//===-- MipsTargetMachine.cpp - Define TargetMachine for Mips -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements the info about Mips target spec. // //===----------------------------------------------------------------------===// #include "MipsTargetMachine.h" #include "Mips.h" #include "Mips16FrameLowering.h" #include "Mips16ISelDAGToDAG.h" #include "Mips16ISelLowering.h" #include "Mips16InstrInfo.h" #include "MipsFrameLowering.h" #include "MipsInstrInfo.h" #include "MipsSEFrameLowering.h" #include "MipsSEISelDAGToDAG.h" #include "MipsSEISelLowering.h" #include "MipsSEInstrInfo.h" #include "MipsTargetObjectFile.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "mips" extern "C" void LLVMInitializeMipsTarget() { // Register the target. RegisterTargetMachine<MipsebTargetMachine> X(TheMipsTarget); RegisterTargetMachine<MipselTargetMachine> Y(TheMipselTarget); RegisterTargetMachine<MipsebTargetMachine> A(TheMips64Target); RegisterTargetMachine<MipselTargetMachine> B(TheMips64elTarget); } static std::string computeDataLayout(const Triple &TT, StringRef CPU, const TargetOptions &Options, bool isLittle) { std::string Ret = ""; MipsABIInfo ABI = MipsABIInfo::computeTargetABI(TT, CPU, Options.MCOptions); // There are both little and big endian mips. if (isLittle) Ret += "e"; else Ret += "E"; Ret += "-m:m"; // Pointers are 32 bit on some ABIs. if (!ABI.IsN64()) Ret += "-p:32:32"; // 8 and 16 bit integers only need to have natural alignment, but try to // align them to 32 bits. 64 bit integers have natural alignment. Ret += "-i8:8:32-i16:16:32-i64:64"; // 32 bit registers are always available and the stack is at least 64 bit // aligned. On N64 64 bit registers are also available and the stack is // 128 bit aligned. if (ABI.IsN64() || ABI.IsN32()) Ret += "-n32:64-S128"; else Ret += "-n32-S64"; return Ret; } static Reloc::Model getEffectiveRelocModel(CodeModel::Model CM, Optional<Reloc::Model> RM) { if (!RM.hasValue() || CM == CodeModel::JITDefault) return Reloc::Static; return *RM; } // On function prologue, the stack is created by decrementing // its pointer. Once decremented, all references are done with positive // offset from the stack/frame pointer, using StackGrowsUp enables // an easier handling. // Using CodeModel::Large enables different CALL behavior. MipsTargetMachine::MipsTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional<Reloc::Model> RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, CPU, FS, Options, getEffectiveRelocModel(CM, RM), CM, OL), isLittle(isLittle), TLOF(make_unique<MipsTargetObjectFile>()), ABI(MipsABIInfo::computeTargetABI(TT, CPU, Options.MCOptions)), Subtarget(nullptr), DefaultSubtarget(TT, CPU, FS, isLittle, *this), NoMips16Subtarget(TT, CPU, FS.empty() ? "-mips16" : FS.str() + ",-mips16", isLittle, *this), Mips16Subtarget(TT, CPU, FS.empty() ? "+mips16" : FS.str() + ",+mips16", isLittle, *this) { Subtarget = &DefaultSubtarget; initAsmInfo(); } MipsTargetMachine::~MipsTargetMachine() {} void MipsebTargetMachine::anchor() { } MipsebTargetMachine::MipsebTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional<Reloc::Model> RM, CodeModel::Model CM, CodeGenOpt::Level OL) : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} void MipselTargetMachine::anchor() { } MipselTargetMachine::MipselTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional<Reloc::Model> RM, CodeModel::Model CM, CodeGenOpt::Level OL) : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} const MipsSubtarget * MipsTargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString().str() : TargetCPU; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString().str() : TargetFS; bool hasMips16Attr = !F.getFnAttribute("mips16").hasAttribute(Attribute::None); bool hasNoMips16Attr = !F.getFnAttribute("nomips16").hasAttribute(Attribute::None); // FIXME: This is related to the code below to reset the target options, // we need to know whether or not the soft float flag is set on the // function, so we can enable it as a subtarget feature. bool softFloat = F.hasFnAttribute("use-soft-float") && F.getFnAttribute("use-soft-float").getValueAsString() == "true"; if (hasMips16Attr) FS += FS.empty() ? "+mips16" : ",+mips16"; else if (hasNoMips16Attr) FS += FS.empty() ? "-mips16" : ",-mips16"; if (softFloat) FS += FS.empty() ? "+soft-float" : ",+soft-float"; auto &I = SubtargetMap[CPU + FS]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique<MipsSubtarget>(TargetTriple, CPU, FS, isLittle, *this); } return I.get(); } void MipsTargetMachine::resetSubtarget(MachineFunction *MF) { DEBUG(dbgs() << "resetSubtarget\n"); Subtarget = const_cast<MipsSubtarget *>(getSubtargetImpl(*MF->getFunction())); MF->setSubtarget(Subtarget); return; } namespace { /// Mips Code Generator Pass Configuration Options. class MipsPassConfig : public TargetPassConfig { public: MipsPassConfig(MipsTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) { // The current implementation of long branch pass requires a scratch // register ($at) to be available before branch instructions. Tail merging // can break this requirement, so disable it when long branch pass is // enabled. EnableTailMerge = !getMipsSubtarget().enableLongBranchPass(); } MipsTargetMachine &getMipsTargetMachine() const { return getTM<MipsTargetMachine>(); } const MipsSubtarget &getMipsSubtarget() const { return *getMipsTargetMachine().getSubtargetImpl(); } void addIRPasses() override; bool addInstSelector() override; void addMachineSSAOptimization() override; void addPreEmitPass() override; void addPreRegAlloc() override; }; } // namespace TargetPassConfig *MipsTargetMachine::createPassConfig(PassManagerBase &PM) { return new MipsPassConfig(this, PM); } void MipsPassConfig::addIRPasses() { TargetPassConfig::addIRPasses(); addPass(createAtomicExpandPass(&getMipsTargetMachine())); if (getMipsSubtarget().os16()) addPass(createMipsOs16Pass(getMipsTargetMachine())); if (getMipsSubtarget().inMips16HardFloat()) addPass(createMips16HardFloatPass(getMipsTargetMachine())); } // Install an instruction selector pass using // the ISelDag to gen Mips code. bool MipsPassConfig::addInstSelector() { addPass(createMipsModuleISelDagPass(getMipsTargetMachine())); addPass(createMips16ISelDag(getMipsTargetMachine(), getOptLevel())); addPass(createMipsSEISelDag(getMipsTargetMachine(), getOptLevel())); return false; } void MipsPassConfig::addMachineSSAOptimization() { addPass(createMipsOptimizePICCallPass(getMipsTargetMachine())); TargetPassConfig::addMachineSSAOptimization(); } void MipsPassConfig::addPreRegAlloc() { if (getOptLevel() == CodeGenOpt::None) addPass(createMipsOptimizePICCallPass(getMipsTargetMachine())); } TargetIRAnalysis MipsTargetMachine::getTargetIRAnalysis() { return TargetIRAnalysis([this](const Function &F) { if (Subtarget->allowMixed16_32()) { DEBUG(errs() << "No Target Transform Info Pass Added\n"); // FIXME: This is no longer necessary as the TTI returned is per-function. return TargetTransformInfo(F.getParent()->getDataLayout()); } DEBUG(errs() << "Target Transform Info Pass Added\n"); return TargetTransformInfo(BasicTTIImpl(this, F)); }); } // Implemented by targets that want to run passes immediately before // machine code is emitted. return true if -print-machineinstrs should // print out the code after the passes. void MipsPassConfig::addPreEmitPass() { MipsTargetMachine &TM = getMipsTargetMachine(); // The delay slot filler pass can potientially create forbidden slot (FS) // hazards for MIPSR6 which the hazard schedule pass (HSP) will fix. Any // (new) pass that creates compact branches after the HSP must handle FS // hazards itself or be pipelined before the HSP. addPass(createMipsDelaySlotFillerPass(TM)); addPass(createMipsHazardSchedule()); addPass(createMipsLongBranchPass(TM)); addPass(createMipsConstantIslandPass()); }