//===-- Mips16InstrInfo.cpp - Mips16 Instruction Information --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips16 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "Mips16InstrInfo.h" #include "InstPrinter/MipsInstPrinter.h" #include "MipsMachineFunction.h" #include "MipsTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include <cctype> using namespace llvm; #define DEBUG_TYPE "mips16-instrinfo" Mips16InstrInfo::Mips16InstrInfo(const MipsSubtarget &STI) : MipsInstrInfo(STI, Mips::Bimm16), RI() {} const MipsRegisterInfo &Mips16InstrInfo::getRegisterInfo() const { return RI; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned Mips16InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned Mips16InstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { return 0; } void Mips16InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { unsigned Opc = 0; if (Mips::CPU16RegsRegClass.contains(DestReg) && Mips::GPR32RegClass.contains(SrcReg)) Opc = Mips::MoveR3216; else if (Mips::GPR32RegClass.contains(DestReg) && Mips::CPU16RegsRegClass.contains(SrcReg)) Opc = Mips::Move32R16; else if ((SrcReg == Mips::HI0) && (Mips::CPU16RegsRegClass.contains(DestReg))) Opc = Mips::Mfhi16, SrcReg = 0; else if ((SrcReg == Mips::LO0) && (Mips::CPU16RegsRegClass.contains(DestReg))) Opc = Mips::Mflo16, SrcReg = 0; assert(Opc && "Cannot copy registers"); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc)); if (DestReg) MIB.addReg(DestReg, RegState::Define); if (SrcReg) MIB.addReg(SrcReg, getKillRegState(KillSrc)); } void Mips16InstrInfo::storeRegToStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, int64_t Offset) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOStore); unsigned Opc = 0; if (Mips::CPU16RegsRegClass.hasSubClassEq(RC)) Opc = Mips::SwRxSpImmX16; assert(Opc && "Register class not handled!"); BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill)). addFrameIndex(FI).addImm(Offset) .addMemOperand(MMO); } void Mips16InstrInfo::loadRegFromStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, int64_t Offset) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOLoad); unsigned Opc = 0; if (Mips::CPU16RegsRegClass.hasSubClassEq(RC)) Opc = Mips::LwRxSpImmX16; assert(Opc && "Register class not handled!"); BuildMI(MBB, I, DL, get(Opc), DestReg).addFrameIndex(FI).addImm(Offset) .addMemOperand(MMO); } bool Mips16InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { MachineBasicBlock &MBB = *MI.getParent(); switch (MI.getDesc().getOpcode()) { default: return false; case Mips::RetRA16: ExpandRetRA16(MBB, MI, Mips::JrcRa16); break; } MBB.erase(MI.getIterator()); return true; } /// GetOppositeBranchOpc - Return the inverse of the specified /// opcode, e.g. turning BEQ to BNE. unsigned Mips16InstrInfo::getOppositeBranchOpc(unsigned Opc) const { switch (Opc) { case Mips::BeqzRxImmX16: return Mips::BnezRxImmX16; case Mips::BnezRxImmX16: return Mips::BeqzRxImmX16; case Mips::BeqzRxImm16: return Mips::BnezRxImm16; case Mips::BnezRxImm16: return Mips::BeqzRxImm16; case Mips::BteqzT8CmpX16: return Mips::BtnezT8CmpX16; case Mips::BteqzT8SltX16: return Mips::BtnezT8SltX16; case Mips::BteqzT8SltiX16: return Mips::BtnezT8SltiX16; case Mips::Btnez16: return Mips::Bteqz16; case Mips::BtnezX16: return Mips::BteqzX16; case Mips::BtnezT8CmpiX16: return Mips::BteqzT8CmpiX16; case Mips::BtnezT8SltuX16: return Mips::BteqzT8SltuX16; case Mips::BtnezT8SltiuX16: return Mips::BteqzT8SltiuX16; case Mips::Bteqz16: return Mips::Btnez16; case Mips::BteqzX16: return Mips::BtnezX16; case Mips::BteqzT8CmpiX16: return Mips::BtnezT8CmpiX16; case Mips::BteqzT8SltuX16: return Mips::BtnezT8SltuX16; case Mips::BteqzT8SltiuX16: return Mips::BtnezT8SltiuX16; case Mips::BtnezT8CmpX16: return Mips::BteqzT8CmpX16; case Mips::BtnezT8SltX16: return Mips::BteqzT8SltX16; case Mips::BtnezT8SltiX16: return Mips::BteqzT8SltiX16; } llvm_unreachable("Illegal opcode!"); } static void addSaveRestoreRegs(MachineInstrBuilder &MIB, const std::vector<CalleeSavedInfo> &CSI, unsigned Flags = 0) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { // Add the callee-saved register as live-in. Do not add if the register is // RA and return address is taken, because it has already been added in // method MipsTargetLowering::LowerRETURNADDR. // It's killed at the spill, unless the register is RA and return address // is taken. unsigned Reg = CSI[e-i-1].getReg(); switch (Reg) { case Mips::RA: case Mips::S0: case Mips::S1: MIB.addReg(Reg, Flags); break; case Mips::S2: break; default: llvm_unreachable("unexpected mips16 callee saved register"); } } } // Adjust SP by FrameSize bytes. Save RA, S0, S1 void Mips16InstrInfo::makeFrame(unsigned SP, int64_t FrameSize, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { DebugLoc DL; MachineFunction &MF = *MBB.getParent(); MachineFrameInfo *MFI = MF.getFrameInfo(); const BitVector Reserved = RI.getReservedRegs(MF); bool SaveS2 = Reserved[Mips::S2]; MachineInstrBuilder MIB; unsigned Opc = ((FrameSize <= 128) && !SaveS2)? Mips::Save16:Mips::SaveX16; MIB = BuildMI(MBB, I, DL, get(Opc)); const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); addSaveRestoreRegs(MIB, CSI); if (SaveS2) MIB.addReg(Mips::S2); if (isUInt<11>(FrameSize)) MIB.addImm(FrameSize); else { int Base = 2040; // should create template function like isUInt that // returns largest possible n bit unsigned integer int64_t Remainder = FrameSize - Base; MIB.addImm(Base); if (isInt<16>(-Remainder)) BuildAddiuSpImm(MBB, I, -Remainder); else adjustStackPtrBig(SP, -Remainder, MBB, I, Mips::V0, Mips::V1); } } // Adjust SP by FrameSize bytes. Restore RA, S0, S1 void Mips16InstrInfo::restoreFrame(unsigned SP, int64_t FrameSize, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc(); MachineFunction *MF = MBB.getParent(); MachineFrameInfo *MFI = MF->getFrameInfo(); const BitVector Reserved = RI.getReservedRegs(*MF); bool SaveS2 = Reserved[Mips::S2]; MachineInstrBuilder MIB; unsigned Opc = ((FrameSize <= 128) && !SaveS2)? Mips::Restore16:Mips::RestoreX16; if (!isUInt<11>(FrameSize)) { unsigned Base = 2040; int64_t Remainder = FrameSize - Base; FrameSize = Base; // should create template function like isUInt that // returns largest possible n bit unsigned integer if (isInt<16>(Remainder)) BuildAddiuSpImm(MBB, I, Remainder); else adjustStackPtrBig(SP, Remainder, MBB, I, Mips::A0, Mips::A1); } MIB = BuildMI(MBB, I, DL, get(Opc)); const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); addSaveRestoreRegs(MIB, CSI, RegState::Define); if (SaveS2) MIB.addReg(Mips::S2, RegState::Define); MIB.addImm(FrameSize); } // Adjust SP by Amount bytes where bytes can be up to 32bit number. // This can only be called at times that we know that there is at least one free // register. // This is clearly safe at prologue and epilogue. // void Mips16InstrInfo::adjustStackPtrBig(unsigned SP, int64_t Amount, MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned Reg1, unsigned Reg2) const { DebugLoc DL; // // li reg1, constant // move reg2, sp // add reg1, reg1, reg2 // move sp, reg1 // // MachineInstrBuilder MIB1 = BuildMI(MBB, I, DL, get(Mips::LwConstant32), Reg1); MIB1.addImm(Amount).addImm(-1); MachineInstrBuilder MIB2 = BuildMI(MBB, I, DL, get(Mips::MoveR3216), Reg2); MIB2.addReg(Mips::SP, RegState::Kill); MachineInstrBuilder MIB3 = BuildMI(MBB, I, DL, get(Mips::AdduRxRyRz16), Reg1); MIB3.addReg(Reg1); MIB3.addReg(Reg2, RegState::Kill); MachineInstrBuilder MIB4 = BuildMI(MBB, I, DL, get(Mips::Move32R16), Mips::SP); MIB4.addReg(Reg1, RegState::Kill); } void Mips16InstrInfo::adjustStackPtrBigUnrestricted( unsigned SP, int64_t Amount, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { llvm_unreachable("adjust stack pointer amount exceeded"); } /// Adjust SP by Amount bytes. void Mips16InstrInfo::adjustStackPtr(unsigned SP, int64_t Amount, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (Amount == 0) return; if (isInt<16>(Amount)) // need to change to addiu sp, ....and isInt<16> BuildAddiuSpImm(MBB, I, Amount); else adjustStackPtrBigUnrestricted(SP, Amount, MBB, I); } /// This function generates the sequence of instructions needed to get the /// result of adding register REG and immediate IMM. unsigned Mips16InstrInfo::loadImmediate(unsigned FrameReg, int64_t Imm, MachineBasicBlock &MBB, MachineBasicBlock::iterator II, const DebugLoc &DL, unsigned &NewImm) const { // // given original instruction is: // Instr rx, T[offset] where offset is too big. // // lo = offset & 0xFFFF // hi = ((offset >> 16) + (lo >> 15)) & 0xFFFF; // // let T = temporary register // li T, hi // shl T, 16 // add T, Rx, T // RegScavenger rs; int32_t lo = Imm & 0xFFFF; NewImm = lo; int Reg =0; int SpReg = 0; rs.enterBasicBlock(MBB); rs.forward(II); // // We need to know which registers can be used, in the case where there // are not enough free registers. We exclude all registers that // are used in the instruction that we are helping. // // Consider all allocatable registers in the register class initially BitVector Candidates = RI.getAllocatableSet (*II->getParent()->getParent(), &Mips::CPU16RegsRegClass); // Exclude all the registers being used by the instruction. for (unsigned i = 0, e = II->getNumOperands(); i != e; ++i) { MachineOperand &MO = II->getOperand(i); if (MO.isReg() && MO.getReg() != 0 && !MO.isDef() && !TargetRegisterInfo::isVirtualRegister(MO.getReg())) Candidates.reset(MO.getReg()); } // If the same register was used and defined in an instruction, then // it will not be in the list of candidates. // // we need to analyze the instruction that we are helping. // we need to know if it defines register x but register x is not // present as an operand of the instruction. this tells // whether the register is live before the instruction. if it's not // then we don't need to save it in case there are no free registers. int DefReg = 0; for (unsigned i = 0, e = II->getNumOperands(); i != e; ++i) { MachineOperand &MO = II->getOperand(i); if (MO.isReg() && MO.isDef()) { DefReg = MO.getReg(); break; } } BitVector Available = rs.getRegsAvailable(&Mips::CPU16RegsRegClass); Available &= Candidates; // // we use T0 for the first register, if we need to save something away. // we use T1 for the second register, if we need to save something away. // unsigned FirstRegSaved =0, SecondRegSaved=0; unsigned FirstRegSavedTo = 0, SecondRegSavedTo = 0; Reg = Available.find_first(); if (Reg == -1) { Reg = Candidates.find_first(); Candidates.reset(Reg); if (DefReg != Reg) { FirstRegSaved = Reg; FirstRegSavedTo = Mips::T0; copyPhysReg(MBB, II, DL, FirstRegSavedTo, FirstRegSaved, true); } } else Available.reset(Reg); BuildMI(MBB, II, DL, get(Mips::LwConstant32), Reg).addImm(Imm).addImm(-1); NewImm = 0; if (FrameReg == Mips::SP) { SpReg = Available.find_first(); if (SpReg == -1) { SpReg = Candidates.find_first(); // Candidates.reset(SpReg); // not really needed if (DefReg!= SpReg) { SecondRegSaved = SpReg; SecondRegSavedTo = Mips::T1; } if (SecondRegSaved) copyPhysReg(MBB, II, DL, SecondRegSavedTo, SecondRegSaved, true); } else Available.reset(SpReg); copyPhysReg(MBB, II, DL, SpReg, Mips::SP, false); BuildMI(MBB, II, DL, get(Mips:: AdduRxRyRz16), Reg).addReg(SpReg, RegState::Kill) .addReg(Reg); } else BuildMI(MBB, II, DL, get(Mips:: AdduRxRyRz16), Reg).addReg(FrameReg) .addReg(Reg, RegState::Kill); if (FirstRegSaved || SecondRegSaved) { II = std::next(II); if (FirstRegSaved) copyPhysReg(MBB, II, DL, FirstRegSaved, FirstRegSavedTo, true); if (SecondRegSaved) copyPhysReg(MBB, II, DL, SecondRegSaved, SecondRegSavedTo, true); } return Reg; } unsigned Mips16InstrInfo::getAnalyzableBrOpc(unsigned Opc) const { return (Opc == Mips::BeqzRxImmX16 || Opc == Mips::BimmX16 || Opc == Mips::Bimm16 || Opc == Mips::Bteqz16 || Opc == Mips::Btnez16 || Opc == Mips::BeqzRxImm16 || Opc == Mips::BnezRxImm16 || Opc == Mips::BnezRxImmX16 || Opc == Mips::BteqzX16 || Opc == Mips::BteqzT8CmpX16 || Opc == Mips::BteqzT8CmpiX16 || Opc == Mips::BteqzT8SltX16 || Opc == Mips::BteqzT8SltuX16 || Opc == Mips::BteqzT8SltiX16 || Opc == Mips::BteqzT8SltiuX16 || Opc == Mips::BtnezX16 || Opc == Mips::BtnezT8CmpX16 || Opc == Mips::BtnezT8CmpiX16 || Opc == Mips::BtnezT8SltX16 || Opc == Mips::BtnezT8SltuX16 || Opc == Mips::BtnezT8SltiX16 || Opc == Mips::BtnezT8SltiuX16 ) ? Opc : 0; } void Mips16InstrInfo::ExpandRetRA16(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned Opc) const { BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); } const MCInstrDesc &Mips16InstrInfo::AddiuSpImm(int64_t Imm) const { if (validSpImm8(Imm)) return get(Mips::AddiuSpImm16); else return get(Mips::AddiuSpImmX16); } void Mips16InstrInfo::BuildAddiuSpImm (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, int64_t Imm) const { DebugLoc DL; BuildMI(MBB, I, DL, AddiuSpImm(Imm)).addImm(Imm); } const MipsInstrInfo *llvm::createMips16InstrInfo(const MipsSubtarget &STI) { return new Mips16InstrInfo(STI); } bool Mips16InstrInfo::validImmediate(unsigned Opcode, unsigned Reg, int64_t Amount) { switch (Opcode) { case Mips::LbRxRyOffMemX16: case Mips::LbuRxRyOffMemX16: case Mips::LhRxRyOffMemX16: case Mips::LhuRxRyOffMemX16: case Mips::SbRxRyOffMemX16: case Mips::ShRxRyOffMemX16: case Mips::LwRxRyOffMemX16: case Mips::SwRxRyOffMemX16: case Mips::SwRxSpImmX16: case Mips::LwRxSpImmX16: return isInt<16>(Amount); case Mips::AddiuRxRyOffMemX16: if ((Reg == Mips::PC) || (Reg == Mips::SP)) return isInt<16>(Amount); return isInt<15>(Amount); } llvm_unreachable("unexpected Opcode in validImmediate"); } /// Measure the specified inline asm to determine an approximation of its /// length. /// Comments (which run till the next SeparatorString or newline) do not /// count as an instruction. /// Any other non-whitespace text is considered an instruction, with /// multiple instructions separated by SeparatorString or newlines. /// Variable-length instructions are not handled here; this function /// may be overloaded in the target code to do that. /// We implement the special case of the .space directive taking only an /// integer argument, which is the size in bytes. This is used for creating /// inline code spacing for testing purposes using inline assembly. /// unsigned Mips16InstrInfo::getInlineAsmLength(const char *Str, const MCAsmInfo &MAI) const { // Count the number of instructions in the asm. bool atInsnStart = true; unsigned Length = 0; for (; *Str; ++Str) { if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), strlen(MAI.getSeparatorString())) == 0) atInsnStart = true; if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { if (strncmp(Str, ".space", 6)==0) { char *EStr; int Sz; Sz = strtol(Str+6, &EStr, 10); while (isspace(*EStr)) ++EStr; if (*EStr=='\0') { DEBUG(dbgs() << "parsed .space " << Sz << '\n'); return Sz; } } Length += MAI.getMaxInstLength(); atInsnStart = false; } if (atInsnStart && strncmp(Str, MAI.getCommentString(), strlen(MAI.getCommentString())) == 0) atInsnStart = false; } return Length; }