//===-- PPCInstPrinter.cpp - Convert PPC MCInst to assembly syntax --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class prints an PPC MCInst to a .s file. // //===----------------------------------------------------------------------===// #include "PPCInstPrinter.h" #include "MCTargetDesc/PPCMCTargetDesc.h" #include "MCTargetDesc/PPCPredicates.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOpcodes.h" using namespace llvm; #define DEBUG_TYPE "asm-printer" // FIXME: Once the integrated assembler supports full register names, tie this // to the verbose-asm setting. static cl::opt<bool> FullRegNames("ppc-asm-full-reg-names", cl::Hidden, cl::init(false), cl::desc("Use full register names when printing assembly")); #define PRINT_ALIAS_INSTR #include "PPCGenAsmWriter.inc" void PPCInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const { const char *RegName = getRegisterName(RegNo); if (RegName[0] == 'q' /* QPX */) { // The system toolchain on the BG/Q does not understand QPX register names // in .cfi_* directives, so print the name of the floating-point // subregister instead. std::string RN(RegName); RN[0] = 'f'; OS << RN; return; } OS << RegName; } void PPCInstPrinter::printInst(const MCInst *MI, raw_ostream &O, StringRef Annot, const MCSubtargetInfo &STI) { // Check for slwi/srwi mnemonics. if (MI->getOpcode() == PPC::RLWINM) { unsigned char SH = MI->getOperand(2).getImm(); unsigned char MB = MI->getOperand(3).getImm(); unsigned char ME = MI->getOperand(4).getImm(); bool useSubstituteMnemonic = false; if (SH <= 31 && MB == 0 && ME == (31-SH)) { O << "\tslwi "; useSubstituteMnemonic = true; } if (SH <= 31 && MB == (32-SH) && ME == 31) { O << "\tsrwi "; useSubstituteMnemonic = true; SH = 32-SH; } if (useSubstituteMnemonic) { printOperand(MI, 0, O); O << ", "; printOperand(MI, 1, O); O << ", " << (unsigned int)SH; printAnnotation(O, Annot); return; } } if ((MI->getOpcode() == PPC::OR || MI->getOpcode() == PPC::OR8) && MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) { O << "\tmr "; printOperand(MI, 0, O); O << ", "; printOperand(MI, 1, O); printAnnotation(O, Annot); return; } if (MI->getOpcode() == PPC::RLDICR) { unsigned char SH = MI->getOperand(2).getImm(); unsigned char ME = MI->getOperand(3).getImm(); // rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH if (63-SH == ME) { O << "\tsldi "; printOperand(MI, 0, O); O << ", "; printOperand(MI, 1, O); O << ", " << (unsigned int)SH; printAnnotation(O, Annot); return; } } // dcbt[st] is printed manually here because: // 1. The assembly syntax is different between embedded and server targets // 2. We must print the short mnemonics for TH == 0 because the // embedded/server syntax default will not be stable across assemblers // The syntax for dcbt is: // dcbt ra, rb, th [server] // dcbt th, ra, rb [embedded] // where th can be omitted when it is 0. dcbtst is the same. if (MI->getOpcode() == PPC::DCBT || MI->getOpcode() == PPC::DCBTST) { unsigned char TH = MI->getOperand(0).getImm(); O << "\tdcbt"; if (MI->getOpcode() == PPC::DCBTST) O << "st"; if (TH == 16) O << "t"; O << " "; bool IsBookE = STI.getFeatureBits()[PPC::FeatureBookE]; if (IsBookE && TH != 0 && TH != 16) O << (unsigned int) TH << ", "; printOperand(MI, 1, O); O << ", "; printOperand(MI, 2, O); if (!IsBookE && TH != 0 && TH != 16) O << ", " << (unsigned int) TH; printAnnotation(O, Annot); return; } if (!printAliasInstr(MI, O)) printInstruction(MI, O); printAnnotation(O, Annot); } void PPCInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O, const char *Modifier) { unsigned Code = MI->getOperand(OpNo).getImm(); if (StringRef(Modifier) == "cc") { switch ((PPC::Predicate)Code) { case PPC::PRED_LT_MINUS: case PPC::PRED_LT_PLUS: case PPC::PRED_LT: O << "lt"; return; case PPC::PRED_LE_MINUS: case PPC::PRED_LE_PLUS: case PPC::PRED_LE: O << "le"; return; case PPC::PRED_EQ_MINUS: case PPC::PRED_EQ_PLUS: case PPC::PRED_EQ: O << "eq"; return; case PPC::PRED_GE_MINUS: case PPC::PRED_GE_PLUS: case PPC::PRED_GE: O << "ge"; return; case PPC::PRED_GT_MINUS: case PPC::PRED_GT_PLUS: case PPC::PRED_GT: O << "gt"; return; case PPC::PRED_NE_MINUS: case PPC::PRED_NE_PLUS: case PPC::PRED_NE: O << "ne"; return; case PPC::PRED_UN_MINUS: case PPC::PRED_UN_PLUS: case PPC::PRED_UN: O << "un"; return; case PPC::PRED_NU_MINUS: case PPC::PRED_NU_PLUS: case PPC::PRED_NU: O << "nu"; return; case PPC::PRED_BIT_SET: case PPC::PRED_BIT_UNSET: llvm_unreachable("Invalid use of bit predicate code"); } llvm_unreachable("Invalid predicate code"); } if (StringRef(Modifier) == "pm") { switch ((PPC::Predicate)Code) { case PPC::PRED_LT: case PPC::PRED_LE: case PPC::PRED_EQ: case PPC::PRED_GE: case PPC::PRED_GT: case PPC::PRED_NE: case PPC::PRED_UN: case PPC::PRED_NU: return; case PPC::PRED_LT_MINUS: case PPC::PRED_LE_MINUS: case PPC::PRED_EQ_MINUS: case PPC::PRED_GE_MINUS: case PPC::PRED_GT_MINUS: case PPC::PRED_NE_MINUS: case PPC::PRED_UN_MINUS: case PPC::PRED_NU_MINUS: O << "-"; return; case PPC::PRED_LT_PLUS: case PPC::PRED_LE_PLUS: case PPC::PRED_EQ_PLUS: case PPC::PRED_GE_PLUS: case PPC::PRED_GT_PLUS: case PPC::PRED_NE_PLUS: case PPC::PRED_UN_PLUS: case PPC::PRED_NU_PLUS: O << "+"; return; case PPC::PRED_BIT_SET: case PPC::PRED_BIT_UNSET: llvm_unreachable("Invalid use of bit predicate code"); } llvm_unreachable("Invalid predicate code"); } assert(StringRef(Modifier) == "reg" && "Need to specify 'cc', 'pm' or 'reg' as predicate op modifier!"); printOperand(MI, OpNo+1, O); } void PPCInstPrinter::printU1ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 1 && "Invalid u1imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU2ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 3 && "Invalid u2imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU3ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 8 && "Invalid u3imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU4ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 15 && "Invalid u4imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printS5ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { int Value = MI->getOperand(OpNo).getImm(); Value = SignExtend32<5>(Value); O << (int)Value; } void PPCInstPrinter::printU5ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 31 && "Invalid u5imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU6ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 63 && "Invalid u6imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU7ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 127 && "Invalid u7imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU8ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 255 && "Invalid u8imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU10ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned short Value = MI->getOperand(OpNo).getImm(); assert(Value <= 1023 && "Invalid u10imm argument!"); O << (unsigned short)Value; } void PPCInstPrinter::printU12ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned short Value = MI->getOperand(OpNo).getImm(); assert(Value <= 4095 && "Invalid u12imm argument!"); O << (unsigned short)Value; } void PPCInstPrinter::printS16ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) O << (short)MI->getOperand(OpNo).getImm(); else printOperand(MI, OpNo, O); } void PPCInstPrinter::printU16ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) O << (unsigned short)MI->getOperand(OpNo).getImm(); else printOperand(MI, OpNo, O); } void PPCInstPrinter::printBranchOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { if (!MI->getOperand(OpNo).isImm()) return printOperand(MI, OpNo, O); // Branches can take an immediate operand. This is used by the branch // selection pass to print .+8, an eight byte displacement from the PC. O << ".+"; printAbsBranchOperand(MI, OpNo, O); } void PPCInstPrinter::printAbsBranchOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { if (!MI->getOperand(OpNo).isImm()) return printOperand(MI, OpNo, O); O << SignExtend32<32>((unsigned)MI->getOperand(OpNo).getImm() << 2); } void PPCInstPrinter::printcrbitm(const MCInst *MI, unsigned OpNo, raw_ostream &O) { unsigned CCReg = MI->getOperand(OpNo).getReg(); unsigned RegNo; switch (CCReg) { default: llvm_unreachable("Unknown CR register"); case PPC::CR0: RegNo = 0; break; case PPC::CR1: RegNo = 1; break; case PPC::CR2: RegNo = 2; break; case PPC::CR3: RegNo = 3; break; case PPC::CR4: RegNo = 4; break; case PPC::CR5: RegNo = 5; break; case PPC::CR6: RegNo = 6; break; case PPC::CR7: RegNo = 7; break; } O << (0x80 >> RegNo); } void PPCInstPrinter::printMemRegImm(const MCInst *MI, unsigned OpNo, raw_ostream &O) { printS16ImmOperand(MI, OpNo, O); O << '('; if (MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo+1, O); O << ')'; } void PPCInstPrinter::printMemRegReg(const MCInst *MI, unsigned OpNo, raw_ostream &O) { // When used as the base register, r0 reads constant zero rather than // the value contained in the register. For this reason, the darwin // assembler requires that we print r0 as 0 (no r) when used as the base. if (MI->getOperand(OpNo).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo, O); O << ", "; printOperand(MI, OpNo+1, O); } void PPCInstPrinter::printTLSCall(const MCInst *MI, unsigned OpNo, raw_ostream &O) { // On PPC64, VariantKind is VK_None, but on PPC32, it's VK_PLT, and it must // come at the _end_ of the expression. const MCOperand &Op = MI->getOperand(OpNo); const MCSymbolRefExpr &refExp = cast<MCSymbolRefExpr>(*Op.getExpr()); O << refExp.getSymbol().getName(); O << '('; printOperand(MI, OpNo+1, O); O << ')'; if (refExp.getKind() != MCSymbolRefExpr::VK_None) O << '@' << MCSymbolRefExpr::getVariantKindName(refExp.getKind()); } /// stripRegisterPrefix - This method strips the character prefix from a /// register name so that only the number is left. Used by for linux asm. static const char *stripRegisterPrefix(const char *RegName) { if (FullRegNames) return RegName; switch (RegName[0]) { case 'r': case 'f': case 'q': // for QPX case 'v': if (RegName[1] == 's') return RegName + 2; return RegName + 1; case 'c': if (RegName[1] == 'r') return RegName + 2; } return RegName; } void PPCInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { const MCOperand &Op = MI->getOperand(OpNo); if (Op.isReg()) { const char *RegName = getRegisterName(Op.getReg()); // The linux and AIX assembler does not take register prefixes. if (!isDarwinSyntax()) RegName = stripRegisterPrefix(RegName); O << RegName; return; } if (Op.isImm()) { O << Op.getImm(); return; } assert(Op.isExpr() && "unknown operand kind in printOperand"); Op.getExpr()->print(O, &MAI); }