//===-- NVPTXFavorNonGenericAddrSpace.cpp - ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // FIXME: This pass is deprecated in favor of NVPTXInferAddressSpaces, which // uses a new algorithm that handles pointer induction variables. // // When a load/store accesses the generic address space, checks whether the // address is casted from a non-generic address space. If so, remove this // addrspacecast because accessing non-generic address spaces is typically // faster. Besides removing addrspacecasts directly used by loads/stores, this // optimization also recursively traces into a GEP's pointer operand and a // bitcast's source to find more eliminable addrspacecasts. // // For instance, the code below loads a float from an array allocated in // addrspace(3). // // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* // %1 = gep [10 x float]* %0, i64 0, i64 %i // %2 = bitcast float* %1 to i32* // %3 = load i32* %2 ; emits ld.u32 // // First, function hoistAddrSpaceCastFrom reorders the addrspacecast, the GEP, // and the bitcast to expose more optimization opportunities to function // optimizeMemoryInst. The intermediate code looks like: // // %0 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i // %1 = bitcast float addrspace(3)* %0 to i32 addrspace(3)* // %2 = addrspacecast i32 addrspace(3)* %1 to i32* // %3 = load i32* %2 ; still emits ld.u32, but will be optimized shortly // // Then, function optimizeMemoryInstruction detects a load from addrspacecast'ed // generic pointers, and folds the load and the addrspacecast into a load from // the original address space. The final code looks like: // // %0 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i // %1 = bitcast float addrspace(3)* %0 to i32 addrspace(3)* // %3 = load i32 addrspace(3)* %1 ; emits ld.shared.f32 // // This pass may remove an addrspacecast in a different BB. Therefore, we // implement it as a FunctionPass. // // TODO: // The current implementation doesn't handle PHINodes. Eliminating // addrspacecasts used by PHINodes is trickier because PHINodes can introduce // loops in data flow. For example, // // %generic.input = addrspacecast float addrspace(3)* %input to float* // loop: // %y = phi [ %generic.input, %y2 ] // %y2 = getelementptr %y, 1 // %v = load %y2 // br ..., label %loop, ... // // Marking %y2 shared depends on marking %y shared, but %y also data-flow // depends on %y2. We probably need an iterative fix-point algorithm on handle // this case. // //===----------------------------------------------------------------------===// #include "NVPTX.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CommandLine.h" using namespace llvm; // An option to disable this optimization. Enable it by default. static cl::opt<bool> DisableFavorNonGeneric( "disable-nvptx-favor-non-generic", cl::init(false), cl::desc("Do not convert generic address space usage " "to non-generic address space usage"), cl::Hidden); namespace { /// \brief NVPTXFavorNonGenericAddrSpaces class NVPTXFavorNonGenericAddrSpaces : public FunctionPass { public: static char ID; NVPTXFavorNonGenericAddrSpaces() : FunctionPass(ID) {} bool runOnFunction(Function &F) override; private: /// Optimizes load/store instructions. Idx is the index of the pointer operand /// (0 for load, and 1 for store). Returns true if it changes anything. bool optimizeMemoryInstruction(Instruction *I, unsigned Idx); /// Recursively traces into a GEP's pointer operand or a bitcast's source to /// find an eliminable addrspacecast, and hoists that addrspacecast to the /// outermost level. For example, this function transforms /// bitcast(gep(gep(addrspacecast(X)))) /// to /// addrspacecast(bitcast(gep(gep(X)))). /// /// This reordering exposes to optimizeMemoryInstruction more /// optimization opportunities on loads and stores. /// /// If this function successfully hoists an eliminable addrspacecast or V is /// already such an addrspacecast, it returns the transformed value (which is /// guaranteed to be an addrspacecast); otherwise, it returns nullptr. Value *hoistAddrSpaceCastFrom(Value *V, int Depth = 0); /// Helper function for GEPs. Value *hoistAddrSpaceCastFromGEP(GEPOperator *GEP, int Depth); /// Helper function for bitcasts. Value *hoistAddrSpaceCastFromBitCast(BitCastOperator *BC, int Depth); }; } char NVPTXFavorNonGenericAddrSpaces::ID = 0; namespace llvm { void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &); } INITIALIZE_PASS(NVPTXFavorNonGenericAddrSpaces, "nvptx-favor-non-generic", "Remove unnecessary non-generic-to-generic addrspacecasts", false, false) // Decides whether V is an addrspacecast and shortcutting V in load/store is // valid and beneficial. static bool isEliminableAddrSpaceCast(Value *V) { // Returns false if V is not even an addrspacecast. Operator *Cast = dyn_cast<Operator>(V); if (Cast == nullptr || Cast->getOpcode() != Instruction::AddrSpaceCast) return false; Value *Src = Cast->getOperand(0); PointerType *SrcTy = cast<PointerType>(Src->getType()); PointerType *DestTy = cast<PointerType>(Cast->getType()); // TODO: For now, we only handle the case where the addrspacecast only changes // the address space but not the type. If the type also changes, we could // still get rid of the addrspacecast by adding an extra bitcast, but we // rarely see such scenarios. if (SrcTy->getElementType() != DestTy->getElementType()) return false; // Checks whether the addrspacecast is from a non-generic address space to the // generic address space. return (SrcTy->getAddressSpace() != AddressSpace::ADDRESS_SPACE_GENERIC && DestTy->getAddressSpace() == AddressSpace::ADDRESS_SPACE_GENERIC); } Value *NVPTXFavorNonGenericAddrSpaces::hoistAddrSpaceCastFromGEP( GEPOperator *GEP, int Depth) { Value *NewOperand = hoistAddrSpaceCastFrom(GEP->getPointerOperand(), Depth + 1); if (NewOperand == nullptr) return nullptr; // hoistAddrSpaceCastFrom returns an eliminable addrspacecast or nullptr. assert(isEliminableAddrSpaceCast(NewOperand)); Operator *Cast = cast<Operator>(NewOperand); SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end()); Value *NewASC; if (Instruction *GEPI = dyn_cast<Instruction>(GEP)) { // GEP = gep (addrspacecast X), indices // => // NewGEP = gep X, indices // NewASC = addrspacecast NewGEP GetElementPtrInst *NewGEP = GetElementPtrInst::Create( GEP->getSourceElementType(), Cast->getOperand(0), Indices, "", GEPI); NewGEP->setIsInBounds(GEP->isInBounds()); NewGEP->takeName(GEP); NewASC = new AddrSpaceCastInst(NewGEP, GEP->getType(), "", GEPI); // Without RAUWing GEP, the compiler would visit GEP again and emit // redundant instructions. This is exercised in test @rauw in // access-non-generic.ll. GEP->replaceAllUsesWith(NewASC); } else { // GEP is a constant expression. Constant *NewGEP = ConstantExpr::getGetElementPtr( GEP->getSourceElementType(), cast<Constant>(Cast->getOperand(0)), Indices, GEP->isInBounds()); NewASC = ConstantExpr::getAddrSpaceCast(NewGEP, GEP->getType()); } return NewASC; } Value *NVPTXFavorNonGenericAddrSpaces::hoistAddrSpaceCastFromBitCast( BitCastOperator *BC, int Depth) { Value *NewOperand = hoistAddrSpaceCastFrom(BC->getOperand(0), Depth + 1); if (NewOperand == nullptr) return nullptr; // hoistAddrSpaceCastFrom returns an eliminable addrspacecast or nullptr. assert(isEliminableAddrSpaceCast(NewOperand)); Operator *Cast = cast<Operator>(NewOperand); // Cast = addrspacecast Src // BC = bitcast Cast // => // Cast' = bitcast Src // BC' = addrspacecast Cast' Value *Src = Cast->getOperand(0); Type *TypeOfNewCast = PointerType::get(BC->getType()->getPointerElementType(), Src->getType()->getPointerAddressSpace()); Value *NewBC; if (BitCastInst *BCI = dyn_cast<BitCastInst>(BC)) { Value *NewCast = new BitCastInst(Src, TypeOfNewCast, "", BCI); NewBC = new AddrSpaceCastInst(NewCast, BC->getType(), "", BCI); NewBC->takeName(BC); // Without RAUWing BC, the compiler would visit BC again and emit // redundant instructions. This is exercised in test @rauw in // access-non-generic.ll. BC->replaceAllUsesWith(NewBC); } else { // BC is a constant expression. Constant *NewCast = ConstantExpr::getBitCast(cast<Constant>(Src), TypeOfNewCast); NewBC = ConstantExpr::getAddrSpaceCast(NewCast, BC->getType()); } return NewBC; } Value *NVPTXFavorNonGenericAddrSpaces::hoistAddrSpaceCastFrom(Value *V, int Depth) { // Returns V if V is already an eliminable addrspacecast. if (isEliminableAddrSpaceCast(V)) return V; // Limit the depth to prevent this recursive function from running too long. const int MaxDepth = 20; if (Depth >= MaxDepth) return nullptr; // If V is a GEP or bitcast, hoist the addrspacecast if any from its pointer // operand. This enables optimizeMemoryInstruction to shortcut addrspacecasts // that are not directly used by the load/store. if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) return hoistAddrSpaceCastFromGEP(GEP, Depth); if (BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) return hoistAddrSpaceCastFromBitCast(BC, Depth); return nullptr; } bool NVPTXFavorNonGenericAddrSpaces::optimizeMemoryInstruction(Instruction *MI, unsigned Idx) { Value *NewOperand = hoistAddrSpaceCastFrom(MI->getOperand(Idx)); if (NewOperand == nullptr) return false; // load/store (addrspacecast X) => load/store X if shortcutting the // addrspacecast is valid and can improve performance. // // e.g., // %1 = addrspacecast float addrspace(3)* %0 to float* // %2 = load float* %1 // -> // %2 = load float addrspace(3)* %0 // // Note: the addrspacecast can also be a constant expression. assert(isEliminableAddrSpaceCast(NewOperand)); Operator *ASC = dyn_cast<Operator>(NewOperand); MI->setOperand(Idx, ASC->getOperand(0)); return true; } bool NVPTXFavorNonGenericAddrSpaces::runOnFunction(Function &F) { if (DisableFavorNonGeneric || skipFunction(F)) return false; bool Changed = false; for (BasicBlock &B : F) { for (Instruction &I : B) { if (isa<LoadInst>(I)) { // V = load P Changed |= optimizeMemoryInstruction(&I, 0); } else if (isa<StoreInst>(I)) { // store V, P Changed |= optimizeMemoryInstruction(&I, 1); } } } return Changed; } FunctionPass *llvm::createNVPTXFavorNonGenericAddrSpacesPass() { return new NVPTXFavorNonGenericAddrSpaces(); }