_VAL<14>; // Positive def ICC_NEG : ICC_VAL< 6>; // Negative def ICC_VC : ICC_VAL<15>; // Overflow Clear def ICC_VS : ICC_VAL< 7>; // Overflow Set class FCC_VAL<int N> : PatLeaf<(i32 N)>; def FCC_U : FCC_VAL<23>; // Unordered def FCC_G : FCC_VAL<22>; // Greater def FCC_UG : FCC_VAL<21>; // Unordered or Greater def FCC_L : FCC_VAL<20>; // Less def FCC_UL : FCC_VAL<19>; // Unordered or Less def FCC_LG : FCC_VAL<18>; // Less or Greater def FCC_NE : FCC_VAL<17>; // Not Equal def FCC_E : FCC_VAL<25>; // Equal def FCC_UE : FCC_VAL<26>; // Unordered or Equal def FCC_GE : FCC_VAL<27>; // Greater or Equal def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal def FCC_LE : FCC_VAL<29>; // Less or Equal def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal def FCC_O : FCC_VAL<31>; // Ordered class CPCC_VAL<int N> : PatLeaf<(i32 N)>; def CPCC_3 : CPCC_VAL<39>; // 3 def CPCC_2 : CPCC_VAL<38>; // 2 def CPCC_23 : CPCC_VAL<37>; // 2 or 3 def CPCC_1 : CPCC_VAL<36>; // 1 def CPCC_13 : CPCC_VAL<35>; // 1 or 3 def CPCC_12 : CPCC_VAL<34>; // 1 or 2 def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3 def CPCC_0 : CPCC_VAL<41>; // 0 def CPCC_03 : CPCC_VAL<42>; // 0 or 3 def CPCC_02 : CPCC_VAL<43>; // 0 or 2 def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3 def CPCC_01 : CPCC_VAL<45>; // 0 or 1 def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3 def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2 //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode, RegisterClass RC, ValueType Ty, Operand immOp, InstrItinClass itin = IIC_iu_instr> { def rr : F3_1<2, Op3Val, (outs RC:$rd), (ins RC:$rs1, RC:$rs2), !strconcat(OpcStr, " $rs1, $rs2, $rd"), [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))], itin>; def ri : F3_2<2, Op3Val, (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), !strconcat(OpcStr, " $rs1, $simm13, $rd"), [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))], itin>; } /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no /// pattern. multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> { def rr : F3_1<2, Op3Val, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), !strconcat(OpcStr, " $rs1, $rs2, $rd"), [], itin>; def ri : F3_2<2, Op3Val, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), !strconcat(OpcStr, " $rs1, $simm13, $rd"), [], itin>; } // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> { def rr : F3_1<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr), !strconcat(OpcStr, " [$addr], $dst"), [(set Ty:$dst, (OpNode ADDRrr:$addr))], itin>; def ri : F3_2<3, Op3Val, (outs RC:$dst), (ins MEMri:$addr), !strconcat(OpcStr, " [$addr], $dst"), [(set Ty:$dst, (OpNode ADDRri:$addr))], itin>; } // TODO: Instructions of the LoadASI class are currently asm only; hooking up // CodeGen's address spaces to use these is a future task. class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> : F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi), !strconcat(OpcStr, "a [$addr] $asi, $dst"), []>; // LoadA multiclass - As above, but also define alternate address space variant multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> : Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> { def Arr : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>; } // The LDSTUB instruction is supported for asm only. // It is unlikely that general-purpose code could make use of it. // CAS is preferred for sparc v9. def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr), "ldstub [$addr], $dst", []>; def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr), "ldstub [$addr], $dst", []>; def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi), "ldstuba [$addr] $asi, $dst", []>; // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> { def rr : F3_1<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd), !strconcat(OpcStr, " $rd, [$addr]"), [(OpNode Ty:$rd, ADDRrr:$addr)], itin>; def ri : F3_2<3, Op3Val, (outs), (ins MEMri:$addr, RC:$rd), !strconcat(OpcStr, " $rd, [$addr]"), [(OpNode Ty:$rd, ADDRri:$addr)], itin>; } // TODO: Instructions of the StoreASI class are currently asm only; hooking up // CodeGen's address spaces to use these is a future task. class StoreASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> : F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi), !strconcat(OpcStr, "a $rd, [$addr] $asi"), [], itin>; multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> : Store<OpcStr, Op3Val, OpNode, RC, Ty> { def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// // Pseudo instructions. class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> : InstSP<outs, ins, asmstr, pattern> { let isCodeGenOnly = 1; let isPseudo = 1; } // GETPCX for PIC let Defs = [O7] in { def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; } let Defs = [O6], Uses = [O6] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), "!ADJCALLSTACKDOWN $amt", [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), "!ADJCALLSTACKUP $amt1", [(callseq_end timm:$amt1, timm:$amt2)]>; } let hasSideEffects = 1, mayStore = 1 in { let rd = 0, rs1 = 0, rs2 = 0 in def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), "flushw", [(flushw)]>, Requires<[HasV9]>; let rd = 0, rs1 = 1, simm13 = 3 in def TA3 : F3_2<0b10, 0b111010, (outs), (ins), "ta 3", [(flushw)]>; } // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after // instruction selection into a branch sequence. This has to handle all // permutations of selection between i32/f32/f64 on ICC and FCC. // Expanded after instruction selection. let Uses = [ICC], usesCustomInserter = 1 in { def SELECT_CC_Int_ICC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_ICC PSEUDO!", [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_ICC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_ICC PSEUDO!", [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_ICC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_ICC PSEUDO!", [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; def SELECT_CC_QFP_ICC : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), "; SELECT_CC_QFP_ICC PSEUDO!", [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; } let usesCustomInserter = 1, Uses = [FCC0] in { def SELECT_CC_Int_FCC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_FCC PSEUDO!", [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_FCC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_FCC PSEUDO!", [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_FCC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_FCC PSEUDO!", [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; def SELECT_CC_QFP_FCC : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), "; SELECT_CC_QFP_FCC PSEUDO!", [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; } let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in { let Defs = [WIM] in def EH_SJLJ_SETJMP32ri : Pseudo<(outs IntRegs:$dst), (ins MEMri:$buf), "#EH_SJLJ_SETJMP32", [(set i32:$dst, (SPsjlj_setjmp ADDRri:$buf))]>, Requires<[Is32Bit]>; def EH_SJLJ_SETJMP32rr : Pseudo<(outs IntRegs:$dst), (ins MEMrr:$buf), "#EH_SJLJ_SETJMP32", [(set i32:$dst, (SPsjlj_setjmp ADDRrr:$buf))]>, Requires<[Is32Bit]>; let isTerminator = 1 in def EH_SJLJ_LONGJMP32ri : Pseudo<(outs), (ins MEMri:$buf), "#EH_SJLJ_LONGJMP32", [(SPsjlj_longjmp ADDRri:$buf)]>, Requires<[Is32Bit]>; def EH_SJLJ_LONGJMP32rr : Pseudo<(outs), (ins MEMrr:$buf), "#EH_SJLJ_LONGJMP32", [(SPsjlj_longjmp ADDRrr:$buf)]>, Requires<[Is32Bit]>; } // Section B.1 - Load Integer Instructions, p. 90 let DecoderMethod = "DecodeLoadInt" in { defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>; defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>; defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>; defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>; defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>; } let DecoderMethod = "DecodeLoadIntPair" in defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>; // Section B.2 - Load Floating-point Instructions, p. 92 let DecoderMethod = "DecodeLoadFP" in { defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>; def LDFArr : LoadASI<"ld", 0b110000, load, FPRegs, f32, IIC_iu_or_fpu_instr>, Requires<[HasV9]>; } let DecoderMethod = "DecodeLoadDFP" in { defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>; def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>, Requires<[HasV9]>; } let DecoderMethod = "DecodeLoadQFP" in defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>, Requires<[HasV9, HasHardQuad]>; let DecoderMethod = "DecodeLoadCP" in defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>; let DecoderMethod = "DecodeLoadCPPair" in defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>; let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in { let rd = 0 in { def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr), "ld [$addr], %csr", []>; def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr), "ld [$addr], %csr", []>; } } let DecoderMethod = "DecodeLoadFP" in let Defs = [FSR] in { let rd = 0 in { def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr), "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr), "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; } let rd = 1 in { def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr), "ldx [$addr], %fsr", []>, Requires<[HasV9]>; def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr), "ldx [$addr], %fsr", []>, Requires<[HasV9]>; } } // Section B.4 - Store Integer Instructions, p. 95 let DecoderMethod = "DecodeStoreInt" in { defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>; defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>; defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>; } let DecoderMethod = "DecodeStoreIntPair" in defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>; // Section B.5 - Store Floating-point Instructions, p. 97 let DecoderMethod = "DecodeStoreFP" in { defm STF : Store<"st", 0b100100, store, FPRegs, f32>; def STFArr : StoreASI<"st", 0b110100, store, FPRegs, f32>, Requires<[HasV9]>; } let DecoderMethod = "DecodeStoreDFP" in { defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>; def STDFArr : StoreASI<"std", 0b110111, store, DFPRegs, f64>, Requires<[HasV9]>; } let DecoderMethod = "DecodeStoreQFP" in defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>, Requires<[HasV9, HasHardQuad]>; let DecoderMethod = "DecodeStoreCP" in defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>; let DecoderMethod = "DecodeStoreCPPair" in defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>; let DecoderMethod = "DecodeStoreCP", rd = 0 in { let Defs = [CPSR] in { def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins), "st %csr, [$addr]", [], IIC_st>; def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins), "st %csr, [$addr]", [], IIC_st>; } let Defs = [CPQ] in { def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins), "std %cq, [$addr]", [], IIC_std>; def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins), "std %cq, [$addr]", [], IIC_std>; } } let DecoderMethod = "DecodeStoreFP" in { let rd = 0 in { let Defs = [FSR] in { def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins), "st %fsr, [$addr]", [], IIC_st>; def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins), "st %fsr, [$addr]", [], IIC_st>; } let Defs = [FQ] in { def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins), "std %fq, [$addr]", [], IIC_std>; def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins), "std %fq, [$addr]", [], IIC_std>; } } let rd = 1, Defs = [FSR] in { def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins), "stx %fsr, [$addr]", []>, Requires<[HasV9]>; def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins), "stx %fsr, [$addr]", []>, Requires<[HasV9]>; } } // Section B.8 - SWAP Register with Memory Instruction // (Atomic swap) let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in { def SWAPrr : F3_1<3, 0b001111, (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val), "swap [$addr], $dst", [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; def SWAPri : F3_2<3, 0b001111, (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val), "swap [$addr], $dst", [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; def SWAPArr : F3_1_asi<3, 0b011111, (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val), "swapa [$addr] $asi, $dst", [/*FIXME: pattern?*/]>; } // Section B.9 - SETHI Instruction, p. 104 def SETHIi: F2_1<0b100, (outs IntRegs:$rd), (ins i32imm:$imm22), "sethi $imm22, $rd", [(set i32:$rd, SETHIimm:$imm22)], IIC_iu_instr>; // Section B.10 - NOP Instruction, p. 105 // (It's a special case of SETHI) let rd = 0, imm22 = 0 in def NOP : F2_1<0b100, (outs), (ins), "nop", []>; // Section B.11 - Logical Instructions, p. 106 defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; def ANDNrr : F3_1<2, 0b000101, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "andn $rs1, $rs2, $rd", [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; def ANDNri : F3_2<2, 0b000101, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "andn $rs1, $simm13, $rd", []>; defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; def ORNrr : F3_1<2, 0b000110, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "orn $rs1, $rs2, $rd", [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; def ORNri : F3_2<2, 0b000110, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "orn $rs1, $simm13, $rd", []>; defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; def XNORrr : F3_1<2, 0b000111, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "xnor $rs1, $rs2, $rd", [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; def XNORri : F3_2<2, 0b000111, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "xnor $rs1, $simm13, $rd", []>; let Defs = [ICC] in { defm ANDCC : F3_12np<"andcc", 0b010001>; defm ANDNCC : F3_12np<"andncc", 0b010101>; defm ORCC : F3_12np<"orcc", 0b010010>; defm ORNCC : F3_12np<"orncc", 0b010110>; defm XORCC : F3_12np<"xorcc", 0b010011>; defm XNORCC : F3_12np<"xnorcc", 0b010111>; } // Section B.12 - Shift Instructions, p. 107 defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>; defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>; defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>; // Section B.13 - Add Instructions, p. 108 defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; // "LEA" forms of add (patterns to make tblgen happy) let Predicates = [Is32Bit], isCodeGenOnly = 1 in def LEA_ADDri : F3_2<2, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), "add ${addr:arith}, $dst", [(set iPTR:$dst, ADDRri:$addr)]>; let Defs = [ICC] in defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; let Uses = [ICC] in defm ADDC : F3_12np<"addx", 0b001000>; let Uses = [ICC], Defs = [ICC] in defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; // Section B.15 - Subtract Instructions, p. 110 defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>; let Uses = [ICC], Defs = [ICC] in defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; let Defs = [ICC] in defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; let Uses = [ICC] in defm SUBC : F3_12np <"subx", 0b001100>; // cmp (from Section A.3) is a specialized alias for subcc let Defs = [ICC], rd = 0 in { def CMPrr : F3_1<2, 0b010100, (outs), (ins IntRegs:$rs1, IntRegs:$rs2), "cmp $rs1, $rs2", [(SPcmpicc i32:$rs1, i32:$rs2)]>; def CMPri : F3_2<2, 0b010100, (outs), (ins IntRegs:$rs1, simm13Op:$simm13), "cmp $rs1, $simm13", [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>; } // Section B.18 - Multiply Instructions, p. 113 let Defs = [Y] in { defm UMUL : F3_12np<"umul", 0b001010, IIC_iu_umul>; defm SMUL : F3_12 <"smul", 0b001011, mul, IntRegs, i32, simm13Op, IIC_iu_smul>; } let Defs = [Y, ICC] in { defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>; defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>; } let Defs = [Y, ICC], Uses = [Y, ICC] in { defm MULSCC : F3_12np<"mulscc", 0b100100>; } // Section B.19 - Divide Instructions, p. 115 let Uses = [Y], Defs = [Y] in { defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>; defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>; } let Uses = [Y], Defs = [Y, ICC] in { defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>; defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>; } // Section B.20 - SAVE and RESTORE, p. 117 defm SAVE : F3_12np<"save" , 0b111100>; defm RESTORE : F3_12np<"restore", 0b111101>; // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 // unconditional branch class. class BranchAlways<dag ins, string asmstr, list<dag> pattern> : F2_2<0b010, 0, (outs), ins, asmstr, pattern> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; let isBarrier = 1; } let cond = 8 in def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { // conditional branch class: class BranchSP<dag ins, string asmstr, list<dag> pattern> : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>; // conditional branch with annul class: class BranchSPA<dag ins, string asmstr, list<dag> pattern> : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>; // Conditional branch class on %icc|%xcc with predication: multiclass IPredBranch<string regstr, list<dag> CCPattern> { def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), CCPattern, IIC_iu_instr>; def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), [], IIC_iu_instr>; def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), [], IIC_iu_instr>; def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), [], IIC_iu_instr>; } } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 // Indirect branch instructions. let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { def BINDrr : F3_1<2, 0b111000, (outs), (ins MEMrr:$ptr), "jmp $ptr", [(brind ADDRrr:$ptr)]>; def BINDri : F3_2<2, 0b111000, (outs), (ins MEMri:$ptr), "jmp $ptr", [(brind ADDRri:$ptr)]>; } let Uses = [ICC] in { def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), "b$cond $imm22", [(SPbricc bb:$imm22, imm:$cond)]>; def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), "b$cond,a $imm22", []>; let Predicates = [HasV9], cc = 0b00 in defm BPI : IPredBranch<"%icc", []>; } // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { // floating-point conditional branch class: class FPBranchSP<dag ins, string asmstr, list<dag> pattern> : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; // floating-point conditional branch with annul class: class FPBranchSPA<dag ins, string asmstr, list<dag> pattern> : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; // Conditional branch class on %fcc0-%fcc3 with predication: multiclass FPredBranch { def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>; def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>; def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>; def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>; } } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 let Uses = [FCC0] in { def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), "fb$cond $imm22", [(SPbrfcc bb:$imm22, imm:$cond)]>; def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), "fb$cond,a $imm22", []>; } let Predicates = [HasV9] in defm BPF : FPredBranch; // Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { // co-processor conditional branch class: class CPBranchSP<dag ins, string asmstr, list<dag> pattern> : F2_2<0b111, 0, (outs), ins, asmstr, pattern>; // co-processor conditional branch with annul class: class CPBranchSPA<dag ins, string asmstr, list<dag> pattern> : F2_2<0b111, 1, (outs), ins, asmstr, pattern>; } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond), "cb$cond $imm22", [(SPbrfcc bb:$imm22, imm:$cond)]>; def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), "cb$cond,a $imm22", []>; // Section B.24 - Call and Link Instruction, p. 125 // This is the only Format 1 instruction let Uses = [O6], hasDelaySlot = 1, isCall = 1 in { def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), "call $disp", [], IIC_jmp_or_call> { bits<30> disp; let op = 1; let Inst{29-0} = disp; } // indirect calls: special cases of JMPL. let isCodeGenOnly = 1, rd = 15 in { def CALLrr : F3_1<2, 0b111000, (outs), (ins MEMrr:$ptr, variable_ops), "call $ptr", [(call ADDRrr:$ptr)], IIC_jmp_or_call>; def CALLri : F3_2<2, 0b111000, (outs), (ins MEMri:$ptr, variable_ops), "call $ptr", [(call ADDRri:$ptr)], IIC_jmp_or_call>; } } // Section B.25 - Jump and Link Instruction // JMPL Instruction. let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, DecoderMethod = "DecodeJMPL" in { def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr), "jmpl $addr, $dst", [], IIC_jmp_or_call>; def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr), "jmpl $addr, $dst", [], IIC_jmp_or_call>; } // Section A.3 - Synthetic Instructions, p. 85 // special cases of JMPL: let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, isCodeGenOnly = 1 in { let rd = 0, rs1 = 15 in def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), "jmp %o7+$val", [(retflag simm13:$val)], IIC_jmp_or_call>; let rd = 0, rs1 = 31 in def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), "jmp %i7+$val", [], IIC_jmp_or_call>; } // Section B.26 - Return from Trap Instruction let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in { def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr), "rett $addr", [], IIC_jmp_or_call>; def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr), "rett $addr", [], IIC_jmp_or_call>; } // Section B.27 - Trap on Integer Condition Codes Instruction // conditional branch class: let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in { def TRAPrr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), "t$cond $rs1 + $rs2", []>; def TRAPri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), "t$cond $rs1 + $imm", []>; } multiclass TRAP<string regStr> { def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>; def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>; } let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in defm TICC : TRAP<"%icc">; let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; // Section B.28 - Read State Register Instructions let rs2 = 0 in def RDASR : F3_1<2, 0b101000, (outs IntRegs:$rd), (ins ASRRegs:$rs1), "rd $rs1, $rd", []>; // PSR, WIM, and TBR don't exist on the SparcV9, only the V8. let Predicates = [HasNoV9] in { let rs2 = 0, rs1 = 0, Uses=[PSR] in def RDPSR : F3_1<2, 0b101001, (outs IntRegs:$rd), (ins), "rd %psr, $rd", []>; let rs2 = 0, rs1 = 0, Uses=[WIM] in def RDWIM : F3_1<2, 0b101010, (outs IntRegs:$rd), (ins), "rd %wim, $rd", []>; let rs2 = 0, rs1 = 0, Uses=[TBR] in def RDTBR : F3_1<2, 0b101011, (outs IntRegs:$rd), (ins), "rd %tbr, $rd", []>; } // Section B.29 - Write State Register Instructions def WRASRrr : F3_1<2, 0b110000, (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "wr $rs1, $rs2, $rd", []>; def WRASRri : F3_2<2, 0b110000, (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "wr $rs1, $simm13, $rd", []>; // PSR, WIM, and TBR don't exist on the SparcV9, only the V8. let Predicates = [HasNoV9] in { let Defs = [PSR], rd=0 in { def WRPSRrr : F3_1<2, 0b110001, (outs), (ins IntRegs:$rs1, IntRegs:$rs2), "wr $rs1, $rs2, %psr", []>; def WRPSRri : F3_2<2, 0b110001, (outs), (ins IntRegs:$rs1, simm13Op:$simm13), "wr $rs1, $simm13, %psr", []>; } let Defs = [WIM], rd=0 in { def WRWIMrr : F3_1<2, 0b110010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2), "wr $rs1, $rs2, %wim", []>; def WRWIMri : F3_2<2, 0b110010, (outs), (ins IntRegs:$rs1, simm13Op:$simm13), "wr $rs1, $simm13, %wim", []>; } let Defs = [TBR], rd=0 in { def WRTBRrr : F3_1<2, 0b110011, (outs), (ins IntRegs:$rs1, IntRegs:$rs2), "wr $rs1, $rs2, %tbr", []>; def WRTBRri : F3_2<2, 0b110011, (outs), (ins IntRegs:$rs1, simm13Op:$simm13), "wr $rs1, $simm13, %tbr", []>; } } // Section B.30 - STBAR Instruction let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; // Section B.31 - Unimplmented Instruction let rd = 0 in def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), "unimp $imm22", []>; // Section B.32 - Flush Instruction Memory let rd = 0 in { def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr), "flush $addr", []>; def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr), "flush $addr", []>; // The no-arg FLUSH is only here for the benefit of the InstAlias // "flush", which cannot seem to use FLUSHrr, due to the inability // to construct a MEMrr with fixed G0 registers. let rs1 = 0, rs2 = 0 in def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>; } // Section B.33 - Floating-point Operate (FPop) Instructions // Convert Integer to Floating-point Instructions, p. 141 def FITOS : F3_3u<2, 0b110100, 0b011000100, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fitos $rs2, $rd", [(set FPRegs:$rd, (SPitof FPRegs:$rs2))], IIC_fpu_fast_instr>; def FITOD : F3_3u<2, 0b110100, 0b011001000, (outs DFPRegs:$rd), (ins FPRegs:$rs2), "fitod $rs2, $rd", [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))], IIC_fpu_fast_instr>; def FITOQ : F3_3u<2, 0b110100, 0b011001100, (outs QFPRegs:$rd), (ins FPRegs:$rs2), "fitoq $rs2, $rd", [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, Requires<[HasHardQuad]>; // Convert Floating-point to Integer Instructions, p. 142 def FSTOI : F3_3u<2, 0b110100, 0b011010001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fstoi $rs2, $rd", [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))], IIC_fpu_fast_instr>; def FDTOI : F3_3u<2, 0b110100, 0b011010010, (outs FPRegs:$rd), (ins DFPRegs:$rs2), "fdtoi $rs2, $rd", [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))], IIC_fpu_fast_instr>; def FQTOI : F3_3u<2, 0b110100, 0b011010011, (outs FPRegs:$rd), (ins QFPRegs:$rs2), "fqtoi $rs2, $rd", [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, Requires<[HasHardQuad]>; // Convert between Floating-point Formats Instructions, p. 143 def FSTOD : F3_3u<2, 0b110100, 0b011001001, (outs DFPRegs:$rd), (ins FPRegs:$rs2), "fstod $rs2, $rd", [(set f64:$rd, (fextend f32:$rs2))], IIC_fpu_stod>; def FSTOQ : F3_3u<2, 0b110100, 0b011001101, (outs QFPRegs:$rd), (ins FPRegs:$rs2), "fstoq $rs2, $rd", [(set f128:$rd, (fextend f32:$rs2))]>, Requires<[HasHardQuad]>; def FDTOS : F3_3u<2, 0b110100, 0b011000110, (outs FPRegs:$rd), (ins DFPRegs:$rs2), "fdtos $rs2, $rd", [(set f32:$rd, (fround f64:$rs2))], IIC_fpu_fast_instr>; def FDTOQ : F3_3u<2, 0b110100, 0b011001110, (outs QFPRegs:$rd), (ins DFPRegs:$rs2), "fdtoq $rs2, $rd", [(set f128:$rd, (fextend f64:$rs2))]>, Requires<[HasHardQuad]>; def FQTOS : F3_3u<2, 0b110100, 0b011000111, (outs FPRegs:$rd), (ins QFPRegs:$rs2), "fqtos $rs2, $rd", [(set f32:$rd, (fround f128:$rs2))]>, Requires<[HasHardQuad]>; def FQTOD : F3_3u<2, 0b110100, 0b011001011, (outs DFPRegs:$rd), (ins QFPRegs:$rs2), "fqtod $rs2, $rd", [(set f64:$rd, (fround f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Move Instructions, p. 144 def FMOVS : F3_3u<2, 0b110100, 0b000000001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fmovs $rs2, $rd", []>; def FNEGS : F3_3u<2, 0b110100, 0b000000101, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fnegs $rs2, $rd", [(set f32:$rd, (fneg f32:$rs2))], IIC_fpu_negs>; def FABSS : F3_3u<2, 0b110100, 0b000001001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fabss $rs2, $rd", [(set f32:$rd, (fabs f32:$rs2))], IIC_fpu_abs>; // Floating-point Square Root Instructions, p.145 // FSQRTS generates an erratum on LEON processors, so by disabling this instruction // this will be promoted to use FSQRTD with doubles instead. let Predicates = [HasNoFdivSqrtFix] in def FSQRTS : F3_3u<2, 0b110100, 0b000101001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fsqrts $rs2, $rd", [(set f32:$rd, (fsqrt f32:$rs2))], IIC_fpu_sqrts>; def FSQRTD : F3_3u<2, 0b110100, 0b000101010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fsqrtd $rs2, $rd", [(set f64:$rd, (fsqrt f64:$rs2))], IIC_fpu_sqrtd>; def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fsqrtq $rs2, $rd", [(set f128:$rd, (fsqrt f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Add and Subtract Instructions, p. 146 def FADDS : F3_3<2, 0b110100, 0b001000001, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fadds $rs1, $rs2, $rd", [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))], IIC_fpu_fast_instr>; def FADDD : F3_3<2, 0b110100, 0b001000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "faddd $rs1, $rs2, $rd", [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))], IIC_fpu_fast_instr>; def FADDQ : F3_3<2, 0b110100, 0b001000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "faddq $rs1, $rs2, $rd", [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; def FSUBS : F3_3<2, 0b110100, 0b001000101, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fsubs $rs1, $rs2, $rd", [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))], IIC_fpu_fast_instr>; def FSUBD : F3_3<2, 0b110100, 0b001000110, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fsubd $rs1, $rs2, $rd", [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))], IIC_fpu_fast_instr>; def FSUBQ : F3_3<2, 0b110100, 0b001000111, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fsubq $rs1, $rs2, $rd", [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Multiply and Divide Instructions, p. 147 // FMULS generates an erratum on LEON processors, so by disabling this instruction // this will be promoted to use FMULD with doubles instead. let Predicates = [HasNoFmulsFix] in def FMULS : F3_3<2, 0b110100, 0b001001001, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fmuls $rs1, $rs2, $rd", [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))], IIC_fpu_muls>; def FMULD : F3_3<2, 0b110100, 0b001001010, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fmuld $rs1, $rs2, $rd", [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))], IIC_fpu_muld>; def FMULQ : F3_3<2, 0b110100, 0b001001011, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fmulq $rs1, $rs2, $rd", [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; let Predicates = [HasNoFsmuldFix] in def FSMULD : F3_3<2, 0b110100, 0b001101001, (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fsmuld $rs1, $rs2, $rd", [(set f64:$rd, (fmul (fextend f32:$rs1), (fextend f32:$rs2)))], IIC_fpu_muld>; def FDMULQ : F3_3<2, 0b110100, 0b001101110, (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fdmulq $rs1, $rs2, $rd", [(set f128:$rd, (fmul (fextend f64:$rs1), (fextend f64:$rs2)))]>, Requires<[HasHardQuad]>; // FDIVS generates an erratum on LEON processors, so by disabling this instruction // this will be promoted to use FDIVD with doubles instead. def FDIVS : F3_3<2, 0b110100, 0b001001101, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fdivs $rs1, $rs2, $rd", [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))], IIC_fpu_divs>; def FDIVD : F3_3<2, 0b110100, 0b001001110, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fdivd $rs1, $rs2, $rd", [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))], IIC_fpu_divd>; def FDIVQ : F3_3<2, 0b110100, 0b001001111, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fdivq $rs1, $rs2, $rd", [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Compare Instructions, p. 148 // Note: the 2nd template arg is different for these guys. // Note 2: the result of a FCMP is not available until the 2nd cycle // after the instr is retired, but there is no interlock in Sparc V8. // This behavior is modeled with a forced noop after the instruction in // DelaySlotFiller. let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { def FCMPS : F3_3c<2, 0b110101, 0b001010001, (outs), (ins FPRegs:$rs1, FPRegs:$rs2), "fcmps $rs1, $rs2", [(SPcmpfcc f32:$rs1, f32:$rs2)], IIC_fpu_fast_instr>; def FCMPD : F3_3c<2, 0b110101, 0b001010010, (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fcmpd $rs1, $rs2", [(SPcmpfcc f64:$rs1, f64:$rs2)], IIC_fpu_fast_instr>; def FCMPQ : F3_3c<2, 0b110101, 0b001010011, (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fcmpq $rs1, $rs2", [(SPcmpfcc f128:$rs1, f128:$rs2)]>, Requires<[HasHardQuad]>; } //===----------------------------------------------------------------------===// // Instructions for Thread Local Storage(TLS). //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, isAsmParserOnly = 1 in { def TLS_ADDrr : F3_1<2, 0b000000, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym), "add $rs1, $rs2, $rd, $sym", [(set i32:$rd, (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; let mayLoad = 1 in def TLS_LDrr : F3_1<3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), "ld [$addr], $dst, $sym", [(set i32:$dst, (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; let Uses = [O6], isCall = 1, hasDelaySlot = 1 in def TLS_CALL : InstSP<(outs), (ins calltarget:$disp, TLSSym:$sym, variable_ops), "call $disp, $sym", [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)], IIC_jmp_or_call> { bits<30> disp; let op = 1; let Inst{29-0} = disp; } } //===----------------------------------------------------------------------===// // V9 Instructions //===----------------------------------------------------------------------===// // V9 Conditional Moves. let Predicates = [HasV9], Constraints = "$f = $rd" in { // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. let Uses = [ICC], intcc = 1, cc = 0b00 in { def MOVICCrr : F4_1<0b101100, (outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), "mov$cond %icc, $rs2, $rd", [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; def MOVICCri : F4_2<0b101100, (outs IntRegs:$rd), (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), "mov$cond %icc, $simm11, $rd", [(set i32:$rd, (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; } let Uses = [FCC0], intcc = 0, cc = 0b00 in { def MOVFCCrr : F4_1<0b101100, (outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), "mov$cond %fcc0, $rs2, $rd", [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; def MOVFCCri : F4_2<0b101100, (outs IntRegs:$rd), (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), "mov$cond %fcc0, $simm11, $rd", [(set i32:$rd, (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; } let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { def FMOVS_ICC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), "fmovs$cond %icc, $rs2, $rd", [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; def FMOVD_ICC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), "fmovd$cond %icc, $rs2, $rd", [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; def FMOVQ_ICC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), "fmovq$cond %icc, $rs2, $rd", [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>, Requires<[HasHardQuad]>; } let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { def FMOVS_FCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), "fmovs$cond %fcc0, $rs2, $rd", [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; def FMOVD_FCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), "fmovd$cond %fcc0, $rs2, $rd", [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; def FMOVQ_FCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), "fmovq$cond %fcc0, $rs2, $rd", [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>, Requires<[HasHardQuad]>; } } // Floating-Point Move Instructions, p. 164 of the V9 manual. let Predicates = [HasV9] in { def FMOVD : F3_3u<2, 0b110100, 0b000000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fmovd $rs2, $rd", []>; def FMOVQ : F3_3u<2, 0b110100, 0b000000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fmovq $rs2, $rd", []>, Requires<[HasHardQuad]>; def FNEGD : F3_3u<2, 0b110100, 0b000000110, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fnegd $rs2, $rd", [(set f64:$rd, (fneg f64:$rs2))]>; def FNEGQ : F3_3u<2, 0b110100, 0b000000111, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fnegq $rs2, $rd", [(set f128:$rd, (fneg f128:$rs2))]>, Requires<[HasHardQuad]>; def FABSD : F3_3u<2, 0b110100, 0b000001010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fabsd $rs2, $rd", [(set f64:$rd, (fabs f64:$rs2))]>; def FABSQ : F3_3u<2, 0b110100, 0b000001011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fabsq $rs2, $rd", [(set f128:$rd, (fabs f128:$rs2))]>, Requires<[HasHardQuad]>; } // Floating-point compare instruction with %fcc0-%fcc3. def V9FCMPS : F3_3c<2, 0b110101, 0b001010001, (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fcmps $rd, $rs1, $rs2", []>; def V9FCMPD : F3_3c<2, 0b110101, 0b001010010, (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fcmpd $rd, $rs1, $rs2", []>; def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011, (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fcmpq $rd, $rs1, $rs2", []>, Requires<[HasHardQuad]>; let hasSideEffects = 1 in { def V9FCMPES : F3_3c<2, 0b110101, 0b001010101, (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fcmpes $rd, $rs1, $rs2", []>; def V9FCMPED : F3_3c<2, 0b110101, 0b001010110, (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fcmped $rd, $rs1, $rs2", []>; def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111, (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fcmpeq $rd, $rs1, $rs2", []>, Requires<[HasHardQuad]>; } // Floating point conditional move instrucitons with %fcc0-%fcc3. let Predicates = [HasV9] in { let Constraints = "$f = $rd", intcc = 0 in { def V9MOVFCCrr : F4_1<0b101100, (outs IntRegs:$rd), (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), "mov$cond $cc, $rs2, $rd", []>; def V9MOVFCCri : F4_2<0b101100, (outs IntRegs:$rd), (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), "mov$cond $cc, $simm11, $rd", []>; def V9FMOVS_FCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), "fmovs$cond $opf_cc, $rs2, $rd", []>; def V9FMOVD_FCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), "fmovd$cond $opf_cc, $rs2, $rd", []>; def V9FMOVQ_FCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), "fmovq$cond $opf_cc, $rs2, $rd", []>, Requires<[HasHardQuad]>; } // Constraints = "$f = $rd", ... } // let Predicates = [hasV9] // POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear // the top 32-bits before using it. To do this clearing, we use a SRLri X,0. let rs1 = 0 in def POPCrr : F3_1<2, 0b101110, (outs IntRegs:$rd), (ins IntRegs:$rs2), "popc $rs2, $rd", []>, Requires<[HasV9]>; def : Pat<(ctpop i32:$src), (POPCrr (SRLri $src, 0))>; let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13), "membar $simm13", []>; // The CAS instruction, unlike other instructions, only comes in a // form which requires an ASI be provided. The ASI value hardcoded // here is ASI_PRIMARY, the default unprivileged ASI for SparcV9. let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in def CASrr: F3_1_asi<3, 0b111100, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, IntRegs:$swap), "cas [$rs1], $rs2, $rd", [(set i32:$rd, (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>; // CASA is supported as an instruction on some LEON3 and all LEON4 processors. // This version can be automatically lowered from C code, selecting ASI 10 let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in def CASAasi10: F3_1_asi<3, 0b111100, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, IntRegs:$swap), "casa [$rs1] 10, $rs2, $rd", [(set i32:$rd, (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>; // CASA supported on some LEON3 and all LEON4 processors. Same pattern as // CASrr, above, but with a different ASI. This version is supported for // inline assembly lowering only. let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in def CASArr: F3_1_asi<3, 0b111100, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, IntRegs:$swap, i8imm:$asi), "casa [$rs1] $asi, $rs2, $rd", []>; // TODO: Add DAG sequence to lower these instructions. Currently, only provided // as inline assembler-supported instructions. let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in { def SMACrr : F3_1<2, 0b111111, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), "smac $rs1, $rs2, $rd", [], IIC_smac_umac>; def SMACri : F3_2<2, 0b111111, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), "smac $rs1, $simm13, $rd", [], IIC_smac_umac>; def UMACrr : F3_1<2, 0b111110, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), "umac $rs1, $rs2, $rd", [], IIC_smac_umac>; def UMACri : F3_2<2, 0b111110, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), "umac $rs1, $simm13, $rd", [], IIC_smac_umac>; } let Defs = [ICC] in { defm TADDCC : F3_12np<"taddcc", 0b100000>; defm TSUBCC : F3_12np<"tsubcc", 0b100001>; let hasSideEffects = 1 in { defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; } } // Section A.43 - Read Privileged Register Instructions let Predicates = [HasV9] in { let rs2 = 0 in def RDPR : F3_1<2, 0b101010, (outs IntRegs:$rd), (ins PRRegs:$rs1), "rdpr $rs1, $rd", []>; } // Section A.62 - Write Privileged Register Instructions let Predicates = [HasV9] in { def WRPRrr : F3_1<2, 0b110010, (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "wrpr $rs1, $rs2, $rd", []>; def WRPRri : F3_2<2, 0b110010, (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "wrpr $rs1, $simm13, $rd", []>; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Small immediates. def : Pat<(i32 simm13:$val), (ORri (i32 G0), imm:$val)>; // Arbitrary immediates. def : Pat<(i32 imm:$val), (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; // Global addresses, constant pool entries let Predicates = [Is32Bit] in { def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; // GlobalTLS addresses def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; // Blockaddress def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; // Add reg, lo. This is used when taking the addr of a global/constpool entry. def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), (ADDri $r, tblockaddress:$in)>; } // Calls: def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; // Map integer extload's to zextloads. def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; // zextload bool -> zextload byte def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; // store 0, addr -> store %g0, addr def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; // store bar for all atomic_fence in V8. let Predicates = [HasNoV9] in def : Pat<(atomic_fence imm, imm), (STBAR)>; // atomic_load addr -> load addr def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>; def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>; def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>; def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>; // atomic_store val, addr -> store val, addr def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>; def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>; def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>; def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>; def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>; def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>; // extract_vector def : Pat<(extractelt (v2i32 IntPair:$Rn), 0), (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>; def : Pat<(extractelt (v2i32 IntPair:$Rn), 1), (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>; // build_vector def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)), (INSERT_SUBREG (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even), (i32 IntRegs:$a2), sub_odd)>; include "SparcInstr64Bit.td" include "SparcInstrVIS.td" include "SparcInstrAliases.td"