//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mips profiles and nodes //===----------------------------------------------------------------------===// def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisInt<4>]>; def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_MFLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>; def SDT_MTLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>; def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>; def SDT_MipsMAddMSub : SDTypeProfile<1, 3, [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>; def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>, SDTCisSameAs<2, 3>, SDTCisSameAs<0, 4>]>; def SDTMipsLoadLR : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisSameAs<0, 2>]>; // Call def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; // Tail call def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; // Hi and Lo nodes are used to handle global addresses. Used on // MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol // static model. (nothing to do with Mips Registers Hi and Lo) def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; // TlsGd node is used to handle General Dynamic TLS def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>; // TprelHi and TprelLo nodes are used to handle Local Exec TLS def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>; def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>; // Thread pointer def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>; // Return def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def MipsERet : SDNode<"MipsISD::ERet", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPSideEffect]>; // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, [SDNPHasChain, SDNPSideEffect, SDNPOptInGlue, SDNPOutGlue]>; // Nodes used to extract LO/HI registers. def MipsMFHI : SDNode<"MipsISD::MFHI", SDT_MFLOHI>; def MipsMFLO : SDNode<"MipsISD::MFLO", SDT_MFLOHI>; // Node used to insert 32-bit integers to LOHI register pair. def MipsMTLOHI : SDNode<"MipsISD::MTLOHI", SDT_MTLOHI>; // Mult nodes. def MipsMult : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>; def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>; // MAdd*/MSub* nodes def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>; def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>; def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>; def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>; // DivRem(u) nodes def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>; def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>; def MipsDivRem16 : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16, [SDNPOutGlue]>; def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16, [SDNPOutGlue]>; // Target constant nodes that are not part of any isel patterns and remain // unchanged can cause instructions with illegal operands to be emitted. // Wrapper node patterns give the instruction selector a chance to replace // target constant nodes that would otherwise remain unchanged with ADDiu // nodes. Without these wrapper node patterns, the following conditional move // instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is // compiled: // movn %got(d)($gp), %got(c)($gp), $4 // This instruction is illegal since movn can take only register operands. def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>; def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>; def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>; def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>; def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsSWL : SDNode<"MipsISD::SWL", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def MipsSWR : SDNode<"MipsISD::SWR", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsSDL : SDNode<"MipsISD::SDL", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def MipsSDR : SDNode<"MipsISD::SDR", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; //===----------------------------------------------------------------------===// // Mips Instruction Predicate Definitions. //===----------------------------------------------------------------------===// def HasMips2 : Predicate<"Subtarget->hasMips2()">, AssemblerPredicate<"FeatureMips2">; def HasMips3_32 : Predicate<"Subtarget->hasMips3_32()">, AssemblerPredicate<"FeatureMips3_32">; def HasMips3_32r2 : Predicate<"Subtarget->hasMips3_32r2()">, AssemblerPredicate<"FeatureMips3_32r2">; def HasMips3 : Predicate<"Subtarget->hasMips3()">, AssemblerPredicate<"FeatureMips3">; def HasMips4_32 : Predicate<"Subtarget->hasMips4_32()">, AssemblerPredicate<"FeatureMips4_32">; def NotMips4_32 : Predicate<"!Subtarget->hasMips4_32()">, AssemblerPredicate<"!FeatureMips4_32">; def HasMips4_32r2 : Predicate<"Subtarget->hasMips4_32r2()">, AssemblerPredicate<"FeatureMips4_32r2">; def HasMips5_32r2 : Predicate<"Subtarget->hasMips5_32r2()">, AssemblerPredicate<"FeatureMips5_32r2">; def HasMips32 : Predicate<"Subtarget->hasMips32()">, AssemblerPredicate<"FeatureMips32">; def HasMips32r2 : Predicate<"Subtarget->hasMips32r2()">, AssemblerPredicate<"FeatureMips32r2">; def HasMips32r5 : Predicate<"Subtarget->hasMips32r5()">, AssemblerPredicate<"FeatureMips32r5">; def HasMips32r6 : Predicate<"Subtarget->hasMips32r6()">, AssemblerPredicate<"FeatureMips32r6">; def NotMips32r6 : Predicate<"!Subtarget->hasMips32r6()">, AssemblerPredicate<"!FeatureMips32r6">; def IsGP64bit : Predicate<"Subtarget->isGP64bit()">, AssemblerPredicate<"FeatureGP64Bit">; def IsGP32bit : Predicate<"!Subtarget->isGP64bit()">, AssemblerPredicate<"!FeatureGP64Bit">; def IsPTR64bit : Predicate<"Subtarget->isABI_N64()">, AssemblerPredicate<"FeaturePTR64Bit">; def IsPTR32bit : Predicate<"!Subtarget->isABI_N64()">, AssemblerPredicate<"!FeaturePTR64Bit">; def HasMips64 : Predicate<"Subtarget->hasMips64()">, AssemblerPredicate<"FeatureMips64">; def NotMips64 : Predicate<"!Subtarget->hasMips64()">, AssemblerPredicate<"!FeatureMips64">; def HasMips64r2 : Predicate<"Subtarget->hasMips64r2()">, AssemblerPredicate<"FeatureMips64r2">; def HasMips64r6 : Predicate<"Subtarget->hasMips64r6()">, AssemblerPredicate<"FeatureMips64r6">; def NotMips64r6 : Predicate<"!Subtarget->hasMips64r6()">, AssemblerPredicate<"!FeatureMips64r6">; def HasMicroMips32r6 : Predicate<"Subtarget->inMicroMips32r6Mode()">, AssemblerPredicate<"FeatureMicroMips,FeatureMips32r6">; def HasMicroMips64r6 : Predicate<"Subtarget->inMicroMips64r6Mode()">, AssemblerPredicate<"FeatureMicroMips,FeatureMips64r6">; def InMips16Mode : Predicate<"Subtarget->inMips16Mode()">, AssemblerPredicate<"FeatureMips16">; def HasCnMips : Predicate<"Subtarget->hasCnMips()">, AssemblerPredicate<"FeatureCnMips">; def RelocNotPIC : Predicate<"!TM.isPositionIndependent()">; def RelocPIC : Predicate<"TM.isPositionIndependent()">; def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">; def HasStdEnc : Predicate<"Subtarget->hasStandardEncoding()">, AssemblerPredicate<"!FeatureMips16">; def NotDSP : Predicate<"!Subtarget->hasDSP()">; def InMicroMips : Predicate<"Subtarget->inMicroMipsMode()">, AssemblerPredicate<"FeatureMicroMips">; def NotInMicroMips : Predicate<"!Subtarget->inMicroMipsMode()">, AssemblerPredicate<"!FeatureMicroMips">; def IsLE : Predicate<"Subtarget->isLittle()">; def IsBE : Predicate<"!Subtarget->isLittle()">; def IsNotNaCl : Predicate<"!Subtarget->isTargetNaCl()">; def UseTCCInDIV : AssemblerPredicate<"FeatureUseTCCInDIV">; def HasEVA : Predicate<"Subtarget->hasEVA()">, AssemblerPredicate<"FeatureEVA,FeatureMips32r2">; def HasMSA : Predicate<"Subtarget->hasMSA()">, AssemblerPredicate<"FeatureMSA">; //===----------------------------------------------------------------------===// // Mips GPR size adjectives. // They are mutually exclusive. //===----------------------------------------------------------------------===// class GPR_32 { list<Predicate> GPRPredicates = [IsGP32bit]; } class GPR_64 { list<Predicate> GPRPredicates = [IsGP64bit]; } class PTR_32 { list<Predicate> PTRPredicates = [IsPTR32bit]; } class PTR_64 { list<Predicate> PTRPredicates = [IsPTR64bit]; } //===----------------------------------------------------------------------===// // Mips ISA/ASE membership and instruction group membership adjectives. // They are mutually exclusive. //===----------------------------------------------------------------------===// // FIXME: I'd prefer to use additive predicates to build the instruction sets // but we are short on assembler feature bits at the moment. Using a // subtractive predicate will hopefully keep us under the 32 predicate // limit long enough to develop an alternative way to handle P1||P2 // predicates. class ISA_MIPS1_NOT_4_32 { list<Predicate> InsnPredicates = [NotMips4_32]; } class ISA_MIPS1_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6]; } class ISA_MIPS2 { list<Predicate> InsnPredicates = [HasMips2]; } class ISA_MIPS2_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips2, NotMips32r6, NotMips64r6]; } class ISA_MIPS3 { list<Predicate> InsnPredicates = [HasMips3]; } class ISA_MIPS3_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips3, NotMips32r6, NotMips64r6]; } class ISA_MIPS32 { list<Predicate> InsnPredicates = [HasMips32]; } class ISA_MIPS32_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips32, NotMips32r6, NotMips64r6]; } class ISA_MIPS32R2 { list<Predicate> InsnPredicates = [HasMips32r2]; } class ISA_MIPS32R2_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips32r2, NotMips32r6, NotMips64r6]; } class ISA_MIPS32R5 { list<Predicate> InsnPredicates = [HasMips32r5]; } class ISA_MIPS64 { list<Predicate> InsnPredicates = [HasMips64]; } class ISA_MIPS64_NOT_64R6 { list<Predicate> InsnPredicates = [HasMips64, NotMips64r6]; } class ISA_MIPS64R2 { list<Predicate> InsnPredicates = [HasMips64r2]; } class ISA_MIPS32R6 { list<Predicate> InsnPredicates = [HasMips32r6]; } class ISA_MIPS64R6 { list<Predicate> InsnPredicates = [HasMips64r6]; } class ISA_MICROMIPS { list<Predicate> InsnPredicates = [InMicroMips]; } class ISA_MICROMIPS32R6 { list<Predicate> InsnPredicates = [HasMicroMips32r6]; } class ISA_MICROMIPS64R6 { list<Predicate> InsnPredicates = [HasMicroMips64r6]; } class ISA_MICROMIPS32_NOT_MIPS32R6 { list<Predicate> InsnPredicates = [InMicroMips, NotMips32r6]; } class INSN_EVA { list<Predicate> InsnPredicates = [HasEVA]; } class INSN_EVA_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6, HasEVA]; } // The portions of MIPS-III that were also added to MIPS32 class INSN_MIPS3_32 { list<Predicate> InsnPredicates = [HasMips3_32]; } // The portions of MIPS-III that were also added to MIPS32 but were removed in // MIPS32r6 and MIPS64r6. class INSN_MIPS3_32_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips3_32, NotMips32r6, NotMips64r6]; } // The portions of MIPS-III that were also added to MIPS32 class INSN_MIPS3_32R2 { list<Predicate> InsnPredicates = [HasMips3_32r2]; } // The portions of MIPS-IV that were also added to MIPS32 but were removed in // MIPS32r6 and MIPS64r6. class INSN_MIPS4_32_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips4_32, NotMips32r6, NotMips64r6]; } // The portions of MIPS-IV that were also added to MIPS32r2 but were removed in // MIPS32r6 and MIPS64r6. class INSN_MIPS4_32R2_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips4_32r2, NotMips32r6, NotMips64r6]; } // The portions of MIPS-V that were also added to MIPS32r2 but were removed in // MIPS32r6 and MIPS64r6. class INSN_MIPS5_32R2_NOT_32R6_64R6 { list<Predicate> InsnPredicates = [HasMips5_32r2, NotMips32r6, NotMips64r6]; } class ASE_CNMIPS { list<Predicate> InsnPredicates = [HasCnMips]; } class ASE_MIPS64_CNMIPS { list<Predicate> InsnPredicates = [HasMips64, HasCnMips]; } class ASE_MSA { list<Predicate> InsnPredicates = [HasMSA]; } class ASE_MSA_NOT_MSA64 { list<Predicate> InsnPredicates = [HasMSA, NotMips64]; } class ASE_MSA64 { list<Predicate> InsnPredicates = [HasMSA, HasMips64]; } // Class used for separating microMIPSr6 and microMIPS (r3) instruction. // It can be used only on instructions that doesn't inherit PredicateControl. class ISA_MICROMIPS_NOT_32R6_64R6 : PredicateControl { let InsnPredicates = [InMicroMips, NotMips32r6, NotMips64r6]; } class ASE_NOT_DSP { list<Predicate> InsnPredicates = [NotDSP]; } //===----------------------------------------------------------------------===// class MipsPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl { let EncodingPredicates = [HasStdEnc]; } class MipsInstAlias<string Asm, dag Result, bit Emit = 0b1> : InstAlias<Asm, Result, Emit>, PredicateControl; class IsCommutable { bit isCommutable = 1; } class IsBranch { bit isBranch = 1; bit isCTI = 1; } class IsReturn { bit isReturn = 1; bit isCTI = 1; } class IsCall { bit isCall = 1; bit isCTI = 1; } class IsTailCall { bit isCall = 1; bit isTerminator = 1; bit isReturn = 1; bit isBarrier = 1; bit hasExtraSrcRegAllocReq = 1; bit isCodeGenOnly = 1; bit isCTI = 1; } class IsAsCheapAsAMove { bit isAsCheapAsAMove = 1; } class NeverHasSideEffects { bit hasSideEffects = 0; } //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "MipsInstrFormats.td" //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// class ConstantSImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = [], int Offset = 0> : AsmOperandClass { let Name = "ConstantSImm" # Bits # "_" # Offset; let RenderMethod = "addConstantSImmOperands<" # Bits # ", " # Offset # ">"; let PredicateMethod = "isConstantSImm<" # Bits # ", " # Offset # ">"; let SuperClasses = Supers; let DiagnosticType = "SImm" # Bits # "_" # Offset; } class ConstantUImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = [], int Offset = 0> : AsmOperandClass { let Name = "ConstantUImm" # Bits # "_" # Offset; let RenderMethod = "addConstantUImmOperands<" # Bits # ", " # Offset # ">"; let PredicateMethod = "isConstantUImm<" # Bits # ", " # Offset # ">"; let SuperClasses = Supers; let DiagnosticType = "UImm" # Bits # "_" # Offset; } class ConstantUImmRangeAsmOperandClass<int Bottom, int Top, list<AsmOperandClass> Supers = []> : AsmOperandClass { let Name = "ConstantUImmRange" # Bottom # "_" # Top; let RenderMethod = "addImmOperands"; let PredicateMethod = "isConstantUImmRange<" # Bottom # ", " # Top # ">"; let SuperClasses = Supers; let DiagnosticType = "UImmRange" # Bottom # "_" # Top; } class SImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = []> : AsmOperandClass { let Name = "SImm" # Bits; let RenderMethod = "addSImmOperands<" # Bits # ">"; let PredicateMethod = "isSImm<" # Bits # ">"; let SuperClasses = Supers; let DiagnosticType = "SImm" # Bits; } class UImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = []> : AsmOperandClass { let Name = "UImm" # Bits; let RenderMethod = "addUImmOperands<" # Bits # ">"; let PredicateMethod = "isUImm<" # Bits # ">"; let SuperClasses = Supers; let DiagnosticType = "UImm" # Bits; } // AsmOperandClasses require a strict ordering which is difficult to manage // as a hierarchy. Instead, we use a linear ordering and impose an order that // is in some places arbitrary. // // Here the rules that are in use: // * Wider immediates are a superset of narrower immediates: // uimm4 < uimm5 < uimm6 // * For the same bit-width, unsigned immediates are a superset of signed // immediates:: // simm4 < uimm4 < simm5 < uimm5 // * For the same upper-bound, signed immediates are a superset of unsigned // immediates: // uimm3 < simm4 < uimm4 < simm4 // * Modified immediates are a superset of ordinary immediates: // uimm5 < uimm5_plus1 (1..32) < uimm5_plus32 (32..63) < uimm6 // The term 'superset' starts to break down here since the uimm5_plus* classes // are not true supersets of uimm5 (but they are still subsets of uimm6). // * 'Relaxed' immediates are supersets of the corresponding unsigned immediate. // uimm16 < uimm16_relaxed // * The codeGen pattern type is arbitrarily ordered. // uimm5 < uimm5_64, and uimm5 < vsplat_uimm5 // This is entirely arbitrary. We need an ordering and what we pick is // unimportant since only one is possible for a given mnemonic. def SImm32RelaxedAsmOperandClass : SImmAsmOperandClass<32, []> { let Name = "SImm32_Relaxed"; let PredicateMethod = "isAnyImm<32>"; let DiagnosticType = "SImm32_Relaxed"; } def SImm32AsmOperandClass : SImmAsmOperandClass<32, [SImm32RelaxedAsmOperandClass]>; def ConstantUImm26AsmOperandClass : ConstantUImmAsmOperandClass<26, [SImm32AsmOperandClass]>; def ConstantUImm20AsmOperandClass : ConstantUImmAsmOperandClass<20, [ConstantUImm26AsmOperandClass]>; def UImm16RelaxedAsmOperandClass : UImmAsmOperandClass<16, [ConstantUImm20AsmOperandClass]> { let Name = "UImm16_Relaxed"; let PredicateMethod = "isAnyImm<16>"; let DiagnosticType = "UImm16_Relaxed"; } def UImm16AsmOperandClass : UImmAsmOperandClass<16, [UImm16RelaxedAsmOperandClass]>; def SImm16RelaxedAsmOperandClass : SImmAsmOperandClass<16, [UImm16RelaxedAsmOperandClass]> { let Name = "SImm16_Relaxed"; let PredicateMethod = "isAnyImm<16>"; let DiagnosticType = "SImm16_Relaxed"; } def SImm16AsmOperandClass : SImmAsmOperandClass<16, [SImm16RelaxedAsmOperandClass]>; def ConstantSImm10Lsl3AsmOperandClass : AsmOperandClass { let Name = "SImm10Lsl3"; let RenderMethod = "addImmOperands"; let PredicateMethod = "isScaledSImm<10, 3>"; let SuperClasses = [SImm16AsmOperandClass]; let DiagnosticType = "SImm10_Lsl3"; } def ConstantSImm10Lsl2AsmOperandClass : AsmOperandClass { let Name = "SImm10Lsl2"; let RenderMethod = "addImmOperands"; let PredicateMethod = "isScaledSImm<10, 2>"; let SuperClasses = [ConstantSImm10Lsl3AsmOperandClass]; let DiagnosticType = "SImm10_Lsl2"; } def ConstantSImm11AsmOperandClass : ConstantSImmAsmOperandClass<11, [ConstantSImm10Lsl2AsmOperandClass]>; def ConstantSImm10Lsl1AsmOperandClass : AsmOperandClass { let Name = "SImm10Lsl1"; let RenderMethod = "addImmOperands"; let PredicateMethod = "isScaledSImm<10, 1>"; let SuperClasses = [ConstantSImm11AsmOperandClass]; let DiagnosticType = "SImm10_Lsl1"; } def ConstantUImm10AsmOperandClass : ConstantUImmAsmOperandClass<10, [ConstantSImm10Lsl1AsmOperandClass]>; def ConstantSImm10AsmOperandClass : ConstantSImmAsmOperandClass<10, [ConstantUImm10AsmOperandClass]>; def ConstantSImm9AsmOperandClass : ConstantSImmAsmOperandClass<9, [ConstantSImm10AsmOperandClass]>; def ConstantSImm7Lsl2AsmOperandClass : AsmOperandClass { let Name = "SImm7Lsl2"; let RenderMethod = "addImmOperands"; let PredicateMethod = "isScaledSImm<7, 2>"; let SuperClasses = [ConstantSImm9AsmOperandClass]; let DiagnosticType = "SImm7_Lsl2"; } def ConstantUImm8AsmOperandClass : ConstantUImmAsmOperandClass<8, [ConstantSImm7Lsl2AsmOperandClass]>; def ConstantUImm7Sub1AsmOperandClass : ConstantUImmAsmOperandClass<7, [ConstantUImm8AsmOperandClass], -1> { // Specify the names since the -1 offset causes invalid identifiers otherwise. let Name = "UImm7_N1"; let DiagnosticType = "UImm7_N1"; } def ConstantUImm7AsmOperandClass : ConstantUImmAsmOperandClass<7, [ConstantUImm7Sub1AsmOperandClass]>; def ConstantUImm6Lsl2AsmOperandClass : AsmOperandClass { let Name = "UImm6Lsl2"; let RenderMethod = "addImmOperands"; let PredicateMethod = "isScaledUImm<6, 2>"; let SuperClasses = [ConstantUImm7AsmOperandClass]; let DiagnosticType = "UImm6_Lsl2"; } def ConstantUImm6AsmOperandClass : ConstantUImmAsmOperandClass<6, [ConstantUImm6Lsl2AsmOperandClass]>; def ConstantSImm6AsmOperandClass : ConstantSImmAsmOperandClass<6, [ConstantUImm6AsmOperandClass]>; def ConstantUImm5Lsl2AsmOperandClass : AsmOperandClass { let Name = "UImm5Lsl2"; let RenderMethod = "addImmOperands"; let PredicateMethod = "isScaledUImm<5, 2>"; let SuperClasses = [ConstantSImm6AsmOperandClass]; let DiagnosticType = "UImm5_Lsl2"; } def ConstantUImm5_Range2_64AsmOperandClass : ConstantUImmRangeAsmOperandClass<2, 64, [ConstantUImm5Lsl2AsmOperandClass]>; def ConstantUImm5Plus33AsmOperandClass : ConstantUImmAsmOperandClass<5, [ConstantUImm5_Range2_64AsmOperandClass], 33>; def ConstantUImm5ReportUImm6AsmOperandClass : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus33AsmOperandClass]> { let Name = "ConstantUImm5_0_Report_UImm6"; let DiagnosticType = "UImm5_0_Report_UImm6"; } def ConstantUImm5Plus32AsmOperandClass : ConstantUImmAsmOperandClass< 5, [ConstantUImm5ReportUImm6AsmOperandClass], 32>; def ConstantUImm5Plus32NormalizeAsmOperandClass : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus32AsmOperandClass], 32> { let Name = "ConstantUImm5_32_Norm"; // We must also subtract 32 when we render the operand. let RenderMethod = "addConstantUImmOperands<5, 32, -32>"; } def ConstantUImm5Plus1AsmOperandClass : ConstantUImmAsmOperandClass< 5, [ConstantUImm5Plus32NormalizeAsmOperandClass], 1>; def ConstantUImm5AsmOperandClass : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus1AsmOperandClass]>; def ConstantSImm5AsmOperandClass : ConstantSImmAsmOperandClass<5, [ConstantUImm5AsmOperandClass]>; def ConstantUImm4AsmOperandClass : ConstantUImmAsmOperandClass<4, [ConstantSImm5AsmOperandClass]>; def ConstantSImm4AsmOperandClass : ConstantSImmAsmOperandClass<4, [ConstantUImm4AsmOperandClass]>; def ConstantUImm3AsmOperandClass : ConstantUImmAsmOperandClass<3, [ConstantSImm4AsmOperandClass]>; def ConstantUImm2Plus1AsmOperandClass : ConstantUImmAsmOperandClass<2, [ConstantUImm3AsmOperandClass], 1>; def ConstantUImm2AsmOperandClass : ConstantUImmAsmOperandClass<2, [ConstantUImm3AsmOperandClass]>; def ConstantUImm1AsmOperandClass : ConstantUImmAsmOperandClass<1, [ConstantUImm2AsmOperandClass]>; def ConstantImmzAsmOperandClass : AsmOperandClass { let Name = "ConstantImmz"; let RenderMethod = "addConstantUImmOperands<1>"; let PredicateMethod = "isConstantImmz"; let SuperClasses = [ConstantUImm1AsmOperandClass]; let DiagnosticType = "Immz"; } def MipsJumpTargetAsmOperand : AsmOperandClass { let Name = "JumpTarget"; let ParserMethod = "parseJumpTarget"; let PredicateMethod = "isImm"; let RenderMethod = "addImmOperands"; } // Instruction operand types def jmptarget : Operand<OtherVT> { let EncoderMethod = "getJumpTargetOpValue"; let ParserMatchClass = MipsJumpTargetAsmOperand; } def brtarget : Operand<OtherVT> { let EncoderMethod = "getBranchTargetOpValue"; let OperandType = "OPERAND_PCREL"; let DecoderMethod = "DecodeBranchTarget"; let ParserMatchClass = MipsJumpTargetAsmOperand; } def brtarget1SImm16 : Operand<OtherVT> { let EncoderMethod = "getBranchTargetOpValue1SImm16"; let OperandType = "OPERAND_PCREL"; let DecoderMethod = "DecodeBranchTarget1SImm16"; let ParserMatchClass = MipsJumpTargetAsmOperand; } def calltarget : Operand<iPTR> { let EncoderMethod = "getJumpTargetOpValue"; let ParserMatchClass = MipsJumpTargetAsmOperand; } def imm64: Operand<i64>; def simm19_lsl2 : Operand<i32> { let EncoderMethod = "getSimm19Lsl2Encoding"; let DecoderMethod = "DecodeSimm19Lsl2"; let ParserMatchClass = MipsJumpTargetAsmOperand; } def simm18_lsl3 : Operand<i32> { let EncoderMethod = "getSimm18Lsl3Encoding"; let DecoderMethod = "DecodeSimm18Lsl3"; let ParserMatchClass = MipsJumpTargetAsmOperand; } // Zero def uimmz : Operand<i32> { let PrintMethod = "printUImm<0>"; let ParserMatchClass = ConstantImmzAsmOperandClass; } // size operand of ins instruction def uimm_range_2_64 : Operand<i32> { let PrintMethod = "printUImm<6, 2>"; let EncoderMethod = "getSizeInsEncoding"; let DecoderMethod = "DecodeInsSize"; let ParserMatchClass = ConstantUImm5_Range2_64AsmOperandClass; } // Unsigned Operands foreach I = {1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 26} in def uimm # I : Operand<i32> { let PrintMethod = "printUImm<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); } def uimm2_plus1 : Operand<i32> { let PrintMethod = "printUImm<2, 1>"; let EncoderMethod = "getUImmWithOffsetEncoding<2, 1>"; let DecoderMethod = "DecodeUImmWithOffset<2, 1>"; let ParserMatchClass = ConstantUImm2Plus1AsmOperandClass; } def uimm5_plus1 : Operand<i32> { let PrintMethod = "printUImm<5, 1>"; let EncoderMethod = "getUImmWithOffsetEncoding<5, 1>"; let DecoderMethod = "DecodeUImmWithOffset<5, 1>"; let ParserMatchClass = ConstantUImm5Plus1AsmOperandClass; } def uimm5_plus32 : Operand<i32> { let PrintMethod = "printUImm<5, 32>"; let ParserMatchClass = ConstantUImm5Plus32AsmOperandClass; } def uimm5_plus33 : Operand<i32> { let PrintMethod = "printUImm<5, 33>"; let EncoderMethod = "getUImmWithOffsetEncoding<5, 1>"; let DecoderMethod = "DecodeUImmWithOffset<5, 1>"; let ParserMatchClass = ConstantUImm5Plus33AsmOperandClass; } def uimm5_inssize_plus1 : Operand<i32> { let PrintMethod = "printUImm<6>"; let ParserMatchClass = ConstantUImm5Plus1AsmOperandClass; let EncoderMethod = "getSizeInsEncoding"; let DecoderMethod = "DecodeInsSize"; } def uimm5_plus32_normalize : Operand<i32> { let PrintMethod = "printUImm<5>"; let ParserMatchClass = ConstantUImm5Plus32NormalizeAsmOperandClass; } def uimm5_lsl2 : Operand<OtherVT> { let EncoderMethod = "getUImm5Lsl2Encoding"; let DecoderMethod = "DecodeUImmWithOffsetAndScale<5, 0, 4>"; let ParserMatchClass = ConstantUImm5Lsl2AsmOperandClass; } def uimm5_plus32_normalize_64 : Operand<i64> { let PrintMethod = "printUImm<5>"; let ParserMatchClass = ConstantUImm5Plus32NormalizeAsmOperandClass; } def uimm6_lsl2 : Operand<OtherVT> { let EncoderMethod = "getUImm6Lsl2Encoding"; let DecoderMethod = "DecodeUImmWithOffsetAndScale<6, 0, 4>"; let ParserMatchClass = ConstantUImm6Lsl2AsmOperandClass; } foreach I = {16} in def uimm # I : Operand<i32> { let PrintMethod = "printUImm<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("UImm" # I # "AsmOperandClass"); } // Like uimm16_64 but coerces simm16 to uimm16. def uimm16_relaxed : Operand<i32> { let PrintMethod = "printUImm<16>"; let ParserMatchClass = !cast<AsmOperandClass>("UImm16RelaxedAsmOperandClass"); } foreach I = {5} in def uimm # I # _64 : Operand<i64> { let PrintMethod = "printUImm<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); } foreach I = {16} in def uimm # I # _64 : Operand<i64> { let PrintMethod = "printUImm<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("UImm" # I # "AsmOperandClass"); } // Like uimm16_64 but coerces simm16 to uimm16. def uimm16_64_relaxed : Operand<i64> { let PrintMethod = "printUImm<16>"; let ParserMatchClass = !cast<AsmOperandClass>("UImm16RelaxedAsmOperandClass"); } // Like uimm5 but reports a less confusing error for 32-63 when // an instruction alias permits that. def uimm5_report_uimm6 : Operand<i32> { let PrintMethod = "printUImm<5>"; let ParserMatchClass = ConstantUImm5ReportUImm6AsmOperandClass; } // Like uimm5_64 but reports a less confusing error for 32-63 when // an instruction alias permits that. def uimm5_64_report_uimm6 : Operand<i64> { let PrintMethod = "printUImm<5>"; let ParserMatchClass = ConstantUImm5ReportUImm6AsmOperandClass; } foreach I = {1, 2, 3, 4} in def uimm # I # _ptr : Operand<iPTR> { let PrintMethod = "printUImm<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); } foreach I = {1, 2, 3, 4, 5, 6, 8} in def vsplat_uimm # I : Operand<vAny> { let PrintMethod = "printUImm<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); } // Signed operands foreach I = {4, 5, 6, 9, 10, 11} in def simm # I : Operand<i32> { let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); } foreach I = {1, 2, 3} in def simm10_lsl # I : Operand<i32> { let DecoderMethod = "DecodeSImmWithOffsetAndScale<10, " # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("ConstantSImm10Lsl" # I # "AsmOperandClass"); } foreach I = {10} in def simm # I # _64 : Operand<i64> { let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); } foreach I = {5, 10} in def vsplat_simm # I : Operand<vAny> { let ParserMatchClass = !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); } def simm7_lsl2 : Operand<OtherVT> { let EncoderMethod = "getSImm7Lsl2Encoding"; let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ", 0, 4>"; let ParserMatchClass = ConstantSImm7Lsl2AsmOperandClass; } foreach I = {16, 32} in def simm # I : Operand<i32> { let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("SImm" # I # "AsmOperandClass"); } // Like simm16 but coerces uimm16 to simm16. def simm16_relaxed : Operand<i32> { let DecoderMethod = "DecodeSImmWithOffsetAndScale<16>"; let ParserMatchClass = !cast<AsmOperandClass>("SImm16RelaxedAsmOperandClass"); } def simm16_64 : Operand<i64> { let DecoderMethod = "DecodeSImmWithOffsetAndScale<16>"; let ParserMatchClass = !cast<AsmOperandClass>("SImm16AsmOperandClass"); } // Like simm32 but coerces uimm32 to simm32. def simm32_relaxed : Operand<i32> { let DecoderMethod = "DecodeSImmWithOffsetAndScale<32>"; let ParserMatchClass = !cast<AsmOperandClass>("SImm32RelaxedAsmOperandClass"); } // This is almost the same as a uimm7 but 0x7f is interpreted as -1. def li16_imm : Operand<i32> { let DecoderMethod = "DecodeLi16Imm"; let ParserMatchClass = ConstantUImm7Sub1AsmOperandClass; } def MipsMemAsmOperand : AsmOperandClass { let Name = "Mem"; let ParserMethod = "parseMemOperand"; } def MipsMemSimm9AsmOperand : AsmOperandClass { let Name = "MemOffsetSimm9"; let SuperClasses = [MipsMemAsmOperand]; let RenderMethod = "addMemOperands"; let ParserMethod = "parseMemOperand"; let PredicateMethod = "isMemWithSimmOffset<9>"; let DiagnosticType = "MemSImm9"; } def MipsMemSimm10AsmOperand : AsmOperandClass { let Name = "MemOffsetSimm10"; let SuperClasses = [MipsMemAsmOperand]; let RenderMethod = "addMemOperands"; let ParserMethod = "parseMemOperand"; let PredicateMethod = "isMemWithSimmOffset<10>"; let DiagnosticType = "MemSImm10"; } def MipsMemSimm12AsmOperand : AsmOperandClass { let Name = "MemOffsetSimm12"; let SuperClasses = [MipsMemAsmOperand]; let RenderMethod = "addMemOperands"; let ParserMethod = "parseMemOperand"; let PredicateMethod = "isMemWithSimmOffset<12>"; let DiagnosticType = "MemSImm12"; } foreach I = {1, 2, 3} in def MipsMemSimm10Lsl # I # AsmOperand : AsmOperandClass { let Name = "MemOffsetSimm10_" # I; let SuperClasses = [MipsMemAsmOperand]; let RenderMethod = "addMemOperands"; let ParserMethod = "parseMemOperand"; let PredicateMethod = "isMemWithSimmOffset<10, " # I # ">"; let DiagnosticType = "MemSImm10Lsl" # I; } def MipsMemSimm11AsmOperand : AsmOperandClass { let Name = "MemOffsetSimm11"; let SuperClasses = [MipsMemAsmOperand]; let RenderMethod = "addMemOperands"; let ParserMethod = "parseMemOperand"; let PredicateMethod = "isMemWithSimmOffset<11>"; let DiagnosticType = "MemSImm11"; } def MipsMemSimm16AsmOperand : AsmOperandClass { let Name = "MemOffsetSimm16"; let SuperClasses = [MipsMemAsmOperand]; let RenderMethod = "addMemOperands"; let ParserMethod = "parseMemOperand"; let PredicateMethod = "isMemWithSimmOffset<16>"; let DiagnosticType = "MemSImm16"; } def MipsInvertedImmoperand : AsmOperandClass { let Name = "InvNum"; let RenderMethod = "addImmOperands"; let ParserMethod = "parseInvNum"; } def InvertedImOperand : Operand<i32> { let ParserMatchClass = MipsInvertedImmoperand; } def InvertedImOperand64 : Operand<i64> { let ParserMatchClass = MipsInvertedImmoperand; } class mem_generic : Operand<iPTR> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops ptr_rc, simm16); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemAsmOperand; let OperandType = "OPERAND_MEMORY"; } // Address operand def mem : mem_generic; // MSA specific address operand def mem_msa : mem_generic { let MIOperandInfo = (ops ptr_rc, simm10); let EncoderMethod = "getMSAMemEncoding"; } def simm12 : Operand<i32> { let DecoderMethod = "DecodeSimm12"; } def mem_simm9 : mem_generic { let MIOperandInfo = (ops ptr_rc, simm9); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemSimm9AsmOperand; } def mem_simm10 : mem_generic { let MIOperandInfo = (ops ptr_rc, simm10); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemSimm10AsmOperand; } foreach I = {1, 2, 3} in def mem_simm10_lsl # I : mem_generic { let MIOperandInfo = (ops ptr_rc, !cast<Operand>("simm10_lsl" # I)); let EncoderMethod = "getMemEncoding<" # I # ">"; let ParserMatchClass = !cast<AsmOperandClass>("MipsMemSimm10Lsl" # I # "AsmOperand"); } def mem_simm11 : mem_generic { let MIOperandInfo = (ops ptr_rc, simm11); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemSimm11AsmOperand; } def mem_simm12 : mem_generic { let MIOperandInfo = (ops ptr_rc, simm12); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemSimm12AsmOperand; } def mem_simm16 : mem_generic { let MIOperandInfo = (ops ptr_rc, simm16); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemSimm16AsmOperand; } def mem_ea : Operand<iPTR> { let PrintMethod = "printMemOperandEA"; let MIOperandInfo = (ops ptr_rc, simm16); let EncoderMethod = "getMemEncoding"; let OperandType = "OPERAND_MEMORY"; } def PtrRC : Operand<iPTR> { let MIOperandInfo = (ops ptr_rc); let DecoderMethod = "DecodePtrRegisterClass"; let ParserMatchClass = GPR32AsmOperand; } // size operand of ins instruction def size_ins : Operand<i32> { let EncoderMethod = "getSizeInsEncoding"; let DecoderMethod = "DecodeInsSize"; } // Transformation Function - get the lower 16 bits. def LO16 : SDNodeXForm<imm, [{ return getImm(N, N->getZExtValue() & 0xFFFF); }]>; // Transformation Function - get the higher 16 bits. def HI16 : SDNodeXForm<imm, [{ return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF); }]>; // Plus 1. def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>; // Node immediate is zero (e.g. insve.d) def immz : PatLeaf<(imm), [{ return N->getSExtValue() == 0; }]>; // Node immediate fits as 16-bit sign extended on target immediate. // e.g. addi, andi def immSExt8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>; // Node immediate fits as 16-bit sign extended on target immediate. // e.g. addi, andi def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; // Node immediate fits as 15-bit sign extended on target immediate. // e.g. addi, andi def immSExt15 : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>; // Node immediate fits as 7-bit zero extended on target immediate. def immZExt7 : PatLeaf<(imm), [{ return isUInt<7>(N->getZExtValue()); }]>; // Node immediate fits as 16-bit zero extended on target immediate. // The LO16 param means that only the lower 16 bits of the node // immediate are caught. // e.g. addiu, sltiu def immZExt16 : PatLeaf<(imm), [{ if (N->getValueType(0) == MVT::i32) return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); else return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); }], LO16>; // Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared). def immLow16Zero : PatLeaf<(imm), [{ int64_t Val = N->getSExtValue(); return isInt<32>(Val) && !(Val & 0xffff); }]>; // shamt field must fit in 5 bits. def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>; def immZExt5Plus1 : PatLeaf<(imm), [{ return isUInt<5>(N->getZExtValue() - 1); }]>; def immZExt5Plus32 : PatLeaf<(imm), [{ return isUInt<5>(N->getZExtValue() - 32); }]>; def immZExt5Plus33 : PatLeaf<(imm), [{ return isUInt<5>(N->getZExtValue() - 33); }]>; // True if (N + 1) fits in 16-bit field. def immSExt16Plus1 : PatLeaf<(imm), [{ return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1); }]>; // Mips Address Mode! SDNode frameindex could possibily be a match // since load and store instructions from stack used it. def addr : ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>; def addrRegImm : ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>; def addrDefault : ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>; def addrimm10 : ComplexPattern<iPTR, 2, "selectIntAddrMSA", [frameindex]>; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// // Arithmetic and logical instructions with 3 register operands. class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0, InstrItinClass Itin = NoItinerary, SDPatternOperator OpNode = null_frag>: InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rd, $rs, $rt"), [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> { let isCommutable = isComm; let isReMaterializable = 1; let TwoOperandAliasConstraint = "$rd = $rs"; } // Arithmetic and logical instructions with 2 register operands. class ArithLogicI<string opstr, Operand Od, RegisterOperand RO, InstrItinClass Itin = NoItinerary, SDPatternOperator imm_type = null_frag, SDPatternOperator OpNode = null_frag> : InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16), !strconcat(opstr, "\t$rt, $rs, $imm16"), [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], Itin, FrmI, opstr> { let isReMaterializable = 1; let TwoOperandAliasConstraint = "$rs = $rt"; } // Arithmetic Multiply ADD/SUB class MArithR<string opstr, InstrItinClass itin, bit isComm = 0> : InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt), !strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR, opstr> { let Defs = [HI0, LO0]; let Uses = [HI0, LO0]; let isCommutable = isComm; } // Logical class LogicNOR<string opstr, RegisterOperand RO>: InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rd, $rs, $rt"), [(set RO:$rd, (not (or RO:$rs, RO:$rt)))], II_NOR, FrmR, opstr> { let isCommutable = 1; } // Shifts class shift_rotate_imm<string opstr, Operand ImmOpnd, RegisterOperand RO, InstrItinClass itin, SDPatternOperator OpNode = null_frag, SDPatternOperator PF = null_frag> : InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt), !strconcat(opstr, "\t$rd, $rt, $shamt"), [(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], itin, FrmR, opstr> { let TwoOperandAliasConstraint = "$rt = $rd"; } class shift_rotate_reg<string opstr, RegisterOperand RO, InstrItinClass itin, SDPatternOperator OpNode = null_frag>: InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs), !strconcat(opstr, "\t$rd, $rt, $rs"), [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], itin, FrmR, opstr>; // Load Upper Immediate class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>: InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"), [], II_LUI, FrmI, opstr>, IsAsCheapAsAMove { let hasSideEffects = 0; let isReMaterializable = 1; } // Memory Load/Store class LoadMemory<string opstr, DAGOperand RO, DAGOperand MO, SDPatternOperator OpNode = null_frag, InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> : InstSE<(outs RO:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> { let DecoderMethod = "DecodeMem"; let canFoldAsLoad = 1; let mayLoad = 1; } class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag, InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> : LoadMemory<opstr, RO, mem, OpNode, Itin, Addr>; class StoreMemory<string opstr, DAGOperand RO, DAGOperand MO, SDPatternOperator OpNode = null_frag, InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> : InstSE<(outs), (ins RO:$rt, MO:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> { let DecoderMethod = "DecodeMem"; let mayStore = 1; } class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag, InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr, DAGOperand MO = mem> : StoreMemory<opstr, RO, MO, OpNode, Itin, Addr>; // Load/Store Left/Right let canFoldAsLoad = 1 in class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO, InstrItinClass Itin> : InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src), !strconcat(opstr, "\t$rt, $addr"), [(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> { let DecoderMethod = "DecodeMem"; string Constraints = "$src = $rt"; } class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO, InstrItinClass Itin> : InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RO:$rt, addr:$addr)], Itin, FrmI> { let DecoderMethod = "DecodeMem"; } // COP2 Load/Store class LW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs RC:$rt), (ins mem_simm16:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> { let DecoderMethod = "DecodeFMem2"; let mayLoad = 1; } class SW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs), (ins RC:$rt, mem_simm16:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> { let DecoderMethod = "DecodeFMem2"; let mayStore = 1; } // COP3 Load/Store class LW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> { let DecoderMethod = "DecodeFMem3"; let mayLoad = 1; } class SW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> { let DecoderMethod = "DecodeFMem3"; let mayStore = 1; } // Conditional Branch class CBranch<string opstr, DAGOperand opnd, PatFrag cond_op, RegisterOperand RO, bit DelaySlot = 1> : InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset), !strconcat(opstr, "\t$rs, $rt, $offset"), [(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], II_BCC, FrmI, opstr> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = DelaySlot; let Defs = [AT]; bit isCTI = 1; } class CBranchZero<string opstr, DAGOperand opnd, PatFrag cond_op, RegisterOperand RO, bit DelaySlot = 1> : InstSE<(outs), (ins RO:$rs, opnd:$offset), !strconcat(opstr, "\t$rs, $offset"), [(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], II_BCCZ, FrmI, opstr> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = DelaySlot; let Defs = [AT]; bit isCTI = 1; } // SetCC class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> : InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rd, $rs, $rt"), [(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))], II_SLT_SLTU, FrmR, opstr>; class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type, RegisterOperand RO>: InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16), !strconcat(opstr, "\t$rt, $rs, $imm16"), [(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))], II_SLTI_SLTIU, FrmI, opstr>; // Jump class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator, SDPatternOperator targetoperator, string bopstr> : InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"), [(operator targetoperator:$target)], II_J, FrmJ, bopstr> { let isTerminator=1; let isBarrier=1; let hasDelaySlot = 1; let DecoderMethod = "DecodeJumpTarget"; let Defs = [AT]; bit isCTI = 1; } // Unconditional branch class UncondBranch<Instruction BEQInst> : PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], II_B>, PseudoInstExpansion<(BEQInst ZERO, ZERO, brtarget:$offset)> { let isBranch = 1; let isTerminator = 1; let isBarrier = 1; let hasDelaySlot = 1; let AdditionalPredicates = [RelocPIC]; let Defs = [AT]; bit isCTI = 1; } // Base class for indirect branch and return instruction classes. let isTerminator=1, isBarrier=1, hasDelaySlot = 1, isCTI = 1 in class JumpFR<string opstr, RegisterOperand RO, SDPatternOperator operator = null_frag>: InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], II_JR, FrmR, opstr>; // Indirect branch class IndirectBranch<string opstr, RegisterOperand RO> : JumpFR<opstr, RO> { let isBranch = 1; let isIndirectBranch = 1; } // Jump and Link (Call) let isCall=1, hasDelaySlot=1, isCTI=1, Defs = [RA] in { class JumpLink<string opstr, DAGOperand opnd> : InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"), [(MipsJmpLink tglobaladdr:$target)], II_JAL, FrmJ, opstr> { let DecoderMethod = "DecodeJumpTarget"; } class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst, Register RetReg, RegisterOperand ResRO = RO>: PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], II_JALR>, PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>; class JumpLinkReg<string opstr, RegisterOperand RO>: InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), [], II_JALR, FrmR, opstr>; class BGEZAL_FT<string opstr, DAGOperand opnd, RegisterOperand RO, bit DelaySlot = 1> : InstSE<(outs), (ins RO:$rs, opnd:$offset), !strconcat(opstr, "\t$rs, $offset"), [], II_BCCZAL, FrmI, opstr> { let hasDelaySlot = DelaySlot; } } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, hasDelaySlot = 1, hasExtraSrcRegAllocReq = 1, isCTI = 1, Defs = [AT] in { class TailCall<Instruction JumpInst> : PseudoSE<(outs), (ins calltarget:$target), [], II_J>, PseudoInstExpansion<(JumpInst jmptarget:$target)>; class TailCallReg<RegisterOperand RO, Instruction JRInst, RegisterOperand ResRO = RO> : PseudoSE<(outs), (ins RO:$rs), [(MipsTailCall RO:$rs)], II_JR>, PseudoInstExpansion<(JRInst ResRO:$rs)>; } class BAL_BR_Pseudo<Instruction RealInst> : PseudoSE<(outs), (ins brtarget:$offset), [], II_BCCZAL>, PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> { let isBranch = 1; let isTerminator = 1; let isBarrier = 1; let hasDelaySlot = 1; let Defs = [RA]; bit isCTI = 1; } let isCTI = 1 in { // Syscall class SYS_FT<string opstr, Operand ImmOp, InstrItinClass itin = NoItinerary> : InstSE<(outs), (ins ImmOp:$code_), !strconcat(opstr, "\t$code_"), [], itin, FrmI, opstr>; // Break class BRK_FT<string opstr> : InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2), !strconcat(opstr, "\t$code_1, $code_2"), [], II_BREAK, FrmOther, opstr>; // (D)Eret class ER_FT<string opstr, InstrItinClass itin = NoItinerary> : InstSE<(outs), (ins), opstr, [], itin, FrmOther, opstr>; // Wait class WAIT_FT<string opstr> : InstSE<(outs), (ins), opstr, [], II_WAIT, FrmOther, opstr>; } // Interrupts class DEI_FT<string opstr, RegisterOperand RO, InstrItinClass itin = NoItinerary> : InstSE<(outs RO:$rt), (ins), !strconcat(opstr, "\t$rt"), [], itin, FrmOther, opstr>; // Sync let hasSideEffects = 1 in class SYNC_FT<string opstr> : InstSE<(outs), (ins uimm5:$stype), "sync $stype", [(MipsSync immZExt5:$stype)], II_SYNC, FrmOther, opstr>; class SYNCI_FT<string opstr> : InstSE<(outs), (ins mem_simm16:$addr), !strconcat(opstr, "\t$addr"), [], II_SYNCI, FrmOther, opstr> { let hasSideEffects = 1; let DecoderMethod = "DecodeSyncI"; } let hasSideEffects = 1, isCTI = 1 in { class TEQ_FT<string opstr, RegisterOperand RO, Operand ImmOp, InstrItinClass itin = NoItinerary> : InstSE<(outs), (ins RO:$rs, RO:$rt, ImmOp:$code_), !strconcat(opstr, "\t$rs, $rt, $code_"), [], itin, FrmI, opstr>; class TEQI_FT<string opstr, RegisterOperand RO, InstrItinClass itin = NoItinerary> : InstSE<(outs), (ins RO:$rs, simm16:$imm16), !strconcat(opstr, "\t$rs, $imm16"), [], itin, FrmOther, opstr>; } // Mul, Div class Mult<string opstr, InstrItinClass itin, RegisterOperand RO, list<Register> DefRegs> : InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR, opstr> { let isCommutable = 1; let Defs = DefRegs; let hasSideEffects = 0; } // Pseudo multiply/divide instruction with explicit accumulator register // operands. class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1, SDPatternOperator OpNode, InstrItinClass Itin, bit IsComm = 1, bit HasSideEffects = 0, bit UsesCustomInserter = 0> : PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt), [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>, PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> { let isCommutable = IsComm; let hasSideEffects = HasSideEffects; let usesCustomInserter = UsesCustomInserter; } // Pseudo multiply add/sub instruction with explicit accumulator register // operands. class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode, InstrItinClass itin> : PseudoSE<(outs ACC64:$ac), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin), [(set ACC64:$ac, (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))], itin>, PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> { string Constraints = "$acin = $ac"; } class Div<string opstr, InstrItinClass itin, RegisterOperand RO, list<Register> DefRegs> : InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"), [], itin, FrmR, opstr> { let Defs = DefRegs; } // Move from Hi/Lo class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode> : PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo), [(set DstRC:$rd, (OpNode SrcRC:$hilo))], II_MFHI_MFLO>; class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>: InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], II_MFHI_MFLO, FrmR, opstr> { let Uses = [UseReg]; let hasSideEffects = 0; } class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC> : PseudoSE<(outs DstRC:$lohi), (ins SrcRC:$lo, SrcRC:$hi), [(set DstRC:$lohi, (MipsMTLOHI SrcRC:$lo, SrcRC:$hi))], II_MTHI_MTLO>; class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>: InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], II_MTHI_MTLO, FrmR, opstr> { let Defs = DefRegs; let hasSideEffects = 0; } class EffectiveAddress<string opstr, RegisterOperand RO> : InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RO:$rt, addr:$addr)], II_ADDIU, FrmI, !strconcat(opstr, "_lea")> { let isCodeGenOnly = 1; let hasNoSchedulingInfo = 1; let DecoderMethod = "DecodeMem"; } // Count Leading Ones/Zeros in Word class CountLeading0<string opstr, RegisterOperand RO, InstrItinClass itin = NoItinerary>: InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), [(set RO:$rd, (ctlz RO:$rs))], itin, FrmR, opstr>; class CountLeading1<string opstr, RegisterOperand RO, InstrItinClass itin = NoItinerary>: InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), [(set RO:$rd, (ctlz (not RO:$rs)))], itin, FrmR, opstr>; // Sign Extend in Register. class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO, InstrItinClass itin> : InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [(set RO:$rd, (sext_inreg RO:$rt, vt))], itin, FrmR, opstr>; // Subword Swap class SubwordSwap<string opstr, RegisterOperand RO, InstrItinClass itin = NoItinerary>: InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [], itin, FrmR, opstr> { let hasSideEffects = 0; } // Read Hardware class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> : InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [], II_RDHWR, FrmR, "rdhwr">; // Ext and Ins class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd, Operand SizeOpnd, PatFrag PosImm, PatFrag SizeImm, SDPatternOperator Op = null_frag> : InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, SizeOpnd:$size), !strconcat(opstr, " $rt, $rs, $pos, $size"), [(set RO:$rt, (Op RO:$rs, PosImm:$pos, SizeImm:$size))], II_EXT, FrmR, opstr>, ISA_MIPS32R2; class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd, Operand SizeOpnd, SDPatternOperator Op = null_frag>: InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, SizeOpnd:$size, RO:$src), !strconcat(opstr, " $rt, $rs, $pos, $size"), [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size, RO:$src))], II_INS, FrmR, opstr>, ISA_MIPS32R2 { let Constraints = "$src = $rt"; } // Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*). class Atomic2Ops<PatFrag Op, RegisterClass DRC> : PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr), [(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>; // Atomic Compare & Swap. class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> : PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap), [(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>; class LLBase<string opstr, RegisterOperand RO, DAGOperand MO = mem> : InstSE<(outs RO:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"), [], II_LL, FrmI, opstr> { let DecoderMethod = "DecodeMem"; let mayLoad = 1; } class SCBase<string opstr, RegisterOperand RO> : InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [], II_SC, FrmI> { let DecoderMethod = "DecodeMem"; let mayStore = 1; let Constraints = "$rt = $dst"; } class MFC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD, InstrItinClass itin> : InstSE<(outs RO:$rt), (ins RD:$rd, uimm3:$sel), !strconcat(asmstr, "\t$rt, $rd, $sel"), [], itin, FrmFR>; class MTC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD, InstrItinClass itin> : InstSE<(outs RO:$rd), (ins RD:$rt, uimm3:$sel), !strconcat(asmstr, "\t$rt, $rd, $sel"), [], itin, FrmFR>; class TrapBase<Instruction RealInst> : PseudoSE<(outs), (ins), [(trap)], II_TRAP>, PseudoInstExpansion<(RealInst 0, 0)> { let isBarrier = 1; let isTerminator = 1; let isCodeGenOnly = 1; let isCTI = 1; } //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// // Return RA. let isReturn=1, isTerminator=1, isBarrier=1, hasCtrlDep=1, isCTI=1 in { let hasDelaySlot=1 in def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>; let hasSideEffects=1 in def ERet : PseudoSE<(outs), (ins), [(MipsERet)]>; } let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt), [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), [(callseq_end timm:$amt1, timm:$amt2)]>; } let usesCustomInserter = 1 in { def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, GPR32>; def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, GPR32>; def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, GPR32>; def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, GPR32>; def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, GPR32>; def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, GPR32>; def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, GPR32>; def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, GPR32>; def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, GPR32>; def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, GPR32>; def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, GPR32>; def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, GPR32>; def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, GPR32>; def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, GPR32>; def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, GPR32>; def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, GPR32>; def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>; def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>; def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, GPR32>; def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, GPR32>; def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, GPR32>; def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>; def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>; def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>; } /// Pseudo instructions for loading and storing accumulator registers. let isPseudo = 1, isCodeGenOnly = 1, hasNoSchedulingInfo = 1 in { def LOAD_ACC64 : Load<"", ACC64>; def STORE_ACC64 : Store<"", ACC64>; } // We need these two pseudo instructions to avoid offset calculation for long // branches. See the comment in file MipsLongBranch.cpp for detailed // explanation. // Expands to: lui $dst, %hi($tgt - $baltgt) def LONG_BRANCH_LUi : PseudoSE<(outs GPR32Opnd:$dst), (ins brtarget:$tgt, brtarget:$baltgt), []>; // Expands to: addiu $dst, $src, %lo($tgt - $baltgt) def LONG_BRANCH_ADDiu : PseudoSE<(outs GPR32Opnd:$dst), (ins GPR32Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>; //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MipsI Instructions //===----------------------------------------------------------------------===// /// Arithmetic Instructions (ALU Immediate) let AdditionalPredicates = [NotInMicroMips] in { def ADDiu : MMRel, StdMMR6Rel, ArithLogicI<"addiu", simm16_relaxed, GPR32Opnd, II_ADDIU, immSExt16, add>, ADDI_FM<0x9>, IsAsCheapAsAMove; def ANDi : MMRel, StdMMR6Rel, ArithLogicI<"andi", uimm16, GPR32Opnd, II_ANDI, immZExt16, and>, ADDI_FM<0xc>; def ORi : MMRel, StdMMR6Rel, ArithLogicI<"ori", uimm16, GPR32Opnd, II_ORI, immZExt16, or>, ADDI_FM<0xd>; def XORi : MMRel, StdMMR6Rel, ArithLogicI<"xori", uimm16, GPR32Opnd, II_XORI, immZExt16, xor>, ADDI_FM<0xe>; } def ADDi : MMRel, ArithLogicI<"addi", simm16_relaxed, GPR32Opnd, II_ADDI>, ADDI_FM<0x8>, ISA_MIPS1_NOT_32R6_64R6; def SLTi : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>, SLTI_FM<0xa>; def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>, SLTI_FM<0xb>; def LUi : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16_relaxed>, LUI_FM; let AdditionalPredicates = [NotInMicroMips] in { /// Arithmetic Instructions (3-Operand, R-Type) def ADDu : MMRel, StdMMR6Rel, ArithLogicR<"addu", GPR32Opnd, 1, II_ADDU, add>, ADD_FM<0, 0x21>; def SUBu : MMRel, StdMMR6Rel, ArithLogicR<"subu", GPR32Opnd, 0, II_SUBU, sub>, ADD_FM<0, 0x23>; } let Defs = [HI0, LO0] in def MUL : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, II_MUL, mul>, ADD_FM<0x1c, 2>, ISA_MIPS32_NOT_32R6_64R6; def ADD : MMRel, StdMMR6Rel, ArithLogicR<"add", GPR32Opnd, 1, II_ADD>, ADD_FM<0, 0x20>; def SUB : MMRel, StdMMR6Rel, ArithLogicR<"sub", GPR32Opnd, 0, II_SUB>, ADD_FM<0, 0x22>; def SLT : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>; def SLTu : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>; let AdditionalPredicates = [NotInMicroMips] in { def AND : MMRel, StdMMR6Rel, ArithLogicR<"and", GPR32Opnd, 1, II_AND, and>, ADD_FM<0, 0x24>; def OR : MMRel, StdMMR6Rel, ArithLogicR<"or", GPR32Opnd, 1, II_OR, or>, ADD_FM<0, 0x25>; def XOR : MMRel, StdMMR6Rel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>, ADD_FM<0, 0x26>; def NOR : MMRel, StdMMR6Rel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>; } /// Shift Instructions let AdditionalPredicates = [NotInMicroMips] in { def SLL : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL, shl, immZExt5>, SRA_FM<0, 0>; def SRL : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL, srl, immZExt5>, SRA_FM<2, 0>; def SRA : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA, sra, immZExt5>, SRA_FM<3, 0>; def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV, shl>, SRLV_FM<4, 0>; def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, II_SRLV, srl>, SRLV_FM<6, 0>; def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, II_SRAV, sra>, SRLV_FM<7, 0>; } // Rotate Instructions let AdditionalPredicates = [NotInMicroMips] in { def ROTR : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, II_ROTR, rotr, immZExt5>, SRA_FM<2, 1>, ISA_MIPS32R2; def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, II_ROTRV, rotr>, SRLV_FM<6, 1>, ISA_MIPS32R2; } /// Load and Store Instructions /// aligned def LB : LoadMemory<"lb", GPR32Opnd, mem_simm16, sextloadi8, II_LB>, MMRel, LW_FM<0x20>; def LBu : LoadMemory<"lbu", GPR32Opnd, mem_simm16, zextloadi8, II_LBU, addrDefault>, MMRel, LW_FM<0x24>; let AdditionalPredicates = [NotInMicroMips] in { def LH : LoadMemory<"lh", GPR32Opnd, mem_simm16, sextloadi16, II_LH, addrDefault>, MMRel, LW_FM<0x21>; def LHu : LoadMemory<"lhu", GPR32Opnd, mem_simm16, zextloadi16, II_LHU>, MMRel, LW_FM<0x25>; def LW : StdMMR6Rel, Load<"lw", GPR32Opnd, load, II_LW, addrDefault>, MMRel, LW_FM<0x23>; } def SB : StdMMR6Rel, Store<"sb", GPR32Opnd, truncstorei8, II_SB>, MMRel, LW_FM<0x28>; def SH : Store<"sh", GPR32Opnd, truncstorei16, II_SH>, MMRel, LW_FM<0x29>; let AdditionalPredicates = [NotInMicroMips] in { def SW : Store<"sw", GPR32Opnd, store, II_SW>, MMRel, LW_FM<0x2b>; } /// load/store left/right let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug AdditionalPredicates = [NotInMicroMips] in { def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, II_LWL>, LW_FM<0x22>, ISA_MIPS1_NOT_32R6_64R6; def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, II_LWR>, LW_FM<0x26>, ISA_MIPS1_NOT_32R6_64R6; def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd, II_SWL>, LW_FM<0x2a>, ISA_MIPS1_NOT_32R6_64R6; def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, II_SWR>, LW_FM<0x2e>, ISA_MIPS1_NOT_32R6_64R6; } let AdditionalPredicates = [NotInMicroMips] in { // COP2 Memory Instructions def LWC2 : StdMMR6Rel, LW_FT2<"lwc2", COP2Opnd, II_LWC2, load>, LW_FM<0x32>, ISA_MIPS1_NOT_32R6_64R6; def SWC2 : StdMMR6Rel, SW_FT2<"swc2", COP2Opnd, II_SWC2, store>, LW_FM<0x3a>, ISA_MIPS1_NOT_32R6_64R6; def LDC2 : StdMMR6Rel, LW_FT2<"ldc2", COP2Opnd, II_LDC2, load>, LW_FM<0x36>, ISA_MIPS2_NOT_32R6_64R6; def SDC2 : StdMMR6Rel, SW_FT2<"sdc2", COP2Opnd, II_SDC2, store>, LW_FM<0x3e>, ISA_MIPS2_NOT_32R6_64R6; // COP3 Memory Instructions let DecoderNamespace = "COP3_" in { def LWC3 : LW_FT3<"lwc3", COP3Opnd, II_LWC3, load>, LW_FM<0x33>; def SWC3 : SW_FT3<"swc3", COP3Opnd, II_SWC3, store>, LW_FM<0x3b>; def LDC3 : LW_FT3<"ldc3", COP3Opnd, II_LDC3, load>, LW_FM<0x37>, ISA_MIPS2; def SDC3 : SW_FT3<"sdc3", COP3Opnd, II_SDC3, store>, LW_FM<0x3f>, ISA_MIPS2; } } def SYNC : MMRel, StdMMR6Rel, SYNC_FT<"sync">, SYNC_FM, ISA_MIPS32; def SYNCI : MMRel, StdMMR6Rel, SYNCI_FT<"synci">, SYNCI_FM, ISA_MIPS32R2; let AdditionalPredicates = [NotInMicroMips] in { def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd, uimm10, II_TEQ>, TEQ_FM<0x34>, ISA_MIPS2; def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd, uimm10, II_TGE>, TEQ_FM<0x30>, ISA_MIPS2; def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd, uimm10, II_TGEU>, TEQ_FM<0x31>, ISA_MIPS2; def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd, uimm10, II_TLT>, TEQ_FM<0x32>, ISA_MIPS2; def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd, uimm10, II_TLTU>, TEQ_FM<0x33>, ISA_MIPS2; def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd, uimm10, II_TNE>, TEQ_FM<0x36>, ISA_MIPS2; } def TEQI : MMRel, TEQI_FT<"teqi", GPR32Opnd, II_TEQI>, TEQI_FM<0xc>, ISA_MIPS2_NOT_32R6_64R6; def TGEI : MMRel, TEQI_FT<"tgei", GPR32Opnd, II_TGEI>, TEQI_FM<0x8>, ISA_MIPS2_NOT_32R6_64R6; def TGEIU : MMRel, TEQI_FT<"tgeiu", GPR32Opnd, II_TGEIU>, TEQI_FM<0x9>, ISA_MIPS2_NOT_32R6_64R6; def TLTI : MMRel, TEQI_FT<"tlti", GPR32Opnd, II_TLTI>, TEQI_FM<0xa>, ISA_MIPS2_NOT_32R6_64R6; def TTLTIU : MMRel, TEQI_FT<"tltiu", GPR32Opnd, II_TTLTIU>, TEQI_FM<0xb>, ISA_MIPS2_NOT_32R6_64R6; def TNEI : MMRel, TEQI_FT<"tnei", GPR32Opnd, II_TNEI>, TEQI_FM<0xe>, ISA_MIPS2_NOT_32R6_64R6; let AdditionalPredicates = [NotInMicroMips] in { def BREAK : MMRel, StdMMR6Rel, BRK_FT<"break">, BRK_FM<0xd>; def SYSCALL : MMRel, SYS_FT<"syscall", uimm20, II_SYSCALL>, SYS_FM<0xc>; } def TRAP : TrapBase<BREAK>; let AdditionalPredicates = [NotInMicroMips] in { def SDBBP : MMRel, SYS_FT<"sdbbp", uimm20, II_SDBBP>, SDBBP_FM, ISA_MIPS32_NOT_32R6_64R6; } let AdditionalPredicates = [NotInMicroMips] in { def ERET : MMRel, ER_FT<"eret", II_ERET>, ER_FM<0x18, 0x0>, INSN_MIPS3_32; def ERETNC : MMRel, ER_FT<"eretnc", II_ERETNC>, ER_FM<0x18, 0x1>, ISA_MIPS32R5; def DERET : MMRel, ER_FT<"deret", II_DERET>, ER_FM<0x1f, 0x0>, ISA_MIPS32; } let AdditionalPredicates = [NotInMicroMips] in { def EI : MMRel, StdMMR6Rel, DEI_FT<"ei", GPR32Opnd, II_EI>, EI_FM<1>, ISA_MIPS32R2; def DI : MMRel, StdMMR6Rel, DEI_FT<"di", GPR32Opnd, II_DI>, EI_FM<0>, ISA_MIPS32R2; } let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug AdditionalPredicates = [NotInMicroMips] in { def WAIT : WAIT_FT<"wait">, WAIT_FM; } let AdditionalPredicates = [NotInMicroMips] in { /// Load-linked, Store-conditional def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>, PTR_32, ISA_MIPS2_NOT_32R6_64R6; def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>, PTR_32, ISA_MIPS2_NOT_32R6_64R6; } /// Jump and Branch Instructions def J : MMRel, JumpFJ<jmptarget, "j", br, bb, "j">, FJ<2>, AdditionalRequires<[RelocNotPIC]>, IsBranch; def JR : MMRel, IndirectBranch<"jr", GPR32Opnd>, MTLO_FM<8>, ISA_MIPS1_NOT_32R6_64R6; def BEQ : MMRel, CBranch<"beq", brtarget, seteq, GPR32Opnd>, BEQ_FM<4>; def BEQL : MMRel, CBranch<"beql", brtarget, seteq, GPR32Opnd, 0>, BEQ_FM<20>, ISA_MIPS2_NOT_32R6_64R6; def BNE : MMRel, CBranch<"bne", brtarget, setne, GPR32Opnd>, BEQ_FM<5>; def BNEL : MMRel, CBranch<"bnel", brtarget, setne, GPR32Opnd, 0>, BEQ_FM<21>, ISA_MIPS2_NOT_32R6_64R6; def BGEZ : MMRel, CBranchZero<"bgez", brtarget, setge, GPR32Opnd>, BGEZ_FM<1, 1>; def BGEZL : MMRel, CBranchZero<"bgezl", brtarget, setge, GPR32Opnd, 0>, BGEZ_FM<1, 3>, ISA_MIPS2_NOT_32R6_64R6; def BGTZ : MMRel, CBranchZero<"bgtz", brtarget, setgt, GPR32Opnd>, BGEZ_FM<7, 0>; def BGTZL : MMRel, CBranchZero<"bgtzl", brtarget, setgt, GPR32Opnd, 0>, BGEZ_FM<23, 0>, ISA_MIPS2_NOT_32R6_64R6; def BLEZ : MMRel, CBranchZero<"blez", brtarget, setle, GPR32Opnd>, BGEZ_FM<6, 0>; def BLEZL : MMRel, CBranchZero<"blezl", brtarget, setle, GPR32Opnd, 0>, BGEZ_FM<22, 0>, ISA_MIPS2_NOT_32R6_64R6; def BLTZ : MMRel, CBranchZero<"bltz", brtarget, setlt, GPR32Opnd>, BGEZ_FM<1, 0>; def BLTZL : MMRel, CBranchZero<"bltzl", brtarget, setlt, GPR32Opnd, 0>, BGEZ_FM<1, 2>, ISA_MIPS2_NOT_32R6_64R6; def B : UncondBranch<BEQ>; def JAL : MMRel, JumpLink<"jal", calltarget>, FJ<3>; let AdditionalPredicates = [NotInMicroMips] in { def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM; def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>; } def JALX : MMRel, JumpLink<"jalx", calltarget>, FJ<0x1D>, ISA_MIPS32_NOT_32R6_64R6; def BGEZAL : MMRel, BGEZAL_FT<"bgezal", brtarget, GPR32Opnd>, BGEZAL_FM<0x11>, ISA_MIPS1_NOT_32R6_64R6; def BGEZALL : MMRel, BGEZAL_FT<"bgezall", brtarget, GPR32Opnd, 0>, BGEZAL_FM<0x13>, ISA_MIPS2_NOT_32R6_64R6; def BLTZAL : MMRel, BGEZAL_FT<"bltzal", brtarget, GPR32Opnd>, BGEZAL_FM<0x10>, ISA_MIPS1_NOT_32R6_64R6; def BLTZALL : MMRel, BGEZAL_FT<"bltzall", brtarget, GPR32Opnd, 0>, BGEZAL_FM<0x12>, ISA_MIPS2_NOT_32R6_64R6; def BAL_BR : BAL_BR_Pseudo<BGEZAL>; def TAILCALL : TailCall<J>; def TAILCALL_R : TailCallReg<GPR32Opnd, JR>; // Indirect branches are matched as PseudoIndirectBranch/PseudoIndirectBranch64 // then are expanded to JR, JR64, JALR, or JALR64 depending on the ISA. class PseudoIndirectBranchBase<RegisterOperand RO> : MipsPseudo<(outs), (ins RO:$rs), [(brind RO:$rs)], II_IndirectBranchPseudo> { let isTerminator=1; let isBarrier=1; let hasDelaySlot = 1; let isBranch = 1; let isIndirectBranch = 1; bit isCTI = 1; } def PseudoIndirectBranch : PseudoIndirectBranchBase<GPR32Opnd>; // Return instructions are matched as a RetRA instruction, then are expanded // into PseudoReturn/PseudoReturn64 after register allocation. Finally, // MipsAsmPrinter expands this into JR, JR64, JALR, or JALR64 depending on the // ISA. class PseudoReturnBase<RegisterOperand RO> : MipsPseudo<(outs), (ins RO:$rs), [], II_ReturnPseudo> { let isTerminator = 1; let isBarrier = 1; let hasDelaySlot = 1; let isReturn = 1; let isCodeGenOnly = 1; let hasCtrlDep = 1; let hasExtraSrcRegAllocReq = 1; bit isCTI = 1; } def PseudoReturn : PseudoReturnBase<GPR32Opnd>; // Exception handling related node and instructions. // The conversion sequence is: // ISD::EH_RETURN -> MipsISD::EH_RETURN -> // MIPSeh_return -> (stack change + indirect branch) // // MIPSeh_return takes the place of regular return instruction // but takes two arguments (V1, V0) which are used for storing // the offset and return address respectively. def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>; def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1, isCTI = 1 in { def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst), [(MIPSehret GPR32:$spoff, GPR32:$dst)]>; def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff, GPR64:$dst), [(MIPSehret GPR64:$spoff, GPR64:$dst)]>; } /// Multiply and Divide Instructions. def MULT : MMRel, Mult<"mult", II_MULT, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x18>, ISA_MIPS1_NOT_32R6_64R6; def MULTu : MMRel, Mult<"multu", II_MULTU, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x19>, ISA_MIPS1_NOT_32R6_64R6; let AdditionalPredicates = [NotInMicroMips] in { def SDIV : MMRel, Div<"div", II_DIV, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1a>, ISA_MIPS1_NOT_32R6_64R6; def UDIV : MMRel, Div<"divu", II_DIVU, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1b>, ISA_MIPS1_NOT_32R6_64R6; } def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>, ISA_MIPS1_NOT_32R6_64R6; def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>, ISA_MIPS1_NOT_32R6_64R6; let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug AdditionalPredicates = [NotInMicroMips] in { def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>, ISA_MIPS1_NOT_32R6_64R6; def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>, ISA_MIPS1_NOT_32R6_64R6; } /// Sign Ext In Register Instructions. def SEB : MMRel, StdMMR6Rel, SignExtInReg<"seb", i8, GPR32Opnd, II_SEB>, SEB_FM<0x10, 0x20>, ISA_MIPS32R2; def SEH : MMRel, StdMMR6Rel, SignExtInReg<"seh", i16, GPR32Opnd, II_SEH>, SEB_FM<0x18, 0x20>, ISA_MIPS32R2; /// Count Leading def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd, II_CLZ>, CLO_FM<0x20>, ISA_MIPS32_NOT_32R6_64R6; def CLO : MMRel, CountLeading1<"clo", GPR32Opnd, II_CLO>, CLO_FM<0x21>, ISA_MIPS32_NOT_32R6_64R6; let AdditionalPredicates = [NotInMicroMips] in { /// Word Swap Bytes Within Halfwords def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd, II_WSBH>, SEB_FM<2, 0x20>, ISA_MIPS32R2; } /// No operation. def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>; // FrameIndexes are legalized when they are operands from load/store // instructions. The same not happens for stack address copies, so an // add op with mem ComplexPattern is used and the stack address copy // can be matched. It's similar to Sparc LEA_ADDRi def LEA_ADDiu : MMRel, EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>; // MADD*/MSUB* def MADD : MMRel, MArithR<"madd", II_MADD, 1>, MULT_FM<0x1c, 0>, ISA_MIPS32_NOT_32R6_64R6; def MADDU : MMRel, MArithR<"maddu", II_MADDU, 1>, MULT_FM<0x1c, 1>, ISA_MIPS32_NOT_32R6_64R6; def MSUB : MMRel, MArithR<"msub", II_MSUB>, MULT_FM<0x1c, 4>, ISA_MIPS32_NOT_32R6_64R6; def MSUBU : MMRel, MArithR<"msubu", II_MSUBU>, MULT_FM<0x1c, 5>, ISA_MIPS32_NOT_32R6_64R6; let AdditionalPredicates = [NotDSP] in { def PseudoMULT : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, II_MULT>, ISA_MIPS1_NOT_32R6_64R6; def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, II_MULTU>, ISA_MIPS1_NOT_32R6_64R6; def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsMFHI>, ISA_MIPS1_NOT_32R6_64R6; def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsMFLO>, ISA_MIPS1_NOT_32R6_64R6; def PseudoMTLOHI : PseudoMTLOHI<ACC64, GPR32>, ISA_MIPS1_NOT_32R6_64R6; def PseudoMADD : MAddSubPseudo<MADD, MipsMAdd, II_MADD>, ISA_MIPS32_NOT_32R6_64R6; def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu, II_MADDU>, ISA_MIPS32_NOT_32R6_64R6; def PseudoMSUB : MAddSubPseudo<MSUB, MipsMSub, II_MSUB>, ISA_MIPS32_NOT_32R6_64R6; def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu, II_MSUBU>, ISA_MIPS32_NOT_32R6_64R6; } let AdditionalPredicates = [NotInMicroMips] in { def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, II_DIV, 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6; def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, II_DIVU, 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6; def RDHWR : MMRel, ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM; // TODO: Add '0 < pos+size <= 32' constraint check to ext instruction def EXT : MMRel, StdMMR6Rel, ExtBase<"ext", GPR32Opnd, uimm5, uimm5_plus1, immZExt5, immZExt5Plus1, MipsExt>, EXT_FM<0>; def INS : MMRel, StdMMR6Rel, InsBase<"ins", GPR32Opnd, uimm5, uimm5_inssize_plus1, MipsIns>, EXT_FM<4>; } /// Move Control Registers From/To CPU Registers let AdditionalPredicates = [NotInMicroMips] in { def MTC0 : MTC3OP<"mtc0", COP0Opnd, GPR32Opnd, II_MTC0>, MFC3OP_FM<0x10, 4>, ISA_MIPS32; def MFC0 : MFC3OP<"mfc0", GPR32Opnd, COP0Opnd, II_MFC0>, MFC3OP_FM<0x10, 0>, ISA_MIPS32; } def MFC2 : MFC3OP<"mfc2", GPR32Opnd, COP2Opnd, II_MFC2>, MFC3OP_FM<0x12, 0>; def MTC2 : MTC3OP<"mtc2", COP2Opnd, GPR32Opnd, II_MTC2>, MFC3OP_FM<0x12, 4>; class Barrier<string asmstr, InstrItinClass itin = NoItinerary> : InstSE<(outs), (ins), asmstr, [], itin, FrmOther, asmstr>; def SSNOP : MMRel, StdMMR6Rel, Barrier<"ssnop", II_SSNOP>, BARRIER_FM<1>; def EHB : MMRel, Barrier<"ehb", II_EHB>, BARRIER_FM<3>; let isCTI = 1 in def PAUSE : MMRel, StdMMR6Rel, Barrier<"pause", II_PAUSE>, BARRIER_FM<5>, ISA_MIPS32R2; // JR_HB and JALR_HB are defined here using the new style naming // scheme because some of this code is shared with Mips32r6InstrInfo.td // and because of that it doesn't follow the naming convention of the // rest of the file. To avoid a mixture of old vs new style, the new // style was chosen. class JR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> { dag OutOperandList = (outs); dag InOperandList = (ins GPROpnd:$rs); string AsmString = !strconcat(instr_asm, "\t$rs"); list<dag> Pattern = []; } class JALR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> { dag OutOperandList = (outs GPROpnd:$rd); dag InOperandList = (ins GPROpnd:$rs); string AsmString = !strconcat(instr_asm, "\t$rd, $rs"); list<dag> Pattern = []; } class JR_HB_DESC : InstSE<(outs), (ins), "", [], II_JR_HB, FrmJ>, JR_HB_DESC_BASE<"jr.hb", GPR32Opnd> { let isBranch=1; let isIndirectBranch=1; let hasDelaySlot=1; let isTerminator=1; let isBarrier=1; bit isCTI = 1; } class JALR_HB_DESC : InstSE<(outs), (ins), "", [], II_JALR_HB, FrmJ>, JALR_HB_DESC_BASE<"jalr.hb", GPR32Opnd> { let isIndirectBranch=1; let hasDelaySlot=1; bit isCTI = 1; } class JR_HB_ENC : JR_HB_FM<8>; class JALR_HB_ENC : JALR_HB_FM<9>; def JR_HB : JR_HB_DESC, JR_HB_ENC, ISA_MIPS32_NOT_32R6_64R6; def JALR_HB : JALR_HB_DESC, JALR_HB_ENC, ISA_MIPS32; class TLB<string asmstr, InstrItinClass itin = NoItinerary> : InstSE<(outs), (ins), asmstr, [], itin, FrmOther, asmstr>; let AdditionalPredicates = [NotInMicroMips] in { def TLBP : MMRel, TLB<"tlbp", II_TLBP>, COP0_TLB_FM<0x08>; def TLBR : MMRel, TLB<"tlbr", II_TLBR>, COP0_TLB_FM<0x01>; def TLBWI : MMRel, TLB<"tlbwi", II_TLBWI>, COP0_TLB_FM<0x02>; def TLBWR : MMRel, TLB<"tlbwr", II_TLBWR>, COP0_TLB_FM<0x06>; } class CacheOp<string instr_asm, Operand MemOpnd, InstrItinClass itin = NoItinerary> : InstSE<(outs), (ins MemOpnd:$addr, uimm5:$hint), !strconcat(instr_asm, "\t$hint, $addr"), [], itin, FrmOther, instr_asm> { let DecoderMethod = "DecodeCacheOp"; } def CACHE : MMRel, CacheOp<"cache", mem, II_CACHE>, CACHEOP_FM<0b101111>, INSN_MIPS3_32_NOT_32R6_64R6; def PREF : MMRel, CacheOp<"pref", mem, II_PREF>, CACHEOP_FM<0b110011>, INSN_MIPS3_32_NOT_32R6_64R6; def ROL : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), "rol\t$rs, $rt, $rd">; def ROLImm : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), "rol\t$rs, $rt, $imm">; def : MipsInstAlias<"rol $rd, $rs", (ROL GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>; def : MipsInstAlias<"rol $rd, $imm", (ROLImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>; def ROR : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), "ror\t$rs, $rt, $rd">; def RORImm : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), "ror\t$rs, $rt, $imm">; def : MipsInstAlias<"ror $rd, $rs", (ROR GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>; def : MipsInstAlias<"ror $rd, $imm", (RORImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>; def DROL : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), "drol\t$rs, $rt, $rd">, ISA_MIPS64; def DROLImm : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), "drol\t$rs, $rt, $imm">, ISA_MIPS64; def : MipsInstAlias<"drol $rd, $rs", (DROL GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, ISA_MIPS64; def : MipsInstAlias<"drol $rd, $imm", (DROLImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>, ISA_MIPS64; def DROR : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), "dror\t$rs, $rt, $rd">, ISA_MIPS64; def DRORImm : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), "dror\t$rs, $rt, $imm">, ISA_MIPS64; def : MipsInstAlias<"dror $rd, $rs", (DROR GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, ISA_MIPS64; def : MipsInstAlias<"dror $rd, $imm", (DRORImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>, ISA_MIPS64; def ABSMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs), "abs\t$rd, $rs">; //===----------------------------------------------------------------------===// // Instruction aliases //===----------------------------------------------------------------------===// def : MipsInstAlias<"move $dst, $src", (OR GPR32Opnd:$dst, GPR32Opnd:$src, ZERO), 1>, GPR_32 { let AdditionalPredicates = [NotInMicroMips]; } def : MipsInstAlias<"move $dst, $src", (ADDu GPR32Opnd:$dst, GPR32Opnd:$src, ZERO), 1>, GPR_32 { let AdditionalPredicates = [NotInMicroMips]; } def : MipsInstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>, ISA_MIPS1_NOT_32R6_64R6; def : MipsInstAlias< "addu $rs, $rt, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "addu $rs, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "add $rs, $rt, $imm", (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6; def : MipsInstAlias< "add $rs, $imm", (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6; def : MipsInstAlias< "and $rs, $rt, $imm", (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "and $rs, $imm", (ANDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; def : MipsInstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>; let Predicates = [NotInMicroMips] in { def : MipsInstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>; } def : MipsInstAlias<"jalr.hb $rs", (JALR_HB RA, GPR32Opnd:$rs), 1>, ISA_MIPS32; def : MipsInstAlias<"neg $rt, $rs", (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>; def : MipsInstAlias<"negu $rt", (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rt), 0>; def : MipsInstAlias<"negu $rt, $rs", (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>; def : MipsInstAlias< "slt $rs, $rt, $imm", (SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "sltu $rt, $rs, $imm", (SLTiu GPR32Opnd:$rt, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; let AdditionalPredicates = [NotInMicroMips] in { def : MipsInstAlias< "and $rs, $rt, $imm", (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "and $rs, $imm", (ANDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "xor $rs, $rt, $imm", (XORi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "xor $rs, $imm", (XORi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "or $rs, $rt, $imm", (ORi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "or $rs, $imm", (ORi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; def : MipsInstAlias< "not $rt, $rs", (NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>; def : MipsInstAlias<"nop", (SLL ZERO, ZERO, 0), 1>; } def : MipsInstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, COP0Opnd:$rd, 0), 0>; def : MipsInstAlias<"mtc0 $rt, $rd", (MTC0 COP0Opnd:$rd, GPR32Opnd:$rt, 0), 0>; def : MipsInstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, COP2Opnd:$rd, 0), 0>; def : MipsInstAlias<"mtc2 $rt, $rd", (MTC2 COP2Opnd:$rd, GPR32Opnd:$rt, 0), 0>; let AdditionalPredicates = [NotInMicroMips] in { def : MipsInstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>; } def : MipsInstAlias<"bnez $rs,$offset", (BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; def : MipsInstAlias<"bnezl $rs,$offset", (BNEL GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; def : MipsInstAlias<"beqz $rs,$offset", (BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; def : MipsInstAlias<"beqzl $rs,$offset", (BEQL GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; let AdditionalPredicates = [NotInMicroMips] in { def : MipsInstAlias<"syscall", (SYSCALL 0), 1>; } def : MipsInstAlias<"break", (BREAK 0, 0), 1>; def : MipsInstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>; let AdditionalPredicates = [NotInMicroMips] in { def : MipsInstAlias<"ei", (EI ZERO), 1>, ISA_MIPS32R2; def : MipsInstAlias<"di", (DI ZERO), 1>, ISA_MIPS32R2; } let AdditionalPredicates = [NotInMicroMips] in { def : MipsInstAlias<"teq $rs, $rt", (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; def : MipsInstAlias<"tge $rs, $rt", (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; def : MipsInstAlias<"tgeu $rs, $rt", (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; def : MipsInstAlias<"tlt $rs, $rt", (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; def : MipsInstAlias<"tltu $rs, $rt", (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; def : MipsInstAlias<"tne $rs, $rt", (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; } def : MipsInstAlias<"sub, $rd, $rs, $imm", (ADDi GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6; def : MipsInstAlias<"sub $rs, $imm", (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, InvertedImOperand:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6; def : MipsInstAlias<"subu, $rd, $rs, $imm", (ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm), 0>; def : MipsInstAlias<"subu $rs, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, InvertedImOperand:$imm), 0>; let AdditionalPredicates = [NotInMicroMips] in { def : MipsInstAlias<"sll $rd, $rt, $rs", (SLLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; def : MipsInstAlias<"sra $rd, $rt, $rs", (SRAV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; def : MipsInstAlias<"srl $rd, $rt, $rs", (SRLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; } def : MipsInstAlias<"sdbbp", (SDBBP 0)>, ISA_MIPS32_NOT_32R6_64R6; def : MipsInstAlias<"sync", (SYNC 0), 1>, ISA_MIPS2; //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions //===----------------------------------------------------------------------===// // We use i32imm on li/la to defer range checking to the assembler. class LoadImmediate32<string instr_asm, Operand Od, RegisterOperand RO> : MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), !strconcat(instr_asm, "\t$rt, $imm32")> ; def LoadImm32 : LoadImmediate32<"li", i32imm, GPR32Opnd>; class LoadAddressFromReg32<string instr_asm, Operand MemOpnd, RegisterOperand RO> : MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr), !strconcat(instr_asm, "\t$rt, $addr")> ; def LoadAddrReg32 : LoadAddressFromReg32<"la", mem, GPR32Opnd>; class LoadAddressFromImm32<string instr_asm, Operand Od, RegisterOperand RO> : MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), !strconcat(instr_asm, "\t$rt, $imm32")> ; def LoadAddrImm32 : LoadAddressFromImm32<"la", i32imm, GPR32Opnd>; def JalTwoReg : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs), "jal\t$rd, $rs"> ; def JalOneReg : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs), "jal\t$rs"> ; def NORImm : MipsAsmPseudoInst< (outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm32:$imm), "nor\t$rs, $rt, $imm"> ; let hasDelaySlot = 1, isCTI = 1 in { def BneImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins imm64:$imm64, brtarget:$offset), "bne\t$rt, $imm64, $offset">; def BeqImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins imm64:$imm64, brtarget:$offset), "beq\t$rt, $imm64, $offset">; class CondBranchPseudo<string instr_asm> : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, brtarget:$offset), !strconcat(instr_asm, "\t$rs, $rt, $offset")>; } def BLT : CondBranchPseudo<"blt">; def BLE : CondBranchPseudo<"ble">; def BGE : CondBranchPseudo<"bge">; def BGT : CondBranchPseudo<"bgt">; def BLTU : CondBranchPseudo<"bltu">; def BLEU : CondBranchPseudo<"bleu">; def BGEU : CondBranchPseudo<"bgeu">; def BGTU : CondBranchPseudo<"bgtu">; def BLTL : CondBranchPseudo<"bltl">, ISA_MIPS2_NOT_32R6_64R6; def BLEL : CondBranchPseudo<"blel">, ISA_MIPS2_NOT_32R6_64R6; def BGEL : CondBranchPseudo<"bgel">, ISA_MIPS2_NOT_32R6_64R6; def BGTL : CondBranchPseudo<"bgtl">, ISA_MIPS2_NOT_32R6_64R6; def BLTUL: CondBranchPseudo<"bltul">, ISA_MIPS2_NOT_32R6_64R6; def BLEUL: CondBranchPseudo<"bleul">, ISA_MIPS2_NOT_32R6_64R6; def BGEUL: CondBranchPseudo<"bgeul">, ISA_MIPS2_NOT_32R6_64R6; def BGTUL: CondBranchPseudo<"bgtul">, ISA_MIPS2_NOT_32R6_64R6; let isCTI = 1 in class CondBranchImmPseudo<string instr_asm> : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, imm64:$imm, brtarget:$offset), !strconcat(instr_asm, "\t$rs, $imm, $offset")>; def BLTImmMacro : CondBranchImmPseudo<"blt">; def BLEImmMacro : CondBranchImmPseudo<"ble">; def BGEImmMacro : CondBranchImmPseudo<"bge">; def BGTImmMacro : CondBranchImmPseudo<"bgt">; def BLTUImmMacro : CondBranchImmPseudo<"bltu">; def BLEUImmMacro : CondBranchImmPseudo<"bleu">; def BGEUImmMacro : CondBranchImmPseudo<"bgeu">; def BGTUImmMacro : CondBranchImmPseudo<"bgtu">; def BLTLImmMacro : CondBranchImmPseudo<"bltl">, ISA_MIPS2_NOT_32R6_64R6; def BLELImmMacro : CondBranchImmPseudo<"blel">, ISA_MIPS2_NOT_32R6_64R6; def BGELImmMacro : CondBranchImmPseudo<"bgel">, ISA_MIPS2_NOT_32R6_64R6; def BGTLImmMacro : CondBranchImmPseudo<"bgtl">, ISA_MIPS2_NOT_32R6_64R6; def BLTULImmMacro : CondBranchImmPseudo<"bltul">, ISA_MIPS2_NOT_32R6_64R6; def BLEULImmMacro : CondBranchImmPseudo<"bleul">, ISA_MIPS2_NOT_32R6_64R6; def BGEULImmMacro : CondBranchImmPseudo<"bgeul">, ISA_MIPS2_NOT_32R6_64R6; def BGTULImmMacro : CondBranchImmPseudo<"bgtul">, ISA_MIPS2_NOT_32R6_64R6; // FIXME: Predicates are removed because instructions are matched regardless of // predicates, because PredicateControl was not in the hierarchy. This was // done to emit more precise error message from expansion function. // Once the tablegen-erated errors are made better, this needs to be fixed and // predicates needs to be restored. def SDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs, GPR32Opnd:$rt), "div\t$rd, $rs, $rt">, ISA_MIPS1_NOT_32R6_64R6; def UDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs, GPR32Opnd:$rt), "divu\t$rd, $rs, $rt">, ISA_MIPS1_NOT_32R6_64R6; def : MipsInstAlias<"div $rt, $rs", (SDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS1_NOT_32R6_64R6; def : MipsInstAlias<"divu $rt, $rs", (UDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS1_NOT_32R6_64R6; def DSDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs, GPR32Opnd:$rt), "ddiv\t$rd, $rs, $rt">, ISA_MIPS64_NOT_64R6; def DUDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs, GPR32Opnd:$rt), "ddivu\t$rd, $rs, $rt">, ISA_MIPS64_NOT_64R6; def : MipsInstAlias<"ddiv $rt, $rs", (DSDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS64_NOT_64R6; def : MipsInstAlias<"ddivu $rt, $rs", (DUDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS64_NOT_64R6; def Ulh : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), "ulh\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; def Ulhu : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), "ulhu\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; def Ulw : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), "ulw\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // Load/store pattern templates. class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> : MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>; class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> : MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>; // Small immediates let AdditionalPredicates = [NotInMicroMips] in { def : MipsPat<(i32 immSExt16:$in), (ADDiu ZERO, imm:$in)>; def : MipsPat<(i32 immZExt16:$in), (ORi ZERO, imm:$in)>; } def : MipsPat<(i32 immLow16Zero:$in), (LUi (HI16 imm:$in))>; // Arbitrary immediates def : MipsPat<(i32 imm:$imm), (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; // Carry MipsPatterns let AdditionalPredicates = [NotInMicroMips] in { def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs), (SUBu GPR32:$lhs, GPR32:$rhs)>; } def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs), (ADDu GPR32:$lhs, GPR32:$rhs)>, ASE_NOT_DSP; def : MipsPat<(addc GPR32:$src, immSExt16:$imm), (ADDiu GPR32:$src, imm:$imm)>, ASE_NOT_DSP; // Support multiplication for pre-Mips32 targets that don't have // the MUL instruction. def : MipsPat<(mul GPR32:$lhs, GPR32:$rhs), (PseudoMFLO (PseudoMULT GPR32:$lhs, GPR32:$rhs))>, ISA_MIPS1_NOT_32R6_64R6; // SYNC def : MipsPat<(MipsSync (i32 immz)), (SYNC 0)>, ISA_MIPS2; // Call def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)), (JAL texternalsym:$dst)>; //def : MipsPat<(MipsJmpLink GPR32:$dst), // (JALR GPR32:$dst)>; // Tail call def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)), (TAILCALL tglobaladdr:$dst)>; def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)), (TAILCALL texternalsym:$dst)>; // hi/lo relocs def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>; def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>; def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>; def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>; def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>; def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>; def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>; def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>; def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>; def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>; def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)), (ADDiu GPR32:$hi, tglobaladdr:$lo)>; def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)), (ADDiu GPR32:$hi, tblockaddress:$lo)>; def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)), (ADDiu GPR32:$hi, tjumptable:$lo)>; def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)), (ADDiu GPR32:$hi, tconstpool:$lo)>; def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)), (ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>; // gp_rel relocs def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)), (ADDiu GPR32:$gp, tglobaladdr:$in)>; def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)), (ADDiu GPR32:$gp, tconstpool:$in)>; // wrapper_pic class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: MipsPat<(MipsWrapper RC:$gp, node:$in), (ADDiuOp RC:$gp, node:$in)>; def : WrapperPat<tglobaladdr, ADDiu, GPR32>; def : WrapperPat<tconstpool, ADDiu, GPR32>; def : WrapperPat<texternalsym, ADDiu, GPR32>; def : WrapperPat<tblockaddress, ADDiu, GPR32>; def : WrapperPat<tjumptable, ADDiu, GPR32>; def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>; let AdditionalPredicates = [NotInMicroMips] in { // Mips does not have "not", so we expand our way def : MipsPat<(not GPR32:$in), (NOR GPR32Opnd:$in, ZERO)>; } // extended loads def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>; def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>; let AdditionalPredicates = [NotInMicroMips] in { def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>; } // peepholes def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>; // brcond patterns multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp, Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp, Instruction SLTiuOp, Register ZEROReg> { def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst), (BNEOp RC:$lhs, ZEROReg, bb:$dst)>; def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst), (BEQOp RC:$lhs, ZEROReg, bb:$dst)>; def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst), (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst), (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst), (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst), (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; def : MipsPat<(brcond RC:$cond, bb:$dst), (BNEOp RC:$cond, ZEROReg, bb:$dst)>; } defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>; def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst), (BLEZ i32:$lhs, bb:$dst)>; def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst), (BGEZ i32:$lhs, bb:$dst)>; // setcc patterns multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp, Instruction SLTuOp, Register ZEROReg> { def : MipsPat<(seteq RC:$lhs, 0), (SLTiuOp RC:$lhs, 1)>; def : MipsPat<(setne RC:$lhs, 0), (SLTuOp ZEROReg, RC:$lhs)>; def : MipsPat<(seteq RC:$lhs, RC:$rhs), (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>; def : MipsPat<(setne RC:$lhs, RC:$rhs), (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>; } multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { def : MipsPat<(setle RC:$lhs, RC:$rhs), (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>; def : MipsPat<(setule RC:$lhs, RC:$rhs), (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>; } multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { def : MipsPat<(setgt RC:$lhs, RC:$rhs), (SLTOp RC:$rhs, RC:$lhs)>; def : MipsPat<(setugt RC:$lhs, RC:$rhs), (SLTuOp RC:$rhs, RC:$lhs)>; } multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { def : MipsPat<(setge RC:$lhs, RC:$rhs), (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>; def : MipsPat<(setuge RC:$lhs, RC:$rhs), (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>; } multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp, Instruction SLTiuOp> { def : MipsPat<(setge RC:$lhs, immSExt16:$rhs), (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>; def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs), (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>; } defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>; defm : SetlePats<GPR32, SLT, SLTu>; defm : SetgtPats<GPR32, SLT, SLTu>; defm : SetgePats<GPR32, SLT, SLTu>; defm : SetgeImmPats<GPR32, SLTi, SLTiu>; // bswap pattern def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>; // Load halfword/word patterns. let AddedComplexity = 40 in { def : LoadRegImmPat<LBu, i32, zextloadi8>; let AdditionalPredicates = [NotInMicroMips] in { def : LoadRegImmPat<LH, i32, sextloadi16>; def : LoadRegImmPat<LW, i32, load>; } } // Atomic load patterns. def : MipsPat<(atomic_load_8 addr:$a), (LB addr:$a)>; let AdditionalPredicates = [NotInMicroMips] in { def : MipsPat<(atomic_load_16 addr:$a), (LH addr:$a)>; } def : MipsPat<(atomic_load_32 addr:$a), (LW addr:$a)>; // Atomic store patterns. def : MipsPat<(atomic_store_8 addr:$a, GPR32:$v), (SB GPR32:$v, addr:$a)>; def : MipsPat<(atomic_store_16 addr:$a, GPR32:$v), (SH GPR32:$v, addr:$a)>; def : MipsPat<(atomic_store_32 addr:$a, GPR32:$v), (SW GPR32:$v, addr:$a)>; //===----------------------------------------------------------------------===// // Floating Point Support //===----------------------------------------------------------------------===// include "MipsInstrFPU.td" include "Mips64InstrInfo.td" include "MipsCondMov.td" include "Mips32r6InstrInfo.td" include "Mips64r6InstrInfo.td" // // Mips16 include "Mips16InstrFormats.td" include "Mips16InstrInfo.td" // DSP include "MipsDSPInstrFormats.td" include "MipsDSPInstrInfo.td" // MSA include "MipsMSAInstrFormats.td" include "MipsMSAInstrInfo.td" // EVA include "MipsEVAInstrFormats.td" include "MipsEVAInstrInfo.td" // Micromips include "MicroMipsInstrFormats.td" include "MicroMipsInstrInfo.td" include "MicroMipsInstrFPU.td" // Micromips r6 include "MicroMips32r6InstrFormats.td" include "MicroMips32r6InstrInfo.td" // Micromips64 r6 include "MicroMips64r6InstrFormats.td" include "MicroMips64r6InstrInfo.td" // Micromips DSP include "MicroMipsDSPInstrFormats.td" include "MicroMipsDSPInstrInfo.td"