//===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass mutates the form of VSX FMA instructions to avoid unnecessary // copies. // //===----------------------------------------------------------------------===// #include "PPCInstrInfo.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCMachineFunctionInfo.h" #include "PPCTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // Temporarily disable FMA mutation by default, since it doesn't handle // cross-basic-block intervals well. // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html // http://reviews.llvm.org/D17087 static cl::opt<bool> DisableVSXFMAMutate( "disable-ppc-vsx-fma-mutation", cl::desc("Disable VSX FMA instruction mutation"), cl::init(true), cl::Hidden); #define DEBUG_TYPE "ppc-vsx-fma-mutate" namespace llvm { namespace PPC { int getAltVSXFMAOpcode(uint16_t Opcode); } } namespace { // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers // (Altivec and scalar floating-point registers), we need to transform the // copies into subregister copies with other restrictions. struct PPCVSXFMAMutate : public MachineFunctionPass { static char ID; PPCVSXFMAMutate() : MachineFunctionPass(ID) { initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); } LiveIntervals *LIS; const PPCInstrInfo *TII; protected: bool processBlock(MachineBasicBlock &MBB) { bool Changed = false; MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); I != IE; ++I) { MachineInstr *MI = I; // The default (A-type) VSX FMA form kills the addend (it is taken from // the target register, which is then updated to reflect the result of // the FMA). If the instruction, however, kills one of the registers // used for the product, then we can use the M-form instruction (which // will take that value from the to-be-defined register). int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); if (AltOpc == -1) continue; // This pass is run after register coalescing, and so we're looking for // a situation like this: // ... // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 // ... // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 // ... // Where we can eliminate the copy by changing from the A-type to the // M-type instruction. Specifically, for this example, this means: // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 // is replaced by: // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 SlotIndex FMAIdx = LIS->getInstructionIndex(*MI); VNInfo *AddendValNo = LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); // This can be null if the register is undef. if (!AddendValNo) continue; MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); // The addend and this instruction must be in the same block. if (!AddendMI || AddendMI->getParent() != MI->getParent()) continue; // The addend must be a full copy within the same register class. if (!AddendMI->isFullCopy()) continue; unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != MRI.getRegClass(AddendSrcReg)) continue; } else { // If AddendSrcReg is a physical register, make sure the destination // register class contains it. if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) ->contains(AddendSrcReg)) continue; } // In theory, there could be other uses of the addend copy before this // fma. We could deal with this, but that would require additional // logic below and I suspect it will not occur in any relevant // situations. Additionally, check whether the copy source is killed // prior to the fma. In order to replace the addend here with the // source of the copy, it must still be live here. We can't use // interval testing for a physical register, so as long as we're // walking the MIs we may as well test liveness here. // // FIXME: There is a case that occurs in practice, like this: // %vreg9<def> = COPY %F1; VSSRC:%vreg9 // ... // %vreg6<def> = COPY %vreg9; VSSRC:%vreg6,%vreg9 // %vreg7<def> = COPY %vreg9; VSSRC:%vreg7,%vreg9 // %vreg9<def,tied1> = XSMADDASP %vreg9<tied0>, %vreg1, %vreg4; VSSRC: // %vreg6<def,tied1> = XSMADDASP %vreg6<tied0>, %vreg1, %vreg2; VSSRC: // %vreg7<def,tied1> = XSMADDASP %vreg7<tied0>, %vreg1, %vreg3; VSSRC: // which prevents an otherwise-profitable transformation. bool OtherUsers = false, KillsAddendSrc = false; for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); J != JE; --J) { if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { OtherUsers = true; break; } if (J->modifiesRegister(AddendSrcReg, TRI) || J->killsRegister(AddendSrcReg, TRI)) { KillsAddendSrc = true; break; } } if (OtherUsers || KillsAddendSrc) continue; // The transformation doesn't work well with things like: // %vreg5 = A-form-op %vreg5, %vreg11, %vreg5; // unless vreg11 is also a kill, so skip when it is not, // and check operand 3 to see it is also a kill to handle the case: // %vreg5 = A-form-op %vreg5, %vreg5, %vreg11; // where vreg5 and vreg11 are both kills. This case would be skipped // otherwise. unsigned OldFMAReg = MI->getOperand(0).getReg(); // Find one of the product operands that is killed by this instruction. unsigned KilledProdOp = 0, OtherProdOp = 0; unsigned Reg2 = MI->getOperand(2).getReg(); unsigned Reg3 = MI->getOperand(3).getReg(); if (LIS->getInterval(Reg2).Query(FMAIdx).isKill() && Reg2 != OldFMAReg) { KilledProdOp = 2; OtherProdOp = 3; } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill() && Reg3 != OldFMAReg) { KilledProdOp = 3; OtherProdOp = 2; } // If there are no usable killed product operands, then this // transformation is likely not profitable. if (!KilledProdOp) continue; // If the addend copy is used only by this MI, then the addend source // register is likely not live here. This could be fixed (based on the // legality checks above, the live range for the addend source register // could be extended), but it seems likely that such a trivial copy can // be coalesced away later, and thus is not worth the effort. if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) && !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) continue; // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); bool AddRegKill = AddendMI->getOperand(1).isKill(); bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); bool AddRegUndef = AddendMI->getOperand(1).isUndef(); bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); // If there isn't a class that fits, we can't perform the transform. // This is needed for correctness with a mixture of VSX and Altivec // instructions to make sure that a low VSX register is not assigned to // the Altivec instruction. if (!MRI.constrainRegClass(KilledProdReg, MRI.getRegClass(OldFMAReg))) continue; assert(OldFMAReg == AddendMI->getOperand(0).getReg() && "Addend copy not tied to old FMA output!"); DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); MI->getOperand(0).setReg(KilledProdReg); MI->getOperand(1).setReg(KilledProdReg); MI->getOperand(3).setReg(AddendSrcReg); MI->getOperand(0).setSubReg(KilledProdSubReg); MI->getOperand(1).setSubReg(KilledProdSubReg); MI->getOperand(3).setSubReg(AddSubReg); MI->getOperand(1).setIsKill(KilledProdRegKill); MI->getOperand(3).setIsKill(AddRegKill); MI->getOperand(1).setIsUndef(KilledProdRegUndef); MI->getOperand(3).setIsUndef(AddRegUndef); MI->setDesc(TII->get(AltOpc)); // If the addend is also a multiplicand, replace it with the addend // source in both places. if (OtherProdReg == AddendMI->getOperand(0).getReg()) { MI->getOperand(2).setReg(AddendSrcReg); MI->getOperand(2).setSubReg(AddSubReg); MI->getOperand(2).setIsKill(AddRegKill); MI->getOperand(2).setIsUndef(AddRegUndef); } else { MI->getOperand(2).setReg(OtherProdReg); MI->getOperand(2).setSubReg(OtherProdSubReg); MI->getOperand(2).setIsKill(OtherProdRegKill); MI->getOperand(2).setIsUndef(OtherProdRegUndef); } DEBUG(dbgs() << " -> " << *MI); // The killed product operand was killed here, so we can reuse it now // for the result of the fma. LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); UI != UE;) { MachineOperand &UseMO = *UI; MachineInstr *UseMI = UseMO.getParent(); ++UI; // Don't replace the result register of the copy we're about to erase. if (UseMI == AddendMI) continue; UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI); } // Extend the live intervals of the killed product operand to hold the // fma result. LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); AI != AE; ++AI) { // Don't add the segment that corresponds to the original copy. if (AI->valno == AddendValNo) continue; VNInfo *NewFMAValNo = NewFMAInt.getNextValue(AI->start, LIS->getVNInfoAllocator()); NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, NewFMAValNo)); } DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); // Extend the live interval of the addend source (it might end at the // copy to be removed, or somewhere in between there and here). This // is necessary only if it is a physical register. if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid(); ++Units) { unsigned Unit = *Units; LiveRange &AddendSrcRange = LIS->getRegUnit(Unit); AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB), FMAIdx.getRegSlot()); DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n'); } FMAInt.removeValNo(FMAValNo); DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); // Remove the (now unused) copy. DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); LIS->RemoveMachineInstrFromMaps(*AddendMI); AddendMI->eraseFromParent(); Changed = true; } return Changed; } public: bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(*MF.getFunction())) return false; // If we don't have VSX then go ahead and return without doing // anything. const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); if (!STI.hasVSX()) return false; LIS = &getAnalysis<LiveIntervals>(); TII = STI.getInstrInfo(); bool Changed = false; if (DisableVSXFMAMutate) return Changed; for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { MachineBasicBlock &B = *I++; if (processBlock(B)) Changed = true; } return Changed; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<LiveIntervals>(); AU.addPreserved<LiveIntervals>(); AU.addRequired<SlotIndexes>(); AU.addPreserved<SlotIndexes>(); MachineFunctionPass::getAnalysisUsage(AU); } }; } INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, "PowerPC VSX FMA Mutation", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, "PowerPC VSX FMA Mutation", false, false) char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; char PPCVSXFMAMutate::ID = 0; FunctionPass *llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }