//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PowerPC assembly language. This printer is // the output mechanism used by `llc'. // // Documentation at http://developer.apple.com/documentation/DeveloperTools/ // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html // //===----------------------------------------------------------------------===// #include "PPC.h" #include "InstPrinter/PPCInstPrinter.h" #include "MCTargetDesc/PPCMCExpr.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPCMachineFunctionInfo.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "PPCTargetStreamer.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbolELF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "asmprinter" namespace { class PPCAsmPrinter : public AsmPrinter { protected: MapVector<MCSymbol *, MCSymbol *> TOC; const PPCSubtarget *Subtarget; StackMaps SM; public: explicit PPCAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} const char *getPassName() const override { return "PowerPC Assembly Printer"; } MCSymbol *lookUpOrCreateTOCEntry(MCSymbol *Sym); virtual bool doInitialization(Module &M) override { if (!TOC.empty()) TOC.clear(); return AsmPrinter::doInitialization(M); } void EmitInstruction(const MachineInstr *MI) override; void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) override; bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) override; void EmitEndOfAsmFile(Module &M) override; void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); bool runOnMachineFunction(MachineFunction &MF) override { Subtarget = &MF.getSubtarget<PPCSubtarget>(); return AsmPrinter::runOnMachineFunction(MF); } }; /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux class PPCLinuxAsmPrinter : public PPCAsmPrinter { public: explicit PPCLinuxAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) : PPCAsmPrinter(TM, std::move(Streamer)) {} const char *getPassName() const override { return "Linux PPC Assembly Printer"; } bool doFinalization(Module &M) override; void EmitStartOfAsmFile(Module &M) override; void EmitFunctionEntryLabel() override; void EmitFunctionBodyStart() override; void EmitFunctionBodyEnd() override; }; /// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac /// OS X class PPCDarwinAsmPrinter : public PPCAsmPrinter { public: explicit PPCDarwinAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) : PPCAsmPrinter(TM, std::move(Streamer)) {} const char *getPassName() const override { return "Darwin PPC Assembly Printer"; } bool doFinalization(Module &M) override; void EmitStartOfAsmFile(Module &M) override; }; } // end of anonymous namespace /// stripRegisterPrefix - This method strips the character prefix from a /// register name so that only the number is left. Used by for linux asm. static const char *stripRegisterPrefix(const char *RegName) { switch (RegName[0]) { case 'r': case 'f': case 'q': // for QPX case 'v': if (RegName[1] == 's') return RegName + 2; return RegName + 1; case 'c': if (RegName[1] == 'r') return RegName + 2; } return RegName; } void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { const DataLayout &DL = getDataLayout(); const MachineOperand &MO = MI->getOperand(OpNo); switch (MO.getType()) { case MachineOperand::MO_Register: { const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); // Linux assembler (Others?) does not take register mnemonics. // FIXME - What about special registers used in mfspr/mtspr? if (!Subtarget->isDarwin()) RegName = stripRegisterPrefix(RegName); O << RegName; return; } case MachineOperand::MO_Immediate: O << MO.getImm(); return; case MachineOperand::MO_MachineBasicBlock: MO.getMBB()->getSymbol()->print(O, MAI); return; case MachineOperand::MO_ConstantPoolIndex: O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << MO.getIndex(); return; case MachineOperand::MO_BlockAddress: GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); return; case MachineOperand::MO_GlobalAddress: { // Computing the address of a global symbol, not calling it. const GlobalValue *GV = MO.getGlobal(); MCSymbol *SymToPrint; // External or weakly linked global variables need non-lazily-resolved stubs if (Subtarget->hasLazyResolverStub(GV)) { SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry( SymToPrint); if (!StubSym.getPointer()) StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), !GV->hasInternalLinkage()); } else { SymToPrint = getSymbol(GV); } SymToPrint->print(O, MAI); printOffset(MO.getOffset(), O); return; } default: O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; return; } } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); case 'c': // Don't print "$" before a global var name or constant. break; // PPC never has a prefix. case 'L': // Write second word of DImode reference. // Verify that this operand has two consecutive registers. if (!MI->getOperand(OpNo).isReg() || OpNo+1 == MI->getNumOperands() || !MI->getOperand(OpNo+1).isReg()) return true; ++OpNo; // Return the high-part. break; case 'I': // Write 'i' if an integer constant, otherwise nothing. Used to print // addi vs add, etc. if (MI->getOperand(OpNo).isImm()) O << "i"; return false; } } printOperand(MI, OpNo, O); return false; } // At the moment, all inline asm memory operands are a single register. // In any case, the output of this routine should always be just one // assembler operand. bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'y': // A memory reference for an X-form instruction { const char *RegName = "r0"; if (!Subtarget->isDarwin()) RegName = stripRegisterPrefix(RegName); O << RegName << ", "; printOperand(MI, OpNo, O); return false; } case 'U': // Print 'u' for update form. case 'X': // Print 'x' for indexed form. { // FIXME: Currently for PowerPC memory operands are always loaded // into a register, so we never get an update or indexed form. // This is bad even for offset forms, since even if we know we // have a value in -16(r1), we will generate a load into r<n> // and then load from 0(r<n>). Until that issue is fixed, // tolerate 'U' and 'X' but don't output anything. assert(MI->getOperand(OpNo).isReg()); return false; } } } assert(MI->getOperand(OpNo).isReg()); O << "0("; printOperand(MI, OpNo, O); O << ")"; return false; } /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry /// exists for it. If not, create one. Then return a symbol that references /// the TOC entry. MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) { MCSymbol *&TOCEntry = TOC[Sym]; if (!TOCEntry) TOCEntry = createTempSymbol("C"); return TOCEntry; } void PPCAsmPrinter::EmitEndOfAsmFile(Module &M) { SM.serializeToStackMapSection(); } void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { unsigned NumNOPBytes = MI.getOperand(1).getImm(); SM.recordStackMap(MI); assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); // Scan ahead to trim the shadow. const MachineBasicBlock &MBB = *MI.getParent(); MachineBasicBlock::const_iterator MII(MI); ++MII; while (NumNOPBytes > 0) { if (MII == MBB.end() || MII->isCall() || MII->getOpcode() == PPC::DBG_VALUE || MII->getOpcode() == TargetOpcode::PATCHPOINT || MII->getOpcode() == TargetOpcode::STACKMAP) break; ++MII; NumNOPBytes -= 4; } // Emit nops. for (unsigned i = 0; i < NumNOPBytes; i += 4) EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); } // Lower a patchpoint of the form: // [<def>], <id>, <numBytes>, <target>, <numArgs> void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { SM.recordPatchPoint(MI); PatchPointOpers Opers(&MI); unsigned EncodedBytes = 0; const MachineOperand &CalleeMO = Opers.getMetaOper(PatchPointOpers::TargetPos); if (CalleeMO.isImm()) { int64_t CallTarget = Opers.getMetaOper(PatchPointOpers::TargetPos).getImm(); if (CallTarget) { assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && "High 16 bits of call target should be zero."); unsigned ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); EncodedBytes = 0; // Materialize the jump address: EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) .addReg(ScratchReg) .addImm((CallTarget >> 32) & 0xFFFF)); ++EncodedBytes; EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) .addReg(ScratchReg) .addReg(ScratchReg) .addImm(32).addImm(16)); ++EncodedBytes; EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) .addReg(ScratchReg) .addReg(ScratchReg) .addImm((CallTarget >> 16) & 0xFFFF)); ++EncodedBytes; EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) .addReg(ScratchReg) .addReg(ScratchReg) .addImm(CallTarget & 0xFFFF)); // Save the current TOC pointer before the remote call. int TOCSaveOffset = Subtarget->isELFv2ABI() ? 24 : 40; EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) .addReg(PPC::X2) .addImm(TOCSaveOffset) .addReg(PPC::X1)); ++EncodedBytes; // If we're on ELFv1, then we need to load the actual function pointer // from the function descriptor. if (!Subtarget->isELFv2ABI()) { // Load the new TOC pointer and the function address, but not r11 // (needing this is rare, and loading it here would prevent passing it // via a 'nest' parameter. EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) .addReg(PPC::X2) .addImm(8) .addReg(ScratchReg)); ++EncodedBytes; EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) .addReg(ScratchReg) .addImm(0) .addReg(ScratchReg)); ++EncodedBytes; } EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) .addReg(ScratchReg)); ++EncodedBytes; EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); ++EncodedBytes; // Restore the TOC pointer after the call. EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) .addReg(PPC::X2) .addImm(TOCSaveOffset) .addReg(PPC::X1)); ++EncodedBytes; } } else if (CalleeMO.isGlobal()) { const GlobalValue *GValue = CalleeMO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) .addExpr(SymVar)); EncodedBytes += 2; } // Each instruction is 4 bytes. EncodedBytes *= 4; // Emit padding. unsigned NumBytes = Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm(); assert(NumBytes >= EncodedBytes && "Patchpoint can't request size less than the length of a call."); assert((NumBytes - EncodedBytes) % 4 == 0 && "Invalid number of NOP bytes requested!"); for (unsigned i = EncodedBytes; i < NumBytes; i += 4) EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); } /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a /// call to __tls_get_addr to the current output stream. void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK) { StringRef Name = "__tls_get_addr"; MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; assert(MI->getOperand(0).isReg() && ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && "GETtls[ld]ADDR[32] must define GPR3"); assert(MI->getOperand(1).isReg() && ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && "GETtls[ld]ADDR[32] must read GPR3"); if (!Subtarget->isPPC64() && !Subtarget->isDarwin() && isPositionIndependent()) Kind = MCSymbolRefExpr::VK_PLT; const MCSymbolRefExpr *TlsRef = MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(Subtarget->isPPC64() ? PPC::BL8_NOP_TLS : PPC::BL_TLS) .addExpr(TlsRef) .addExpr(SymVar)); } /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to /// the current output stream. /// void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) { MCInst TmpInst; bool isPPC64 = Subtarget->isPPC64(); bool isDarwin = TM.getTargetTriple().isOSDarwin(); const Module *M = MF->getFunction()->getParent(); PICLevel::Level PL = M->getPICLevel(); // Lower multi-instruction pseudo operations. switch (MI->getOpcode()) { default: break; case TargetOpcode::DBG_VALUE: llvm_unreachable("Should be handled target independently"); case TargetOpcode::STACKMAP: return LowerSTACKMAP(SM, *MI); case TargetOpcode::PATCHPOINT: return LowerPATCHPOINT(SM, *MI); case PPC::MoveGOTtoLR: { // Transform %LR = MoveGOTtoLR // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: // blrl // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); const MCExpr *OffsExpr = MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, MCSymbolRefExpr::VK_PPC_LOCAL, OutContext), MCConstantExpr::create(4, OutContext), OutContext); // Emit the 'bl'. EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); return; } case PPC::MovePCtoLR: case PPC::MovePCtoLR8: { // Transform %LR = MovePCtoLR // Into this, where the label is the PIC base: // bl L1$pb // L1$pb: MCSymbol *PICBase = MF->getPICBaseSymbol(); // Emit the 'bl'. EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) // FIXME: We would like an efficient form for this, so we // don't have to do a lot of extra uniquing. .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); // Emit the label. OutStreamer->EmitLabel(PICBase); return; } case PPC::UpdateGBR: { // Transform %Rd = UpdateGBR(%Rt, %Ri) // Into: lwz %Rt, .L0$poff - .L0$pb(%Ri) // add %Rd, %Rt, %Ri // Get the offset from the GOT Base Register to the GOT LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); MCSymbol *PICOffset = MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(); TmpInst.setOpcode(PPC::LWZ); const MCExpr *Exp = MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); const MCExpr *PB = MCSymbolRefExpr::create(MF->getPICBaseSymbol(), MCSymbolRefExpr::VK_None, OutContext); const MCOperand TR = TmpInst.getOperand(1); const MCOperand PICR = TmpInst.getOperand(0); // Step 1: lwz %Rt, .L$poff - .L$pb(%Ri) TmpInst.getOperand(1) = MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); TmpInst.getOperand(0) = TR; TmpInst.getOperand(2) = PICR; EmitToStreamer(*OutStreamer, TmpInst); TmpInst.setOpcode(PPC::ADD4); TmpInst.getOperand(0) = PICR; TmpInst.getOperand(1) = TR; TmpInst.getOperand(2) = PICR; EmitToStreamer(*OutStreamer, TmpInst); return; } case PPC::LWZtoc: { // Transform %R3 = LWZtoc <ga:@min1>, %R2 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); // Change the opcode to LWZ, and the global address operand to be a // reference to the GOT entry we will synthesize later. TmpInst.setOpcode(PPC::LWZ); const MachineOperand &MO = MI->getOperand(1); // Map symbol -> label of TOC entry assert(MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()); MCSymbol *MOSymbol = nullptr; if (MO.isGlobal()) MOSymbol = getSymbol(MO.getGlobal()); else if (MO.isCPI()) MOSymbol = GetCPISymbol(MO.getIndex()); else if (MO.isJTI()) MOSymbol = GetJTISymbol(MO.getIndex()); else if (MO.isBlockAddress()) MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress()); if (PL == PICLevel::SmallPIC) { const MCExpr *Exp = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, OutContext); TmpInst.getOperand(1) = MCOperand::createExpr(Exp); } else { MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); const MCExpr *PB = MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); TmpInst.getOperand(1) = MCOperand::createExpr(Exp); } EmitToStreamer(*OutStreamer, TmpInst); return; } case PPC::LDtocJTI: case PPC::LDtocCPT: case PPC::LDtocBA: case PPC::LDtoc: { // Transform %X3 = LDtoc <ga:@min1>, %X2 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); // Change the opcode to LD, and the global address operand to be a // reference to the TOC entry we will synthesize later. TmpInst.setOpcode(PPC::LD); const MachineOperand &MO = MI->getOperand(1); // Map symbol -> label of TOC entry assert(MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()); MCSymbol *MOSymbol = nullptr; if (MO.isGlobal()) MOSymbol = getSymbol(MO.getGlobal()); else if (MO.isCPI()) MOSymbol = GetCPISymbol(MO.getIndex()); else if (MO.isJTI()) MOSymbol = GetJTISymbol(MO.getIndex()); else if (MO.isBlockAddress()) MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress()); MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC, OutContext); TmpInst.getOperand(1) = MCOperand::createExpr(Exp); EmitToStreamer(*OutStreamer, TmpInst); return; } case PPC::ADDIStocHA: { // Transform %Xd = ADDIStocHA %X2, <ga:@sym> LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); // Change the opcode to ADDIS8. If the global address is external, has // common linkage, is a non-local function address, or is a jump table // address, then generate a TOC entry and reference that. Otherwise // reference the symbol directly. TmpInst.setOpcode(PPC::ADDIS8); const MachineOperand &MO = MI->getOperand(2); assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && "Invalid operand for ADDIStocHA!"); MCSymbol *MOSymbol = nullptr; bool GlobalToc = false; if (MO.isGlobal()) { const GlobalValue *GV = MO.getGlobal(); MOSymbol = getSymbol(GV); unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); GlobalToc = (GVFlags & PPCII::MO_NLP_FLAG); } else if (MO.isCPI()) { MOSymbol = GetCPISymbol(MO.getIndex()); } else if (MO.isJTI()) { MOSymbol = GetJTISymbol(MO.getIndex()); } else if (MO.isBlockAddress()) { MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress()); } if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || TM.getCodeModel() == CodeModel::Large) MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); const MCExpr *Exp = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA, OutContext); TmpInst.getOperand(2) = MCOperand::createExpr(Exp); EmitToStreamer(*OutStreamer, TmpInst); return; } case PPC::LDtocL: { // Transform %Xd = LDtocL <ga:@sym>, %Xs LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); // Change the opcode to LD. If the global address is external, has // common linkage, or is a jump table address, then reference the // associated TOC entry. Otherwise reference the symbol directly. TmpInst.setOpcode(PPC::LD); const MachineOperand &MO = MI->getOperand(1); assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && "Invalid operand for LDtocL!"); MCSymbol *MOSymbol = nullptr; if (MO.isJTI()) MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex())); else if (MO.isBlockAddress()) { MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress()); MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); } else if (MO.isCPI()) { MOSymbol = GetCPISymbol(MO.getIndex()); if (TM.getCodeModel() == CodeModel::Large) MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); } else if (MO.isGlobal()) { const GlobalValue *GV = MO.getGlobal(); MOSymbol = getSymbol(GV); DEBUG( unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); assert((GVFlags & PPCII::MO_NLP_FLAG) && "LDtocL used on symbol that could be accessed directly is " "invalid. Must match ADDIStocHA.")); MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); } const MCExpr *Exp = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); TmpInst.getOperand(1) = MCOperand::createExpr(Exp); EmitToStreamer(*OutStreamer, TmpInst); return; } case PPC::ADDItocL: { // Transform %Xd = ADDItocL %Xs, <ga:@sym> LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); // Change the opcode to ADDI8. If the global address is external, then // generate a TOC entry and reference that. Otherwise reference the // symbol directly. TmpInst.setOpcode(PPC::ADDI8); const MachineOperand &MO = MI->getOperand(2); assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL"); MCSymbol *MOSymbol = nullptr; if (MO.isGlobal()) { const GlobalValue *GV = MO.getGlobal(); DEBUG( unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); assert ( !(GVFlags & PPCII::MO_NLP_FLAG) && "Interposable definitions must use indirect access.")); MOSymbol = getSymbol(GV); } else if (MO.isCPI()) { MOSymbol = GetCPISymbol(MO.getIndex()); } const MCExpr *Exp = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); TmpInst.getOperand(2) = MCOperand::createExpr(Exp); EmitToStreamer(*OutStreamer, TmpInst); return; } case PPC::ADDISgotTprelHA: { // Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym> // Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC"); const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymGotTprel = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(SymGotTprel)); return; } case PPC::LDgotTprelL: case PPC::LDgotTprelL32: { // Transform %Xd = LDgotTprelL <ga:@sym>, %Xs LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); // Change the opcode to LD. TmpInst.setOpcode(isPPC64 ? PPC::LD : PPC::LWZ); const MachineOperand &MO = MI->getOperand(1); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *Exp = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO, OutContext); TmpInst.getOperand(1) = MCOperand::createExpr(Exp); EmitToStreamer(*OutStreamer, TmpInst); return; } case PPC::PPC32PICGOT: { MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); MCSymbol *GOTRef = OutContext.createTempSymbol(); MCSymbol *NextInstr = OutContext.createTempSymbol(); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) // FIXME: We would like an efficient form for this, so we don't have to do // a lot of extra uniquing. .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); const MCExpr *OffsExpr = MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), MCSymbolRefExpr::create(GOTRef, OutContext), OutContext); OutStreamer->EmitLabel(GOTRef); OutStreamer->EmitValue(OffsExpr, 4); OutStreamer->EmitLabel(NextInstr); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) .addReg(MI->getOperand(0).getReg())); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) .addReg(MI->getOperand(1).getReg()) .addImm(0) .addReg(MI->getOperand(0).getReg())); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addReg(MI->getOperand(0).getReg())); return; } case PPC::PPC32GOT: { MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) .addReg(MI->getOperand(0).getReg()) .addExpr(SymGotTlsL)); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(0).getReg()) .addExpr(SymGotTlsHA)); return; } case PPC::ADDIStlsgdHA: { // Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym> // Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC"); const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(SymGotTlsGD)); return; } case PPC::ADDItlsgdL: // Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym> // Into: %Xd = ADDI8 %Xs, sym@got@tlsgd@l case PPC::ADDItlsgdL32: { // Transform: %Rd = ADDItlsgdL32 %Rs, <ga:@sym> // Into: %Rd = ADDI %Rs, sym@got@tlsgd const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( MOSymbol, Subtarget->isPPC64() ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(SymGotTlsGD)); return; } case PPC::GETtlsADDR: // Transform: %X3 = GETtlsADDR %X3, <ga:@sym> // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) case PPC::GETtlsADDR32: { // Transform: %R3 = GETtlsADDR32 %R3, <ga:@sym> // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); return; } case PPC::ADDIStlsldHA: { // Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym> // Into: %Xd = ADDIS8 %X2, sym@got@tlsld@ha assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC"); const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(SymGotTlsLD)); return; } case PPC::ADDItlsldL: // Transform: %Xd = ADDItlsldL %Xs, <ga:@sym> // Into: %Xd = ADDI8 %Xs, sym@got@tlsld@l case PPC::ADDItlsldL32: { // Transform: %Rd = ADDItlsldL32 %Rs, <ga:@sym> // Into: %Rd = ADDI %Rs, sym@got@tlsld const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( MOSymbol, Subtarget->isPPC64() ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(SymGotTlsLD)); return; } case PPC::GETtlsldADDR: // Transform: %X3 = GETtlsldADDR %X3, <ga:@sym> // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) case PPC::GETtlsldADDR32: { // Transform: %R3 = GETtlsldADDR32 %R3, <ga:@sym> // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); return; } case PPC::ADDISdtprelHA: // Transform: %Xd = ADDISdtprelHA %Xs, <ga:@sym> // Into: %Xd = ADDIS8 %Xs, sym@dtprel@ha case PPC::ADDISdtprelHA32: { // Transform: %Rd = ADDISdtprelHA32 %Rs, <ga:@sym> // Into: %Rd = ADDIS %Rs, sym@dtprel@ha const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymDtprel = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, OutContext); EmitToStreamer( *OutStreamer, MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDIS8 : PPC::ADDIS) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(SymDtprel)); return; } case PPC::ADDIdtprelL: // Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym> // Into: %Xd = ADDI8 %Xs, sym@dtprel@l case PPC::ADDIdtprelL32: { // Transform: %Rd = ADDIdtprelL32 %Rs, <ga:@sym> // Into: %Rd = ADDI %Rs, sym@dtprel@l const MachineOperand &MO = MI->getOperand(2); const GlobalValue *GValue = MO.getGlobal(); MCSymbol *MOSymbol = getSymbol(GValue); const MCExpr *SymDtprel = MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(SymDtprel)); return; } case PPC::MFOCRF: case PPC::MFOCRF8: if (!Subtarget->hasMFOCRF()) { // Transform: %R3 = MFOCRF %CR7 // Into: %R3 = MFCR ;; cr7 unsigned NewOpcode = MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; OutStreamer->AddComment(PPCInstPrinter:: getRegisterName(MI->getOperand(1).getReg())); EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) .addReg(MI->getOperand(0).getReg())); return; } break; case PPC::MTOCRF: case PPC::MTOCRF8: if (!Subtarget->hasMFOCRF()) { // Transform: %CR7 = MTOCRF %R3 // Into: MTCRF mask, %R3 ;; cr7 unsigned NewOpcode = MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; unsigned Mask = 0x80 >> OutContext.getRegisterInfo() ->getEncodingValue(MI->getOperand(0).getReg()); OutStreamer->AddComment(PPCInstPrinter:: getRegisterName(MI->getOperand(0).getReg())); EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) .addImm(Mask) .addReg(MI->getOperand(1).getReg())); return; } break; case PPC::LD: case PPC::STD: case PPC::LWA_32: case PPC::LWA: { // Verify alignment is legal, so we don't create relocations // that can't be supported. // FIXME: This test is currently disabled for Darwin. The test // suite shows a handful of test cases that fail this check for // Darwin. Those need to be investigated before this sanity test // can be enabled for those subtargets. if (!Subtarget->isDarwin()) { unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; const MachineOperand &MO = MI->getOperand(OpNum); if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4) llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); } // Now process the instruction normally. break; } } LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin); EmitToStreamer(*OutStreamer, TmpInst); } void PPCLinuxAsmPrinter::EmitStartOfAsmFile(Module &M) { if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { PPCTargetStreamer *TS = static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); if (TS) TS->emitAbiVersion(2); } if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || !isPositionIndependent()) return AsmPrinter::EmitStartOfAsmFile(M); if (M.getPICLevel() == PICLevel::SmallPIC) return AsmPrinter::EmitStartOfAsmFile(M); OutStreamer->SwitchSection(OutContext.getELFSection( ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); MCSymbol *CurrentPos = OutContext.createTempSymbol(); OutStreamer->EmitLabel(CurrentPos); // The GOT pointer points to the middle of the GOT, in order to reference the // entire 64kB range. 0x8000 is the midpoint. const MCExpr *tocExpr = MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), MCConstantExpr::create(0x8000, OutContext), OutContext); OutStreamer->EmitAssignment(TOCSym, tocExpr); OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); } void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() { // linux/ppc32 - Normal entry label. if (!Subtarget->isPPC64() && (!isPositionIndependent() || MF->getFunction()->getParent()->getPICLevel() == PICLevel::SmallPIC)) return AsmPrinter::EmitFunctionEntryLabel(); if (!Subtarget->isPPC64()) { const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); if (PPCFI->usesPICBase()) { MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(); MCSymbol *PICBase = MF->getPICBaseSymbol(); OutStreamer->EmitLabel(RelocSymbol); const MCExpr *OffsExpr = MCBinaryExpr::createSub( MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext), MCSymbolRefExpr::create(PICBase, OutContext), OutContext); OutStreamer->EmitValue(OffsExpr, 4); OutStreamer->EmitLabel(CurrentFnSym); return; } else return AsmPrinter::EmitFunctionEntryLabel(); } // ELFv2 ABI - Normal entry label. if (Subtarget->isELFv2ABI()) { // In the Large code model, we allow arbitrary displacements between // the text section and its associated TOC section. We place the // full 8-byte offset to the TOC in memory immediatedly preceding // the function global entry point. if (TM.getCodeModel() == CodeModel::Large && !MF->getRegInfo().use_empty(PPC::X2)) { const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(); const MCExpr *TOCDeltaExpr = MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), MCSymbolRefExpr::create(GlobalEPSymbol, OutContext), OutContext); OutStreamer->EmitLabel(PPCFI->getTOCOffsetSymbol()); OutStreamer->EmitValue(TOCDeltaExpr, 8); } return AsmPrinter::EmitFunctionEntryLabel(); } // Emit an official procedure descriptor. MCSectionSubPair Current = OutStreamer->getCurrentSection(); MCSectionELF *Section = OutStreamer->getContext().getELFSection( ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); OutStreamer->SwitchSection(Section); OutStreamer->EmitLabel(CurrentFnSym); OutStreamer->EmitValueToAlignment(8); MCSymbol *Symbol1 = CurrentFnSymForSize; // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function // entry point. OutStreamer->EmitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 8 /*size*/); MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); // Generates a R_PPC64_TOC relocation for TOC base insertion. OutStreamer->EmitValue( MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 8/*size*/); // Emit a null environment pointer. OutStreamer->EmitIntValue(0, 8 /* size */); OutStreamer->SwitchSection(Current.first, Current.second); } bool PPCLinuxAsmPrinter::doFinalization(Module &M) { const DataLayout &DL = getDataLayout(); bool isPPC64 = DL.getPointerSizeInBits() == 64; PPCTargetStreamer &TS = static_cast<PPCTargetStreamer &>(*OutStreamer->getTargetStreamer()); if (!TOC.empty()) { MCSectionELF *Section; if (isPPC64) Section = OutStreamer->getContext().getELFSection( ".toc", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); else Section = OutStreamer->getContext().getELFSection( ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); OutStreamer->SwitchSection(Section); for (MapVector<MCSymbol*, MCSymbol*>::iterator I = TOC.begin(), E = TOC.end(); I != E; ++I) { OutStreamer->EmitLabel(I->second); MCSymbol *S = I->first; if (isPPC64) TS.emitTCEntry(*S); else OutStreamer->EmitSymbolValue(S, 4); } } return AsmPrinter::doFinalization(M); } /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. void PPCLinuxAsmPrinter::EmitFunctionBodyStart() { // In the ELFv2 ABI, in functions that use the TOC register, we need to // provide two entry points. The ABI guarantees that when calling the // local entry point, r2 is set up by the caller to contain the TOC base // for this function, and when calling the global entry point, r12 is set // up by the caller to hold the address of the global entry point. We // thus emit a prefix sequence along the following lines: // // func: // .Lfunc_gepNN: // # global entry point // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l // .Lfunc_lepNN: // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN // # local entry point, followed by function body // // For the Large code model, we create // // .Lfunc_tocNN: // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel // func: // .Lfunc_gepNN: // # global entry point // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) // add r2,r2,r12 // .Lfunc_lepNN: // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN // # local entry point, followed by function body // // This ensures we have r2 set up correctly while executing the function // body, no matter which entry point is called. if (Subtarget->isELFv2ABI() // Only do all that if the function uses r2 in the first place. && !MF->getRegInfo().use_empty(PPC::X2)) { const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(); OutStreamer->EmitLabel(GlobalEntryLabel); const MCSymbolRefExpr *GlobalEntryLabelExp = MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); if (TM.getCodeModel() != CodeModel::Large) { MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); const MCExpr *TOCDeltaExpr = MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), GlobalEntryLabelExp, OutContext); const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, false, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) .addReg(PPC::X2) .addReg(PPC::X12) .addExpr(TOCDeltaHi)); const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, false, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) .addReg(PPC::X2) .addReg(PPC::X2) .addExpr(TOCDeltaLo)); } else { MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(); const MCExpr *TOCOffsetDeltaExpr = MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), GlobalEntryLabelExp, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) .addReg(PPC::X2) .addExpr(TOCOffsetDeltaExpr) .addReg(PPC::X12)); EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) .addReg(PPC::X2) .addReg(PPC::X2) .addReg(PPC::X12)); } MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(); OutStreamer->EmitLabel(LocalEntryLabel); const MCSymbolRefExpr *LocalEntryLabelExp = MCSymbolRefExpr::create(LocalEntryLabel, OutContext); const MCExpr *LocalOffsetExp = MCBinaryExpr::createSub(LocalEntryLabelExp, GlobalEntryLabelExp, OutContext); PPCTargetStreamer *TS = static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); if (TS) TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); } } /// EmitFunctionBodyEnd - Print the traceback table before the .size /// directive. /// void PPCLinuxAsmPrinter::EmitFunctionBodyEnd() { // Only the 64-bit target requires a traceback table. For now, // we only emit the word of zeroes that GDB requires to find // the end of the function, and zeroes for the eight-byte // mandatory fields. // FIXME: We should fill in the eight-byte mandatory fields as described in // the PPC64 ELF ABI (this is a low-priority item because GDB does not // currently make use of these fields). if (Subtarget->isPPC64()) { OutStreamer->EmitIntValue(0, 4/*size*/); OutStreamer->EmitIntValue(0, 8/*size*/); } } void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) { static const char *const CPUDirectives[] = { "", "ppc", "ppc440", "ppc601", "ppc602", "ppc603", "ppc7400", "ppc750", "ppc970", "ppcA2", "ppce500mc", "ppce5500", "power3", "power4", "power5", "power5x", "power6", "power6x", "power7", // FIXME: why is power8 missing here? "ppc64", "ppc64le", "power9" }; // Get the numerically largest directive. // FIXME: How should we merge darwin directives? unsigned Directive = PPC::DIR_NONE; for (const Function &F : M) { const PPCSubtarget &STI = TM.getSubtarget<PPCSubtarget>(F); unsigned FDir = STI.getDarwinDirective(); Directive = Directive > FDir ? FDir : STI.getDarwinDirective(); if (STI.hasMFOCRF() && Directive < PPC::DIR_970) Directive = PPC::DIR_970; if (STI.hasAltivec() && Directive < PPC::DIR_7400) Directive = PPC::DIR_7400; if (STI.isPPC64() && Directive < PPC::DIR_64) Directive = PPC::DIR_64; } assert(Directive <= PPC::DIR_64 && "Directive out of range."); assert(Directive < array_lengthof(CPUDirectives) && "CPUDirectives[] might not be up-to-date!"); PPCTargetStreamer &TStreamer = *static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); TStreamer.emitMachine(CPUDirectives[Directive]); // Prime text sections so they are adjacent. This reduces the likelihood a // large data or debug section causes a branch to exceed 16M limit. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); OutStreamer->SwitchSection(TLOFMacho.getTextCoalSection()); if (TM.getRelocationModel() == Reloc::PIC_) { OutStreamer->SwitchSection( OutContext.getMachOSection("__TEXT", "__picsymbolstub1", MachO::S_SYMBOL_STUBS | MachO::S_ATTR_PURE_INSTRUCTIONS, 32, SectionKind::getText())); } else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) { OutStreamer->SwitchSection( OutContext.getMachOSection("__TEXT","__symbol_stub1", MachO::S_SYMBOL_STUBS | MachO::S_ATTR_PURE_INSTRUCTIONS, 16, SectionKind::getText())); } OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); } bool PPCDarwinAsmPrinter::doFinalization(Module &M) { bool isPPC64 = getDataLayout().getPointerSizeInBits() == 64; // Darwin/PPC always uses mach-o. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo<MachineModuleInfoMachO>(); if (MAI->doesSupportExceptionHandling() && MMI) { // Add the (possibly multiple) personalities to the set of global values. // Only referenced functions get into the Personalities list. for (const Function *Personality : MMI->getPersonalities()) { if (Personality) { MCSymbol *NLPSym = getSymbolWithGlobalValueBase(Personality, "$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = MMIMacho.getGVStubEntry(NLPSym); StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(Personality), true); } } } // Output stubs for dynamically-linked functions. MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); // Output macho stubs for external and common global variables. if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); EmitAlignment(isPPC64 ? 3 : 2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer->EmitLabel(Stubs[i].first); // .indirect_symbol _foo MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second; OutStreamer->EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer->EmitIntValue(0, isPPC64 ? 8 : 4/*size*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info pointers // need to be indirect and pc-rel. We accomplish this by using NLPs. // However, sometimes the types are local to the file. So we need to // fill in the value for the NLP in those cases. OutStreamer->EmitValue(MCSymbolRefExpr::create(MCSym.getPointer(), OutContext), isPPC64 ? 8 : 4/*size*/); } Stubs.clear(); OutStreamer->AddBlankLine(); } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never generates // code that does this, it is always safe to set. OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); return AsmPrinter::doFinalization(M); } /// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code /// for a MachineFunction to the given output stream, in a format that the /// Darwin assembler can deal with. /// static AsmPrinter * createPPCAsmPrinterPass(TargetMachine &tm, std::unique_ptr<MCStreamer> &&Streamer) { if (tm.getTargetTriple().isMacOSX()) return new PPCDarwinAsmPrinter(tm, std::move(Streamer)); return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); } // Force static initialization. extern "C" void LLVMInitializePowerPCAsmPrinter() { TargetRegistry::RegisterAsmPrinter(ThePPC32Target, createPPCAsmPrinterPass); TargetRegistry::RegisterAsmPrinter(ThePPC64Target, createPPCAsmPrinterPass); TargetRegistry::RegisterAsmPrinter(ThePPC64LETarget, createPPCAsmPrinterPass); }