//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/MipsABIInfo.h" #include "MCTargetDesc/MipsMCExpr.h" #include "MCTargetDesc/MipsMCTargetDesc.h" #include "MipsRegisterInfo.h" #include "MipsTargetObjectFile.h" #include "MipsTargetStreamer.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ELF.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include <memory> using namespace llvm; #define DEBUG_TYPE "mips-asm-parser" namespace llvm { class MCInstrInfo; } namespace { class MipsAssemblerOptions { public: MipsAssemblerOptions(const FeatureBitset &Features_) : ATReg(1), Reorder(true), Macro(true), Features(Features_) {} MipsAssemblerOptions(const MipsAssemblerOptions *Opts) { ATReg = Opts->getATRegIndex(); Reorder = Opts->isReorder(); Macro = Opts->isMacro(); Features = Opts->getFeatures(); } unsigned getATRegIndex() const { return ATReg; } bool setATRegIndex(unsigned Reg) { if (Reg > 31) return false; ATReg = Reg; return true; } bool isReorder() const { return Reorder; } void setReorder() { Reorder = true; } void setNoReorder() { Reorder = false; } bool isMacro() const { return Macro; } void setMacro() { Macro = true; } void setNoMacro() { Macro = false; } const FeatureBitset &getFeatures() const { return Features; } void setFeatures(const FeatureBitset &Features_) { Features = Features_; } // Set of features that are either architecture features or referenced // by them (e.g.: FeatureNaN2008 implied by FeatureMips32r6). // The full table can be found in MipsGenSubtargetInfo.inc (MipsFeatureKV[]). // The reason we need this mask is explained in the selectArch function. // FIXME: Ideally we would like TableGen to generate this information. static const FeatureBitset AllArchRelatedMask; private: unsigned ATReg; bool Reorder; bool Macro; FeatureBitset Features; }; } const FeatureBitset MipsAssemblerOptions::AllArchRelatedMask = { Mips::FeatureMips1, Mips::FeatureMips2, Mips::FeatureMips3, Mips::FeatureMips3_32, Mips::FeatureMips3_32r2, Mips::FeatureMips4, Mips::FeatureMips4_32, Mips::FeatureMips4_32r2, Mips::FeatureMips5, Mips::FeatureMips5_32r2, Mips::FeatureMips32, Mips::FeatureMips32r2, Mips::FeatureMips32r3, Mips::FeatureMips32r5, Mips::FeatureMips32r6, Mips::FeatureMips64, Mips::FeatureMips64r2, Mips::FeatureMips64r3, Mips::FeatureMips64r5, Mips::FeatureMips64r6, Mips::FeatureCnMips, Mips::FeatureFP64Bit, Mips::FeatureGP64Bit, Mips::FeatureNaN2008 }; namespace { class MipsAsmParser : public MCTargetAsmParser { MipsTargetStreamer &getTargetStreamer() { MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast<MipsTargetStreamer &>(TS); } MipsABIInfo ABI; SmallVector<std::unique_ptr<MipsAssemblerOptions>, 2> AssemblerOptions; MCSymbol *CurrentFn; // Pointer to the function being parsed. It may be a // nullptr, which indicates that no function is currently // selected. This usually happens after an '.end func' // directive. bool IsLittleEndian; bool IsPicEnabled; bool IsCpRestoreSet; int CpRestoreOffset; unsigned CpSaveLocation; /// If true, then CpSaveLocation is a register, otherwise it's an offset. bool CpSaveLocationIsRegister; // Print a warning along with its fix-it message at the given range. void printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg, SMRange Range, bool ShowColors = true); #define GET_ASSEMBLER_HEADER #include "MipsGenAsmMatcher.inc" unsigned checkTargetMatchPredicate(MCInst &Inst) override; bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; /// Parse a register as used in CFI directives bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool parseParenSuffix(StringRef Name, OperandVector &Operands); bool parseBracketSuffix(StringRef Name, OperandVector &Operands); bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseDirective(AsmToken DirectiveID) override; OperandMatchResultTy parseMemOperand(OperandVector &Operands); OperandMatchResultTy matchAnyRegisterNameWithoutDollar(OperandVector &Operands, StringRef Identifier, SMLoc S); OperandMatchResultTy matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S); OperandMatchResultTy parseAnyRegister(OperandVector &Operands); OperandMatchResultTy parseImm(OperandVector &Operands); OperandMatchResultTy parseJumpTarget(OperandVector &Operands); OperandMatchResultTy parseInvNum(OperandVector &Operands); OperandMatchResultTy parseRegisterPair(OperandVector &Operands); OperandMatchResultTy parseMovePRegPair(OperandVector &Operands); OperandMatchResultTy parseRegisterList(OperandVector &Operands); bool searchSymbolAlias(OperandVector &Operands); bool parseOperand(OperandVector &, StringRef Mnemonic); enum MacroExpanderResultTy { MER_NotAMacro, MER_Success, MER_Fail, }; // Expands assembly pseudo instructions. MacroExpanderResultTy tryExpandInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandJalWithRegs(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool loadImmediate(int64_t ImmValue, unsigned DstReg, unsigned SrcReg, bool Is32BitImm, bool IsAddress, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool loadAndAddSymbolAddress(const MCExpr *SymExpr, unsigned DstReg, unsigned SrcReg, bool Is32BitSym, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandLoadAddress(unsigned DstReg, unsigned BaseReg, const MCOperand &Offset, bool Is32BitAddress, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandUncondBranchMMPseudo(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); void expandMemInst(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, bool IsLoad, bool IsImmOpnd); void expandLoadInst(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, bool IsImmOpnd); void expandStoreInst(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, bool IsImmOpnd); bool expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandAliasImmediate(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandBranchImm(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandCondBranches(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandDiv(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, const bool IsMips64, const bool Signed); bool expandTrunc(MCInst &Inst, bool IsDouble, bool Is64FPU, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandUlh(MCInst &Inst, bool Signed, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandUlw(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandRotation(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandRotationImm(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandDRotation(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandDRotationImm(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool expandAbs(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); bool reportParseError(Twine ErrorMsg); bool reportParseError(SMLoc Loc, Twine ErrorMsg); bool parseMemOffset(const MCExpr *&Res, bool isParenExpr); bool parseRelocOperand(const MCExpr *&Res); const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr); bool isEvaluated(const MCExpr *Expr); bool parseSetMips0Directive(); bool parseSetArchDirective(); bool parseSetFeature(uint64_t Feature); bool isPicAndNotNxxAbi(); // Used by .cpload, .cprestore, and .cpsetup. bool parseDirectiveCpLoad(SMLoc Loc); bool parseDirectiveCpRestore(SMLoc Loc); bool parseDirectiveCPSetup(); bool parseDirectiveCPReturn(); bool parseDirectiveNaN(); bool parseDirectiveSet(); bool parseDirectiveOption(); bool parseInsnDirective(); bool parseSSectionDirective(StringRef Section, unsigned Type); bool parseSetAtDirective(); bool parseSetNoAtDirective(); bool parseSetMacroDirective(); bool parseSetNoMacroDirective(); bool parseSetMsaDirective(); bool parseSetNoMsaDirective(); bool parseSetNoDspDirective(); bool parseSetReorderDirective(); bool parseSetNoReorderDirective(); bool parseSetMips16Directive(); bool parseSetNoMips16Directive(); bool parseSetFpDirective(); bool parseSetOddSPRegDirective(); bool parseSetNoOddSPRegDirective(); bool parseSetPopDirective(); bool parseSetPushDirective(); bool parseSetSoftFloatDirective(); bool parseSetHardFloatDirective(); bool parseSetAssignment(); bool parseDataDirective(unsigned Size, SMLoc L); bool parseDirectiveGpWord(); bool parseDirectiveGpDWord(); bool parseDirectiveModule(); bool parseDirectiveModuleFP(); bool parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI, StringRef Directive); bool parseInternalDirectiveReallowModule(); bool eatComma(StringRef ErrorStr); int matchCPURegisterName(StringRef Symbol); int matchHWRegsRegisterName(StringRef Symbol); int matchFPURegisterName(StringRef Name); int matchFCCRegisterName(StringRef Name); int matchACRegisterName(StringRef Name); int matchMSA128RegisterName(StringRef Name); int matchMSA128CtrlRegisterName(StringRef Name); unsigned getReg(int RC, int RegNo); /// Returns the internal register number for the current AT. Also checks if /// the current AT is unavailable (set to $0) and gives an error if it is. /// This should be used in pseudo-instruction expansions which need AT. unsigned getATReg(SMLoc Loc); bool processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI); // Helper function that checks if the value of a vector index is within the // boundaries of accepted values for each RegisterKind // Example: INSERT.B $w0[n], $1 => 16 > n >= 0 bool validateMSAIndex(int Val, int RegKind); // Selects a new architecture by updating the FeatureBits with the necessary // info including implied dependencies. // Internally, it clears all the feature bits related to *any* architecture // and selects the new one using the ToggleFeature functionality of the // MCSubtargetInfo object that handles implied dependencies. The reason we // clear all the arch related bits manually is because ToggleFeature only // clears the features that imply the feature being cleared and not the // features implied by the feature being cleared. This is easier to see // with an example: // -------------------------------------------------- // | Feature | Implies | // | -------------------------------------------------| // | FeatureMips1 | None | // | FeatureMips2 | FeatureMips1 | // | FeatureMips3 | FeatureMips2 | FeatureMipsGP64 | // | FeatureMips4 | FeatureMips3 | // | ... | | // -------------------------------------------------- // // Setting Mips3 is equivalent to set: (FeatureMips3 | FeatureMips2 | // FeatureMipsGP64 | FeatureMips1) // Clearing Mips3 is equivalent to clear (FeatureMips3 | FeatureMips4). void selectArch(StringRef ArchFeature) { MCSubtargetInfo &STI = copySTI(); FeatureBitset FeatureBits = STI.getFeatureBits(); FeatureBits &= ~MipsAssemblerOptions::AllArchRelatedMask; STI.setFeatureBits(FeatureBits); setAvailableFeatures( ComputeAvailableFeatures(STI.ToggleFeature(ArchFeature))); AssemblerOptions.back()->setFeatures(STI.getFeatureBits()); } void setFeatureBits(uint64_t Feature, StringRef FeatureString) { if (!(getSTI().getFeatureBits()[Feature])) { MCSubtargetInfo &STI = copySTI(); setAvailableFeatures( ComputeAvailableFeatures(STI.ToggleFeature(FeatureString))); AssemblerOptions.back()->setFeatures(STI.getFeatureBits()); } } void clearFeatureBits(uint64_t Feature, StringRef FeatureString) { if (getSTI().getFeatureBits()[Feature]) { MCSubtargetInfo &STI = copySTI(); setAvailableFeatures( ComputeAvailableFeatures(STI.ToggleFeature(FeatureString))); AssemblerOptions.back()->setFeatures(STI.getFeatureBits()); } } void setModuleFeatureBits(uint64_t Feature, StringRef FeatureString) { setFeatureBits(Feature, FeatureString); AssemblerOptions.front()->setFeatures(getSTI().getFeatureBits()); } void clearModuleFeatureBits(uint64_t Feature, StringRef FeatureString) { clearFeatureBits(Feature, FeatureString); AssemblerOptions.front()->setFeatures(getSTI().getFeatureBits()); } public: enum MipsMatchResultTy { Match_RequiresDifferentSrcAndDst = FIRST_TARGET_MATCH_RESULT_TY, Match_RequiresDifferentOperands, Match_RequiresNoZeroRegister, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "MipsGenAsmMatcher.inc" #undef GET_OPERAND_DIAGNOSTIC_TYPES }; MipsAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, sti), ABI(MipsABIInfo::computeTargetABI(Triple(sti.getTargetTriple()), sti.getCPU(), Options)) { MCAsmParserExtension::Initialize(parser); parser.addAliasForDirective(".asciiz", ".asciz"); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); // Remember the initial assembler options. The user can not modify these. AssemblerOptions.push_back( llvm::make_unique<MipsAssemblerOptions>(getSTI().getFeatureBits())); // Create an assembler options environment for the user to modify. AssemblerOptions.push_back( llvm::make_unique<MipsAssemblerOptions>(getSTI().getFeatureBits())); getTargetStreamer().updateABIInfo(*this); if (!isABI_O32() && !useOddSPReg() != 0) report_fatal_error("-mno-odd-spreg requires the O32 ABI"); CurrentFn = nullptr; IsPicEnabled = getContext().getObjectFileInfo()->isPositionIndependent(); IsCpRestoreSet = false; CpRestoreOffset = -1; const Triple &TheTriple = sti.getTargetTriple(); if ((TheTriple.getArch() == Triple::mips) || (TheTriple.getArch() == Triple::mips64)) IsLittleEndian = false; else IsLittleEndian = true; } /// True if all of $fcc0 - $fcc7 exist for the current ISA. bool hasEightFccRegisters() const { return hasMips4() || hasMips32(); } bool isGP64bit() const { return getSTI().getFeatureBits()[Mips::FeatureGP64Bit]; } bool isFP64bit() const { return getSTI().getFeatureBits()[Mips::FeatureFP64Bit]; } const MipsABIInfo &getABI() const { return ABI; } bool isABI_N32() const { return ABI.IsN32(); } bool isABI_N64() const { return ABI.IsN64(); } bool isABI_O32() const { return ABI.IsO32(); } bool isABI_FPXX() const { return getSTI().getFeatureBits()[Mips::FeatureFPXX]; } bool useOddSPReg() const { return !(getSTI().getFeatureBits()[Mips::FeatureNoOddSPReg]); } bool inMicroMipsMode() const { return getSTI().getFeatureBits()[Mips::FeatureMicroMips]; } bool hasMips1() const { return getSTI().getFeatureBits()[Mips::FeatureMips1]; } bool hasMips2() const { return getSTI().getFeatureBits()[Mips::FeatureMips2]; } bool hasMips3() const { return getSTI().getFeatureBits()[Mips::FeatureMips3]; } bool hasMips4() const { return getSTI().getFeatureBits()[Mips::FeatureMips4]; } bool hasMips5() const { return getSTI().getFeatureBits()[Mips::FeatureMips5]; } bool hasMips32() const { return getSTI().getFeatureBits()[Mips::FeatureMips32]; } bool hasMips64() const { return getSTI().getFeatureBits()[Mips::FeatureMips64]; } bool hasMips32r2() const { return getSTI().getFeatureBits()[Mips::FeatureMips32r2]; } bool hasMips64r2() const { return getSTI().getFeatureBits()[Mips::FeatureMips64r2]; } bool hasMips32r3() const { return (getSTI().getFeatureBits()[Mips::FeatureMips32r3]); } bool hasMips64r3() const { return (getSTI().getFeatureBits()[Mips::FeatureMips64r3]); } bool hasMips32r5() const { return (getSTI().getFeatureBits()[Mips::FeatureMips32r5]); } bool hasMips64r5() const { return (getSTI().getFeatureBits()[Mips::FeatureMips64r5]); } bool hasMips32r6() const { return getSTI().getFeatureBits()[Mips::FeatureMips32r6]; } bool hasMips64r6() const { return getSTI().getFeatureBits()[Mips::FeatureMips64r6]; } bool hasDSP() const { return getSTI().getFeatureBits()[Mips::FeatureDSP]; } bool hasDSPR2() const { return getSTI().getFeatureBits()[Mips::FeatureDSPR2]; } bool hasDSPR3() const { return getSTI().getFeatureBits()[Mips::FeatureDSPR3]; } bool hasMSA() const { return getSTI().getFeatureBits()[Mips::FeatureMSA]; } bool hasCnMips() const { return (getSTI().getFeatureBits()[Mips::FeatureCnMips]); } bool inPicMode() { return IsPicEnabled; } bool inMips16Mode() const { return getSTI().getFeatureBits()[Mips::FeatureMips16]; } bool useTraps() const { return getSTI().getFeatureBits()[Mips::FeatureUseTCCInDIV]; } bool useSoftFloat() const { return getSTI().getFeatureBits()[Mips::FeatureSoftFloat]; } /// Warn if RegIndex is the same as the current AT. void warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc); void warnIfNoMacro(SMLoc Loc); bool isLittle() const { return IsLittleEndian; } }; } namespace { /// MipsOperand - Instances of this class represent a parsed Mips machine /// instruction. class MipsOperand : public MCParsedAsmOperand { public: /// Broad categories of register classes /// The exact class is finalized by the render method. enum RegKind { RegKind_GPR = 1, /// GPR32 and GPR64 (depending on isGP64bit()) RegKind_FGR = 2, /// FGR32, FGR64, AFGR64 (depending on context and /// isFP64bit()) RegKind_FCC = 4, /// FCC RegKind_MSA128 = 8, /// MSA128[BHWD] (makes no difference which) RegKind_MSACtrl = 16, /// MSA control registers RegKind_COP2 = 32, /// COP2 RegKind_ACC = 64, /// HI32DSP, LO32DSP, and ACC64DSP (depending on /// context). RegKind_CCR = 128, /// CCR RegKind_HWRegs = 256, /// HWRegs RegKind_COP3 = 512, /// COP3 RegKind_COP0 = 1024, /// COP0 /// Potentially any (e.g. $1) RegKind_Numeric = RegKind_GPR | RegKind_FGR | RegKind_FCC | RegKind_MSA128 | RegKind_MSACtrl | RegKind_COP2 | RegKind_ACC | RegKind_CCR | RegKind_HWRegs | RegKind_COP3 | RegKind_COP0 }; private: enum KindTy { k_Immediate, /// An immediate (possibly involving symbol references) k_Memory, /// Base + Offset Memory Address k_RegisterIndex, /// A register index in one or more RegKind. k_Token, /// A simple token k_RegList, /// A physical register list k_RegPair /// A pair of physical register } Kind; public: MipsOperand(KindTy K, MipsAsmParser &Parser) : MCParsedAsmOperand(), Kind(K), AsmParser(Parser) {} private: /// For diagnostics, and checking the assembler temporary MipsAsmParser &AsmParser; struct Token { const char *Data; unsigned Length; }; struct RegIdxOp { unsigned Index; /// Index into the register class RegKind Kind; /// Bitfield of the kinds it could possibly be const MCRegisterInfo *RegInfo; }; struct ImmOp { const MCExpr *Val; }; struct MemOp { MipsOperand *Base; const MCExpr *Off; }; struct RegListOp { SmallVector<unsigned, 10> *List; }; union { struct Token Tok; struct RegIdxOp RegIdx; struct ImmOp Imm; struct MemOp Mem; struct RegListOp RegList; }; SMLoc StartLoc, EndLoc; /// Internal constructor for register kinds static std::unique_ptr<MipsOperand> CreateReg(unsigned Index, RegKind RegKind, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { auto Op = make_unique<MipsOperand>(k_RegisterIndex, Parser); Op->RegIdx.Index = Index; Op->RegIdx.RegInfo = RegInfo; Op->RegIdx.Kind = RegKind; Op->StartLoc = S; Op->EndLoc = E; return Op; } public: /// Coerce the register to GPR32 and return the real register for the current /// target. unsigned getGPR32Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!"); AsmParser.warnIfRegIndexIsAT(RegIdx.Index, StartLoc); unsigned ClassID = Mips::GPR32RegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to GPR32 and return the real register for the current /// target. unsigned getGPRMM16Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!"); unsigned ClassID = Mips::GPR32RegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to GPR64 and return the real register for the current /// target. unsigned getGPR64Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!"); unsigned ClassID = Mips::GPR64RegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } private: /// Coerce the register to AFGR64 and return the real register for the current /// target. unsigned getAFGR64Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); if (RegIdx.Index % 2 != 0) AsmParser.Warning(StartLoc, "Float register should be even."); return RegIdx.RegInfo->getRegClass(Mips::AFGR64RegClassID) .getRegister(RegIdx.Index / 2); } /// Coerce the register to FGR64 and return the real register for the current /// target. unsigned getFGR64Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); return RegIdx.RegInfo->getRegClass(Mips::FGR64RegClassID) .getRegister(RegIdx.Index); } /// Coerce the register to FGR32 and return the real register for the current /// target. unsigned getFGR32Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); return RegIdx.RegInfo->getRegClass(Mips::FGR32RegClassID) .getRegister(RegIdx.Index); } /// Coerce the register to FGRH32 and return the real register for the current /// target. unsigned getFGRH32Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); return RegIdx.RegInfo->getRegClass(Mips::FGRH32RegClassID) .getRegister(RegIdx.Index); } /// Coerce the register to FCC and return the real register for the current /// target. unsigned getFCCReg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_FCC) && "Invalid access!"); return RegIdx.RegInfo->getRegClass(Mips::FCCRegClassID) .getRegister(RegIdx.Index); } /// Coerce the register to MSA128 and return the real register for the current /// target. unsigned getMSA128Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_MSA128) && "Invalid access!"); // It doesn't matter which of the MSA128[BHWD] classes we use. They are all // identical unsigned ClassID = Mips::MSA128BRegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to MSACtrl and return the real register for the /// current target. unsigned getMSACtrlReg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_MSACtrl) && "Invalid access!"); unsigned ClassID = Mips::MSACtrlRegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to COP0 and return the real register for the /// current target. unsigned getCOP0Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_COP0) && "Invalid access!"); unsigned ClassID = Mips::COP0RegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to COP2 and return the real register for the /// current target. unsigned getCOP2Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_COP2) && "Invalid access!"); unsigned ClassID = Mips::COP2RegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to COP3 and return the real register for the /// current target. unsigned getCOP3Reg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_COP3) && "Invalid access!"); unsigned ClassID = Mips::COP3RegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to ACC64DSP and return the real register for the /// current target. unsigned getACC64DSPReg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!"); unsigned ClassID = Mips::ACC64DSPRegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to HI32DSP and return the real register for the /// current target. unsigned getHI32DSPReg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!"); unsigned ClassID = Mips::HI32DSPRegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to LO32DSP and return the real register for the /// current target. unsigned getLO32DSPReg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!"); unsigned ClassID = Mips::LO32DSPRegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to CCR and return the real register for the /// current target. unsigned getCCRReg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_CCR) && "Invalid access!"); unsigned ClassID = Mips::CCRRegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } /// Coerce the register to HWRegs and return the real register for the /// current target. unsigned getHWRegsReg() const { assert(isRegIdx() && (RegIdx.Kind & RegKind_HWRegs) && "Invalid access!"); unsigned ClassID = Mips::HWRegsRegClassID; return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); } public: void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediate when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::createImm(0)); else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Expr)); } void addRegOperands(MCInst &Inst, unsigned N) const { llvm_unreachable("Use a custom parser instead"); } /// Render the operand to an MCInst as a GPR32 /// Asserts if the wrong number of operands are requested, or the operand /// is not a k_RegisterIndex compatible with RegKind_GPR void addGPR32AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getGPR32Reg())); } void addGPRMM16AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getGPRMM16Reg())); } void addGPRMM16AsmRegZeroOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getGPRMM16Reg())); } void addGPRMM16AsmRegMovePOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getGPRMM16Reg())); } /// Render the operand to an MCInst as a GPR64 /// Asserts if the wrong number of operands are requested, or the operand /// is not a k_RegisterIndex compatible with RegKind_GPR void addGPR64AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getGPR64Reg())); } void addAFGR64AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getAFGR64Reg())); } void addFGR64AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getFGR64Reg())); } void addFGR32AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getFGR32Reg())); // FIXME: We ought to do this for -integrated-as without -via-file-asm too. if (!AsmParser.useOddSPReg() && RegIdx.Index & 1) AsmParser.Error(StartLoc, "-mno-odd-spreg prohibits the use of odd FPU " "registers"); } void addFGRH32AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getFGRH32Reg())); } void addFCCAsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getFCCReg())); } void addMSA128AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMSA128Reg())); } void addMSACtrlAsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMSACtrlReg())); } void addCOP0AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getCOP0Reg())); } void addCOP2AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getCOP2Reg())); } void addCOP3AsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getCOP3Reg())); } void addACC64DSPAsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getACC64DSPReg())); } void addHI32DSPAsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getHI32DSPReg())); } void addLO32DSPAsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getLO32DSPReg())); } void addCCRAsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getCCRReg())); } void addHWRegsAsmRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getHWRegsReg())); } template <unsigned Bits, int Offset = 0, int AdjustOffset = 0> void addConstantUImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); uint64_t Imm = getConstantImm() - Offset; Imm &= (1 << Bits) - 1; Imm += Offset; Imm += AdjustOffset; Inst.addOperand(MCOperand::createImm(Imm)); } template <unsigned Bits> void addSImmOperands(MCInst &Inst, unsigned N) const { if (isImm() && !isConstantImm()) { addExpr(Inst, getImm()); return; } addConstantSImmOperands<Bits, 0, 0>(Inst, N); } template <unsigned Bits> void addUImmOperands(MCInst &Inst, unsigned N) const { if (isImm() && !isConstantImm()) { addExpr(Inst, getImm()); return; } addConstantUImmOperands<Bits, 0, 0>(Inst, N); } template <unsigned Bits, int Offset = 0, int AdjustOffset = 0> void addConstantSImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); int64_t Imm = getConstantImm() - Offset; Imm = SignExtend64<Bits>(Imm); Imm += Offset; Imm += AdjustOffset; Inst.addOperand(MCOperand::createImm(Imm)); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCExpr *Expr = getImm(); addExpr(Inst, Expr); } void addMemOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(AsmParser.getABI().ArePtrs64bit() ? getMemBase()->getGPR64Reg() : getMemBase()->getGPR32Reg())); const MCExpr *Expr = getMemOff(); addExpr(Inst, Expr); } void addMicroMipsMemOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBase()->getGPRMM16Reg())); const MCExpr *Expr = getMemOff(); addExpr(Inst, Expr); } void addRegListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); for (auto RegNo : getRegList()) Inst.addOperand(MCOperand::createReg(RegNo)); } void addRegPairOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); assert((RegIdx.Kind & RegKind_GPR) && "Invalid access!"); unsigned RegNo = getRegPair(); AsmParser.warnIfRegIndexIsAT(RegNo, StartLoc); Inst.addOperand(MCOperand::createReg( RegIdx.RegInfo->getRegClass( AsmParser.getABI().AreGprs64bit() ? Mips::GPR64RegClassID : Mips::GPR32RegClassID).getRegister(RegNo++))); Inst.addOperand(MCOperand::createReg( RegIdx.RegInfo->getRegClass( AsmParser.getABI().AreGprs64bit() ? Mips::GPR64RegClassID : Mips::GPR32RegClassID).getRegister(RegNo))); } void addMovePRegPairOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); for (auto RegNo : getRegList()) Inst.addOperand(MCOperand::createReg(RegNo)); } bool isReg() const override { // As a special case until we sort out the definition of div/divu, accept // $0/$zero here so that MCK_ZERO works correctly. return isGPRAsmReg() && RegIdx.Index == 0; } bool isRegIdx() const { return Kind == k_RegisterIndex; } bool isImm() const override { return Kind == k_Immediate; } bool isConstantImm() const { return isImm() && isa<MCConstantExpr>(getImm()); } bool isConstantImmz() const { return isConstantImm() && getConstantImm() == 0; } template <unsigned Bits, int Offset = 0> bool isConstantUImm() const { return isConstantImm() && isUInt<Bits>(getConstantImm() - Offset); } template <unsigned Bits> bool isSImm() const { return isConstantImm() ? isInt<Bits>(getConstantImm()) : isImm(); } template <unsigned Bits> bool isUImm() const { return isConstantImm() ? isUInt<Bits>(getConstantImm()) : isImm(); } template <unsigned Bits> bool isAnyImm() const { return isConstantImm() ? (isInt<Bits>(getConstantImm()) || isUInt<Bits>(getConstantImm())) : isImm(); } template <unsigned Bits, int Offset = 0> bool isConstantSImm() const { return isConstantImm() && isInt<Bits>(getConstantImm() - Offset); } template <unsigned Bottom, unsigned Top> bool isConstantUImmRange() const { return isConstantImm() && getConstantImm() >= Bottom && getConstantImm() <= Top; } bool isToken() const override { // Note: It's not possible to pretend that other operand kinds are tokens. // The matcher emitter checks tokens first. return Kind == k_Token; } bool isMem() const override { return Kind == k_Memory; } bool isConstantMemOff() const { return isMem() && isa<MCConstantExpr>(getMemOff()); } // Allow relocation operators. // FIXME: This predicate and others need to look through binary expressions // and determine whether a Value is a constant or not. template <unsigned Bits, unsigned ShiftAmount = 0> bool isMemWithSimmOffset() const { if (!isMem()) return false; if (!getMemBase()->isGPRAsmReg()) return false; if (isa<MCTargetExpr>(getMemOff()) || (isConstantMemOff() && isShiftedInt<Bits, ShiftAmount>(getConstantMemOff()))) return true; MCValue Res; bool IsReloc = getMemOff()->evaluateAsRelocatable(Res, nullptr, nullptr); return IsReloc && isShiftedInt<Bits, ShiftAmount>(Res.getConstant()); } bool isMemWithGRPMM16Base() const { return isMem() && getMemBase()->isMM16AsmReg(); } template <unsigned Bits> bool isMemWithUimmOffsetSP() const { return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff()) && getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::SP); } template <unsigned Bits> bool isMemWithUimmWordAlignedOffsetSP() const { return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff()) && (getConstantMemOff() % 4 == 0) && getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::SP); } template <unsigned Bits> bool isMemWithSimmWordAlignedOffsetGP() const { return isMem() && isConstantMemOff() && isInt<Bits>(getConstantMemOff()) && (getConstantMemOff() % 4 == 0) && getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::GP); } template <unsigned Bits, unsigned ShiftLeftAmount> bool isScaledUImm() const { return isConstantImm() && isShiftedUInt<Bits, ShiftLeftAmount>(getConstantImm()); } template <unsigned Bits, unsigned ShiftLeftAmount> bool isScaledSImm() const { return isConstantImm() && isShiftedInt<Bits, ShiftLeftAmount>(getConstantImm()); } bool isRegList16() const { if (!isRegList()) return false; int Size = RegList.List->size(); if (Size < 2 || Size > 5) return false; unsigned R0 = RegList.List->front(); unsigned R1 = RegList.List->back(); if (!((R0 == Mips::S0 && R1 == Mips::RA) || (R0 == Mips::S0_64 && R1 == Mips::RA_64))) return false; int PrevReg = *RegList.List->begin(); for (int i = 1; i < Size - 1; i++) { int Reg = (*(RegList.List))[i]; if ( Reg != PrevReg + 1) return false; PrevReg = Reg; } return true; } bool isInvNum() const { return Kind == k_Immediate; } bool isLSAImm() const { if (!isConstantImm()) return false; int64_t Val = getConstantImm(); return 1 <= Val && Val <= 4; } bool isRegList() const { return Kind == k_RegList; } bool isMovePRegPair() const { if (Kind != k_RegList || RegList.List->size() != 2) return false; unsigned R0 = RegList.List->front(); unsigned R1 = RegList.List->back(); if ((R0 == Mips::A1 && R1 == Mips::A2) || (R0 == Mips::A1 && R1 == Mips::A3) || (R0 == Mips::A2 && R1 == Mips::A3) || (R0 == Mips::A0 && R1 == Mips::S5) || (R0 == Mips::A0 && R1 == Mips::S6) || (R0 == Mips::A0 && R1 == Mips::A1) || (R0 == Mips::A0 && R1 == Mips::A2) || (R0 == Mips::A0 && R1 == Mips::A3) || (R0 == Mips::A1_64 && R1 == Mips::A2_64) || (R0 == Mips::A1_64 && R1 == Mips::A3_64) || (R0 == Mips::A2_64 && R1 == Mips::A3_64) || (R0 == Mips::A0_64 && R1 == Mips::S5_64) || (R0 == Mips::A0_64 && R1 == Mips::S6_64) || (R0 == Mips::A0_64 && R1 == Mips::A1_64) || (R0 == Mips::A0_64 && R1 == Mips::A2_64) || (R0 == Mips::A0_64 && R1 == Mips::A3_64)) return true; return false; } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } bool isRegPair() const { return Kind == k_RegPair && RegIdx.Index <= 30; } unsigned getReg() const override { // As a special case until we sort out the definition of div/divu, accept // $0/$zero here so that MCK_ZERO works correctly. if (Kind == k_RegisterIndex && RegIdx.Index == 0 && RegIdx.Kind & RegKind_GPR) return getGPR32Reg(); // FIXME: GPR64 too llvm_unreachable("Invalid access!"); return 0; } const MCExpr *getImm() const { assert((Kind == k_Immediate) && "Invalid access!"); return Imm.Val; } int64_t getConstantImm() const { const MCExpr *Val = getImm(); return static_cast<const MCConstantExpr *>(Val)->getValue(); } MipsOperand *getMemBase() const { assert((Kind == k_Memory) && "Invalid access!"); return Mem.Base; } const MCExpr *getMemOff() const { assert((Kind == k_Memory) && "Invalid access!"); return Mem.Off; } int64_t getConstantMemOff() const { return static_cast<const MCConstantExpr *>(getMemOff())->getValue(); } const SmallVectorImpl<unsigned> &getRegList() const { assert((Kind == k_RegList) && "Invalid access!"); return *(RegList.List); } unsigned getRegPair() const { assert((Kind == k_RegPair) && "Invalid access!"); return RegIdx.Index; } static std::unique_ptr<MipsOperand> CreateToken(StringRef Str, SMLoc S, MipsAsmParser &Parser) { auto Op = make_unique<MipsOperand>(k_Token, Parser); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } /// Create a numeric register (e.g. $1). The exact register remains /// unresolved until an instruction successfully matches static std::unique_ptr<MipsOperand> createNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { DEBUG(dbgs() << "createNumericReg(" << Index << ", ...)\n"); return CreateReg(Index, RegKind_Numeric, RegInfo, S, E, Parser); } /// Create a register that is definitely a GPR. /// This is typically only used for named registers such as $gp. static std::unique_ptr<MipsOperand> createGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { return CreateReg(Index, RegKind_GPR, RegInfo, S, E, Parser); } /// Create a register that is definitely a FGR. /// This is typically only used for named registers such as $f0. static std::unique_ptr<MipsOperand> createFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { return CreateReg(Index, RegKind_FGR, RegInfo, S, E, Parser); } /// Create a register that is definitely a HWReg. /// This is typically only used for named registers such as $hwr_cpunum. static std::unique_ptr<MipsOperand> createHWRegsReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { return CreateReg(Index, RegKind_HWRegs, RegInfo, S, E, Parser); } /// Create a register that is definitely an FCC. /// This is typically only used for named registers such as $fcc0. static std::unique_ptr<MipsOperand> createFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { return CreateReg(Index, RegKind_FCC, RegInfo, S, E, Parser); } /// Create a register that is definitely an ACC. /// This is typically only used for named registers such as $ac0. static std::unique_ptr<MipsOperand> createACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { return CreateReg(Index, RegKind_ACC, RegInfo, S, E, Parser); } /// Create a register that is definitely an MSA128. /// This is typically only used for named registers such as $w0. static std::unique_ptr<MipsOperand> createMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { return CreateReg(Index, RegKind_MSA128, RegInfo, S, E, Parser); } /// Create a register that is definitely an MSACtrl. /// This is typically only used for named registers such as $msaaccess. static std::unique_ptr<MipsOperand> createMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { return CreateReg(Index, RegKind_MSACtrl, RegInfo, S, E, Parser); } static std::unique_ptr<MipsOperand> CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MipsAsmParser &Parser) { auto Op = make_unique<MipsOperand>(k_Immediate, Parser); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<MipsOperand> CreateMem(std::unique_ptr<MipsOperand> Base, const MCExpr *Off, SMLoc S, SMLoc E, MipsAsmParser &Parser) { auto Op = make_unique<MipsOperand>(k_Memory, Parser); Op->Mem.Base = Base.release(); Op->Mem.Off = Off; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<MipsOperand> CreateRegList(SmallVectorImpl<unsigned> &Regs, SMLoc StartLoc, SMLoc EndLoc, MipsAsmParser &Parser) { assert (Regs.size() > 0 && "Empty list not allowed"); auto Op = make_unique<MipsOperand>(k_RegList, Parser); Op->RegList.List = new SmallVector<unsigned, 10>(Regs.begin(), Regs.end()); Op->StartLoc = StartLoc; Op->EndLoc = EndLoc; return Op; } static std::unique_ptr<MipsOperand> CreateRegPair(const MipsOperand &MOP, SMLoc S, SMLoc E, MipsAsmParser &Parser) { auto Op = make_unique<MipsOperand>(k_RegPair, Parser); Op->RegIdx.Index = MOP.RegIdx.Index; Op->RegIdx.RegInfo = MOP.RegIdx.RegInfo; Op->RegIdx.Kind = MOP.RegIdx.Kind; Op->StartLoc = S; Op->EndLoc = E; return Op; } bool isGPRAsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_GPR && RegIdx.Index <= 31; } bool isMM16AsmReg() const { if (!(isRegIdx() && RegIdx.Kind)) return false; return ((RegIdx.Index >= 2 && RegIdx.Index <= 7) || RegIdx.Index == 16 || RegIdx.Index == 17); } bool isMM16AsmRegZero() const { if (!(isRegIdx() && RegIdx.Kind)) return false; return (RegIdx.Index == 0 || (RegIdx.Index >= 2 && RegIdx.Index <= 7) || RegIdx.Index == 17); } bool isMM16AsmRegMoveP() const { if (!(isRegIdx() && RegIdx.Kind)) return false; return (RegIdx.Index == 0 || (RegIdx.Index >= 2 && RegIdx.Index <= 3) || (RegIdx.Index >= 16 && RegIdx.Index <= 20)); } bool isFGRAsmReg() const { // AFGR64 is $0-$15 but we handle this in getAFGR64() return isRegIdx() && RegIdx.Kind & RegKind_FGR && RegIdx.Index <= 31; } bool isHWRegsAsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_HWRegs && RegIdx.Index <= 31; } bool isCCRAsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_CCR && RegIdx.Index <= 31; } bool isFCCAsmReg() const { if (!(isRegIdx() && RegIdx.Kind & RegKind_FCC)) return false; if (!AsmParser.hasEightFccRegisters()) return RegIdx.Index == 0; return RegIdx.Index <= 7; } bool isACCAsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_ACC && RegIdx.Index <= 3; } bool isCOP0AsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_COP0 && RegIdx.Index <= 31; } bool isCOP2AsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_COP2 && RegIdx.Index <= 31; } bool isCOP3AsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_COP3 && RegIdx.Index <= 31; } bool isMSA128AsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_MSA128 && RegIdx.Index <= 31; } bool isMSACtrlAsmReg() const { return isRegIdx() && RegIdx.Kind & RegKind_MSACtrl && RegIdx.Index <= 7; } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } virtual ~MipsOperand() { switch (Kind) { case k_Immediate: break; case k_Memory: delete Mem.Base; break; case k_RegList: delete RegList.List; case k_RegisterIndex: case k_Token: case k_RegPair: break; } } void print(raw_ostream &OS) const override { switch (Kind) { case k_Immediate: OS << "Imm<"; OS << *Imm.Val; OS << ">"; break; case k_Memory: OS << "Mem<"; Mem.Base->print(OS); OS << ", "; OS << *Mem.Off; OS << ">"; break; case k_RegisterIndex: OS << "RegIdx<" << RegIdx.Index << ":" << RegIdx.Kind << ">"; break; case k_Token: OS << Tok.Data; break; case k_RegList: OS << "RegList< "; for (auto Reg : (*RegList.List)) OS << Reg << " "; OS << ">"; break; case k_RegPair: OS << "RegPair<" << RegIdx.Index << "," << RegIdx.Index + 1 << ">"; break; } } }; // class MipsOperand } // namespace namespace llvm { extern const MCInstrDesc MipsInsts[]; } static const MCInstrDesc &getInstDesc(unsigned Opcode) { return MipsInsts[Opcode]; } static bool hasShortDelaySlot(unsigned Opcode) { switch (Opcode) { case Mips::JALS_MM: case Mips::JALRS_MM: case Mips::JALRS16_MM: case Mips::BGEZALS_MM: case Mips::BLTZALS_MM: return true; default: return false; } } static const MCSymbol *getSingleMCSymbol(const MCExpr *Expr) { if (const MCSymbolRefExpr *SRExpr = dyn_cast<MCSymbolRefExpr>(Expr)) { return &SRExpr->getSymbol(); } if (const MCBinaryExpr *BExpr = dyn_cast<MCBinaryExpr>(Expr)) { const MCSymbol *LHSSym = getSingleMCSymbol(BExpr->getLHS()); const MCSymbol *RHSSym = getSingleMCSymbol(BExpr->getRHS()); if (LHSSym) return LHSSym; if (RHSSym) return RHSSym; return nullptr; } if (const MCUnaryExpr *UExpr = dyn_cast<MCUnaryExpr>(Expr)) return getSingleMCSymbol(UExpr->getSubExpr()); return nullptr; } static unsigned countMCSymbolRefExpr(const MCExpr *Expr) { if (isa<MCSymbolRefExpr>(Expr)) return 1; if (const MCBinaryExpr *BExpr = dyn_cast<MCBinaryExpr>(Expr)) return countMCSymbolRefExpr(BExpr->getLHS()) + countMCSymbolRefExpr(BExpr->getRHS()); if (const MCUnaryExpr *UExpr = dyn_cast<MCUnaryExpr>(Expr)) return countMCSymbolRefExpr(UExpr->getSubExpr()); return 0; } bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode()); bool ExpandedJalSym = false; Inst.setLoc(IDLoc); if (MCID.isBranch() || MCID.isCall()) { const unsigned Opcode = Inst.getOpcode(); MCOperand Offset; switch (Opcode) { default: break; case Mips::BBIT0: case Mips::BBIT032: case Mips::BBIT1: case Mips::BBIT132: assert(hasCnMips() && "instruction only valid for octeon cpus"); // Fall through case Mips::BEQ: case Mips::BNE: case Mips::BEQ_MM: case Mips::BNE_MM: assert(MCID.getNumOperands() == 3 && "unexpected number of operands"); Offset = Inst.getOperand(2); if (!Offset.isImm()) break; // We'll deal with this situation later on when applying fixups. if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm())) return Error(IDLoc, "branch target out of range"); if (OffsetToAlignment(Offset.getImm(), 1LL << (inMicroMipsMode() ? 1 : 2))) return Error(IDLoc, "branch to misaligned address"); break; case Mips::BGEZ: case Mips::BGTZ: case Mips::BLEZ: case Mips::BLTZ: case Mips::BGEZAL: case Mips::BLTZAL: case Mips::BC1F: case Mips::BC1T: case Mips::BGEZ_MM: case Mips::BGTZ_MM: case Mips::BLEZ_MM: case Mips::BLTZ_MM: case Mips::BGEZAL_MM: case Mips::BLTZAL_MM: case Mips::BC1F_MM: case Mips::BC1T_MM: case Mips::BC1EQZC_MMR6: case Mips::BC1NEZC_MMR6: case Mips::BC2EQZC_MMR6: case Mips::BC2NEZC_MMR6: assert(MCID.getNumOperands() == 2 && "unexpected number of operands"); Offset = Inst.getOperand(1); if (!Offset.isImm()) break; // We'll deal with this situation later on when applying fixups. if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm())) return Error(IDLoc, "branch target out of range"); if (OffsetToAlignment(Offset.getImm(), 1LL << (inMicroMipsMode() ? 1 : 2))) return Error(IDLoc, "branch to misaligned address"); break; case Mips::BEQZ16_MM: case Mips::BEQZC16_MMR6: case Mips::BNEZ16_MM: case Mips::BNEZC16_MMR6: assert(MCID.getNumOperands() == 2 && "unexpected number of operands"); Offset = Inst.getOperand(1); if (!Offset.isImm()) break; // We'll deal with this situation later on when applying fixups. if (!isInt<8>(Offset.getImm())) return Error(IDLoc, "branch target out of range"); if (OffsetToAlignment(Offset.getImm(), 2LL)) return Error(IDLoc, "branch to misaligned address"); break; } } // SSNOP is deprecated on MIPS32r6/MIPS64r6 // We still accept it but it is a normal nop. if (hasMips32r6() && Inst.getOpcode() == Mips::SSNOP) { std::string ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6"; Warning(IDLoc, "ssnop is deprecated for " + ISA + " and is equivalent to a " "nop instruction"); } if (hasCnMips()) { const unsigned Opcode = Inst.getOpcode(); MCOperand Opnd; int Imm; switch (Opcode) { default: break; case Mips::BBIT0: case Mips::BBIT032: case Mips::BBIT1: case Mips::BBIT132: assert(MCID.getNumOperands() == 3 && "unexpected number of operands"); // The offset is handled above Opnd = Inst.getOperand(1); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < 0 || Imm > (Opcode == Mips::BBIT0 || Opcode == Mips::BBIT1 ? 63 : 31)) return Error(IDLoc, "immediate operand value out of range"); if (Imm > 31) { Inst.setOpcode(Opcode == Mips::BBIT0 ? Mips::BBIT032 : Mips::BBIT132); Inst.getOperand(1).setImm(Imm - 32); } break; case Mips::SEQi: case Mips::SNEi: assert(MCID.getNumOperands() == 3 && "unexpected number of operands"); Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (!isInt<10>(Imm)) return Error(IDLoc, "immediate operand value out of range"); break; } } // This expansion is not in a function called by tryExpandInstruction() // because the pseudo-instruction doesn't have a distinct opcode. if ((Inst.getOpcode() == Mips::JAL || Inst.getOpcode() == Mips::JAL_MM) && inPicMode()) { warnIfNoMacro(IDLoc); const MCExpr *JalExpr = Inst.getOperand(0).getExpr(); // We can do this expansion if there's only 1 symbol in the argument // expression. if (countMCSymbolRefExpr(JalExpr) > 1) return Error(IDLoc, "jal doesn't support multiple symbols in PIC mode"); // FIXME: This is checking the expression can be handled by the later stages // of the assembler. We ought to leave it to those later stages. const MCSymbol *JalSym = getSingleMCSymbol(JalExpr); // FIXME: Add support for label+offset operands (currently causes an error). // FIXME: Add support for forward-declared local symbols. // FIXME: Add expansion for when the LargeGOT option is enabled. if (JalSym->isInSection() || JalSym->isTemporary()) { if (isABI_O32()) { // If it's a local symbol and the O32 ABI is being used, we expand to: // lw $25, 0($gp) // R_(MICRO)MIPS_GOT16 label // addiu $25, $25, 0 // R_(MICRO)MIPS_LO16 label // jalr $25 const MCExpr *Got16RelocExpr = MipsMCExpr::create(MipsMCExpr::MEK_GOT, JalExpr, getContext()); const MCExpr *Lo16RelocExpr = MipsMCExpr::create(MipsMCExpr::MEK_LO, JalExpr, getContext()); TOut.emitRRX(Mips::LW, Mips::T9, Mips::GP, MCOperand::createExpr(Got16RelocExpr), IDLoc, STI); TOut.emitRRX(Mips::ADDiu, Mips::T9, Mips::T9, MCOperand::createExpr(Lo16RelocExpr), IDLoc, STI); } else if (isABI_N32() || isABI_N64()) { // If it's a local symbol and the N32/N64 ABIs are being used, // we expand to: // lw/ld $25, 0($gp) // R_(MICRO)MIPS_GOT_DISP label // jalr $25 const MCExpr *GotDispRelocExpr = MipsMCExpr::create(MipsMCExpr::MEK_GOT_DISP, JalExpr, getContext()); TOut.emitRRX(ABI.ArePtrs64bit() ? Mips::LD : Mips::LW, Mips::T9, Mips::GP, MCOperand::createExpr(GotDispRelocExpr), IDLoc, STI); } } else { // If it's an external/weak symbol, we expand to: // lw/ld $25, 0($gp) // R_(MICRO)MIPS_CALL16 label // jalr $25 const MCExpr *Call16RelocExpr = MipsMCExpr::create(MipsMCExpr::MEK_GOT_CALL, JalExpr, getContext()); TOut.emitRRX(ABI.ArePtrs64bit() ? Mips::LD : Mips::LW, Mips::T9, Mips::GP, MCOperand::createExpr(Call16RelocExpr), IDLoc, STI); } MCInst JalrInst; if (IsCpRestoreSet && inMicroMipsMode()) JalrInst.setOpcode(Mips::JALRS_MM); else JalrInst.setOpcode(inMicroMipsMode() ? Mips::JALR_MM : Mips::JALR); JalrInst.addOperand(MCOperand::createReg(Mips::RA)); JalrInst.addOperand(MCOperand::createReg(Mips::T9)); // FIXME: Add an R_(MICRO)MIPS_JALR relocation after the JALR. // This relocation is supposed to be an optimization hint for the linker // and is not necessary for correctness. Inst = JalrInst; ExpandedJalSym = true; } if (MCID.mayLoad() || MCID.mayStore()) { // Check the offset of memory operand, if it is a symbol // reference or immediate we may have to expand instructions. for (unsigned i = 0; i < MCID.getNumOperands(); i++) { const MCOperandInfo &OpInfo = MCID.OpInfo[i]; if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) || (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) { MCOperand &Op = Inst.getOperand(i); if (Op.isImm()) { int MemOffset = Op.getImm(); if (MemOffset < -32768 || MemOffset > 32767) { // Offset can't exceed 16bit value. expandMemInst(Inst, IDLoc, Out, STI, MCID.mayLoad(), true); return false; } } else if (Op.isExpr()) { const MCExpr *Expr = Op.getExpr(); if (Expr->getKind() == MCExpr::SymbolRef) { const MCSymbolRefExpr *SR = static_cast<const MCSymbolRefExpr *>(Expr); if (SR->getKind() == MCSymbolRefExpr::VK_None) { // Expand symbol. expandMemInst(Inst, IDLoc, Out, STI, MCID.mayLoad(), false); return false; } } else if (!isEvaluated(Expr)) { expandMemInst(Inst, IDLoc, Out, STI, MCID.mayLoad(), false); return false; } } } } // for } // if load/store if (inMicroMipsMode()) { if (MCID.mayLoad()) { // Try to create 16-bit GP relative load instruction. for (unsigned i = 0; i < MCID.getNumOperands(); i++) { const MCOperandInfo &OpInfo = MCID.OpInfo[i]; if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) || (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) { MCOperand &Op = Inst.getOperand(i); if (Op.isImm()) { int MemOffset = Op.getImm(); MCOperand &DstReg = Inst.getOperand(0); MCOperand &BaseReg = Inst.getOperand(1); if (isInt<9>(MemOffset) && (MemOffset % 4 == 0) && getContext().getRegisterInfo()->getRegClass( Mips::GPRMM16RegClassID).contains(DstReg.getReg()) && (BaseReg.getReg() == Mips::GP || BaseReg.getReg() == Mips::GP_64)) { TOut.emitRRI(Mips::LWGP_MM, DstReg.getReg(), Mips::GP, MemOffset, IDLoc, STI); return false; } } } } // for } // if load // TODO: Handle this with the AsmOperandClass.PredicateMethod. MCOperand Opnd; int Imm; switch (Inst.getOpcode()) { default: break; case Mips::ADDIUSP_MM: Opnd = Inst.getOperand(0); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < -1032 || Imm > 1028 || (Imm < 8 && Imm > -12) || Imm % 4 != 0) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::SLL16_MM: case Mips::SRL16_MM: Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < 1 || Imm > 8) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::LI16_MM: Opnd = Inst.getOperand(1); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < -1 || Imm > 126) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::ADDIUR2_MM: Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (!(Imm == 1 || Imm == -1 || ((Imm % 4 == 0) && Imm < 28 && Imm > 0))) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::ANDI16_MM: Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (!(Imm == 128 || (Imm >= 1 && Imm <= 4) || Imm == 7 || Imm == 8 || Imm == 15 || Imm == 16 || Imm == 31 || Imm == 32 || Imm == 63 || Imm == 64 || Imm == 255 || Imm == 32768 || Imm == 65535)) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::LBU16_MM: Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < -1 || Imm > 14) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::SB16_MM: case Mips::SB16_MMR6: Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < 0 || Imm > 15) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::LHU16_MM: case Mips::SH16_MM: case Mips::SH16_MMR6: Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < 0 || Imm > 30 || (Imm % 2 != 0)) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::LW16_MM: case Mips::SW16_MM: case Mips::SW16_MMR6: Opnd = Inst.getOperand(2); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); Imm = Opnd.getImm(); if (Imm < 0 || Imm > 60 || (Imm % 4 != 0)) return Error(IDLoc, "immediate operand value out of range"); break; case Mips::ADDIUPC_MM: MCOperand Opnd = Inst.getOperand(1); if (!Opnd.isImm()) return Error(IDLoc, "expected immediate operand kind"); int Imm = Opnd.getImm(); if ((Imm % 4 != 0) || !isInt<25>(Imm)) return Error(IDLoc, "immediate operand value out of range"); break; } } bool FillDelaySlot = MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder(); if (FillDelaySlot) TOut.emitDirectiveSetNoReorder(); MacroExpanderResultTy ExpandResult = tryExpandInstruction(Inst, IDLoc, Out, STI); switch (ExpandResult) { case MER_NotAMacro: Out.EmitInstruction(Inst, *STI); break; case MER_Success: break; case MER_Fail: return true; } // We know we emitted an instruction on the MER_NotAMacro or MER_Success path. // If we're in microMIPS mode then we must also set EF_MIPS_MICROMIPS. if (inMicroMipsMode()) TOut.setUsesMicroMips(); // If this instruction has a delay slot and .set reorder is active, // emit a NOP after it. if (FillDelaySlot) { TOut.emitEmptyDelaySlot(hasShortDelaySlot(Inst.getOpcode()), IDLoc, STI); TOut.emitDirectiveSetReorder(); } if ((Inst.getOpcode() == Mips::JalOneReg || Inst.getOpcode() == Mips::JalTwoReg || ExpandedJalSym) && isPicAndNotNxxAbi()) { if (IsCpRestoreSet) { // We need a NOP between the JALR and the LW: // If .set reorder has been used, we've already emitted a NOP. // If .set noreorder has been used, we need to emit a NOP at this point. if (!AssemblerOptions.back()->isReorder()) TOut.emitEmptyDelaySlot(hasShortDelaySlot(Inst.getOpcode()), IDLoc, STI); // Load the $gp from the stack. TOut.emitGPRestore(CpRestoreOffset, IDLoc, STI); } else Warning(IDLoc, "no .cprestore used in PIC mode"); } return false; } MipsAsmParser::MacroExpanderResultTy MipsAsmParser::tryExpandInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { switch (Inst.getOpcode()) { default: return MER_NotAMacro; case Mips::LoadImm32: return expandLoadImm(Inst, true, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::LoadImm64: return expandLoadImm(Inst, false, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::LoadAddrImm32: case Mips::LoadAddrImm64: assert(Inst.getOperand(0).isReg() && "expected register operand kind"); assert((Inst.getOperand(1).isImm() || Inst.getOperand(1).isExpr()) && "expected immediate operand kind"); return expandLoadAddress(Inst.getOperand(0).getReg(), Mips::NoRegister, Inst.getOperand(1), Inst.getOpcode() == Mips::LoadAddrImm32, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::LoadAddrReg32: case Mips::LoadAddrReg64: assert(Inst.getOperand(0).isReg() && "expected register operand kind"); assert(Inst.getOperand(1).isReg() && "expected register operand kind"); assert((Inst.getOperand(2).isImm() || Inst.getOperand(2).isExpr()) && "expected immediate operand kind"); return expandLoadAddress(Inst.getOperand(0).getReg(), Inst.getOperand(1).getReg(), Inst.getOperand(2), Inst.getOpcode() == Mips::LoadAddrReg32, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::B_MM_Pseudo: case Mips::B_MMR6_Pseudo: return expandUncondBranchMMPseudo(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::SWM_MM: case Mips::LWM_MM: return expandLoadStoreMultiple(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::JalOneReg: case Mips::JalTwoReg: return expandJalWithRegs(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::BneImm: case Mips::BeqImm: return expandBranchImm(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::BLT: case Mips::BLE: case Mips::BGE: case Mips::BGT: case Mips::BLTU: case Mips::BLEU: case Mips::BGEU: case Mips::BGTU: case Mips::BLTL: case Mips::BLEL: case Mips::BGEL: case Mips::BGTL: case Mips::BLTUL: case Mips::BLEUL: case Mips::BGEUL: case Mips::BGTUL: case Mips::BLTImmMacro: case Mips::BLEImmMacro: case Mips::BGEImmMacro: case Mips::BGTImmMacro: case Mips::BLTUImmMacro: case Mips::BLEUImmMacro: case Mips::BGEUImmMacro: case Mips::BGTUImmMacro: case Mips::BLTLImmMacro: case Mips::BLELImmMacro: case Mips::BGELImmMacro: case Mips::BGTLImmMacro: case Mips::BLTULImmMacro: case Mips::BLEULImmMacro: case Mips::BGEULImmMacro: case Mips::BGTULImmMacro: return expandCondBranches(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::SDivMacro: return expandDiv(Inst, IDLoc, Out, STI, false, true) ? MER_Fail : MER_Success; case Mips::DSDivMacro: return expandDiv(Inst, IDLoc, Out, STI, true, true) ? MER_Fail : MER_Success; case Mips::UDivMacro: return expandDiv(Inst, IDLoc, Out, STI, false, false) ? MER_Fail : MER_Success; case Mips::DUDivMacro: return expandDiv(Inst, IDLoc, Out, STI, true, false) ? MER_Fail : MER_Success; case Mips::PseudoTRUNC_W_S: return expandTrunc(Inst, false, false, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::PseudoTRUNC_W_D32: return expandTrunc(Inst, true, false, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::PseudoTRUNC_W_D: return expandTrunc(Inst, true, true, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::Ulh: return expandUlh(Inst, true, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::Ulhu: return expandUlh(Inst, false, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::Ulw: return expandUlw(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::NORImm: return expandAliasImmediate(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::ADDi: case Mips::ADDiu: case Mips::SLTi: case Mips::SLTiu: if ((Inst.getNumOperands() == 3) && Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg() && Inst.getOperand(2).isImm()) { int64_t ImmValue = Inst.getOperand(2).getImm(); if (isInt<16>(ImmValue)) return MER_NotAMacro; return expandAliasImmediate(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; } return MER_NotAMacro; case Mips::ANDi: case Mips::ORi: case Mips::XORi: if ((Inst.getNumOperands() == 3) && Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg() && Inst.getOperand(2).isImm()) { int64_t ImmValue = Inst.getOperand(2).getImm(); if (isUInt<16>(ImmValue)) return MER_NotAMacro; return expandAliasImmediate(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; } return MER_NotAMacro; case Mips::ROL: case Mips::ROR: return expandRotation(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::ROLImm: case Mips::RORImm: return expandRotationImm(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::DROL: case Mips::DROR: return expandDRotation(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::DROLImm: case Mips::DRORImm: return expandDRotationImm(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; case Mips::ABSMacro: return expandAbs(Inst, IDLoc, Out, STI) ? MER_Fail : MER_Success; } } bool MipsAsmParser::expandJalWithRegs(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); // Create a JALR instruction which is going to replace the pseudo-JAL. MCInst JalrInst; JalrInst.setLoc(IDLoc); const MCOperand FirstRegOp = Inst.getOperand(0); const unsigned Opcode = Inst.getOpcode(); if (Opcode == Mips::JalOneReg) { // jal $rs => jalr $rs if (IsCpRestoreSet && inMicroMipsMode()) { JalrInst.setOpcode(Mips::JALRS16_MM); JalrInst.addOperand(FirstRegOp); } else if (inMicroMipsMode()) { JalrInst.setOpcode(hasMips32r6() ? Mips::JALRC16_MMR6 : Mips::JALR16_MM); JalrInst.addOperand(FirstRegOp); } else { JalrInst.setOpcode(Mips::JALR); JalrInst.addOperand(MCOperand::createReg(Mips::RA)); JalrInst.addOperand(FirstRegOp); } } else if (Opcode == Mips::JalTwoReg) { // jal $rd, $rs => jalr $rd, $rs if (IsCpRestoreSet && inMicroMipsMode()) JalrInst.setOpcode(Mips::JALRS_MM); else JalrInst.setOpcode(inMicroMipsMode() ? Mips::JALR_MM : Mips::JALR); JalrInst.addOperand(FirstRegOp); const MCOperand SecondRegOp = Inst.getOperand(1); JalrInst.addOperand(SecondRegOp); } Out.EmitInstruction(JalrInst, *STI); // If .set reorder is active and branch instruction has a delay slot, // emit a NOP after it. const MCInstrDesc &MCID = getInstDesc(JalrInst.getOpcode()); if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder()) TOut.emitEmptyDelaySlot(hasShortDelaySlot(JalrInst.getOpcode()), IDLoc, STI); return false; } /// Can the value be represented by a unsigned N-bit value and a shift left? template <unsigned N> static bool isShiftedUIntAtAnyPosition(uint64_t x) { unsigned BitNum = findFirstSet(x); return (x == x >> BitNum << BitNum) && isUInt<N>(x >> BitNum); } /// Load (or add) an immediate into a register. /// /// @param ImmValue The immediate to load. /// @param DstReg The register that will hold the immediate. /// @param SrcReg A register to add to the immediate or Mips::NoRegister /// for a simple initialization. /// @param Is32BitImm Is ImmValue 32-bit or 64-bit? /// @param IsAddress True if the immediate represents an address. False if it /// is an integer. /// @param IDLoc Location of the immediate in the source file. bool MipsAsmParser::loadImmediate(int64_t ImmValue, unsigned DstReg, unsigned SrcReg, bool Is32BitImm, bool IsAddress, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); if (!Is32BitImm && !isGP64bit()) { Error(IDLoc, "instruction requires a 64-bit architecture"); return true; } if (Is32BitImm) { if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) { // Sign extend up to 64-bit so that the predicates match the hardware // behaviour. In particular, isInt<16>(0xffff8000) and similar should be // true. ImmValue = SignExtend64<32>(ImmValue); } else { Error(IDLoc, "instruction requires a 32-bit immediate"); return true; } } unsigned ZeroReg = IsAddress ? ABI.GetNullPtr() : ABI.GetZeroReg(); unsigned AdduOp = !Is32BitImm ? Mips::DADDu : Mips::ADDu; bool UseSrcReg = false; if (SrcReg != Mips::NoRegister) UseSrcReg = true; unsigned TmpReg = DstReg; if (UseSrcReg && getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, SrcReg)) { // At this point we need AT to perform the expansions and we exit if it is // not available. unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; TmpReg = ATReg; } if (isInt<16>(ImmValue)) { if (!UseSrcReg) SrcReg = ZeroReg; // This doesn't quite follow the usual ABI expectations for N32 but matches // traditional assembler behaviour. N32 would normally use addiu for both // integers and addresses. if (IsAddress && !Is32BitImm) { TOut.emitRRI(Mips::DADDiu, DstReg, SrcReg, ImmValue, IDLoc, STI); return false; } TOut.emitRRI(Mips::ADDiu, DstReg, SrcReg, ImmValue, IDLoc, STI); return false; } if (isUInt<16>(ImmValue)) { unsigned TmpReg = DstReg; if (SrcReg == DstReg) { TmpReg = getATReg(IDLoc); if (!TmpReg) return true; } TOut.emitRRI(Mips::ORi, TmpReg, ZeroReg, ImmValue, IDLoc, STI); if (UseSrcReg) TOut.emitRRR(ABI.GetPtrAdduOp(), DstReg, TmpReg, SrcReg, IDLoc, STI); return false; } if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) { warnIfNoMacro(IDLoc); uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff; uint16_t Bits15To0 = ImmValue & 0xffff; if (!Is32BitImm && !isInt<32>(ImmValue)) { // Traditional behaviour seems to special case this particular value. It's // not clear why other masks are handled differently. if (ImmValue == 0xffffffff) { TOut.emitRI(Mips::LUi, TmpReg, 0xffff, IDLoc, STI); TOut.emitRRI(Mips::DSRL32, TmpReg, TmpReg, 0, IDLoc, STI); if (UseSrcReg) TOut.emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, STI); return false; } // Expand to an ORi instead of a LUi to avoid sign-extending into the // upper 32 bits. TOut.emitRRI(Mips::ORi, TmpReg, ZeroReg, Bits31To16, IDLoc, STI); TOut.emitRRI(Mips::DSLL, TmpReg, TmpReg, 16, IDLoc, STI); if (Bits15To0) TOut.emitRRI(Mips::ORi, TmpReg, TmpReg, Bits15To0, IDLoc, STI); if (UseSrcReg) TOut.emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, STI); return false; } TOut.emitRI(Mips::LUi, TmpReg, Bits31To16, IDLoc, STI); if (Bits15To0) TOut.emitRRI(Mips::ORi, TmpReg, TmpReg, Bits15To0, IDLoc, STI); if (UseSrcReg) TOut.emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, STI); return false; } if (isShiftedUIntAtAnyPosition<16>(ImmValue)) { if (Is32BitImm) { Error(IDLoc, "instruction requires a 32-bit immediate"); return true; } // Traditionally, these immediates are shifted as little as possible and as // such we align the most significant bit to bit 15 of our temporary. unsigned FirstSet = findFirstSet((uint64_t)ImmValue); unsigned LastSet = findLastSet((uint64_t)ImmValue); unsigned ShiftAmount = FirstSet - (15 - (LastSet - FirstSet)); uint16_t Bits = (ImmValue >> ShiftAmount) & 0xffff; TOut.emitRRI(Mips::ORi, TmpReg, ZeroReg, Bits, IDLoc, STI); TOut.emitRRI(Mips::DSLL, TmpReg, TmpReg, ShiftAmount, IDLoc, STI); if (UseSrcReg) TOut.emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, STI); return false; } warnIfNoMacro(IDLoc); // The remaining case is packed with a sequence of dsll and ori with zeros // being omitted and any neighbouring dsll's being coalesced. // The highest 32-bit's are equivalent to a 32-bit immediate load. // Load bits 32-63 of ImmValue into bits 0-31 of the temporary register. if (loadImmediate(ImmValue >> 32, TmpReg, Mips::NoRegister, true, false, IDLoc, Out, STI)) return false; // Shift and accumulate into the register. If a 16-bit chunk is zero, then // skip it and defer the shift to the next chunk. unsigned ShiftCarriedForwards = 16; for (int BitNum = 16; BitNum >= 0; BitNum -= 16) { uint16_t ImmChunk = (ImmValue >> BitNum) & 0xffff; if (ImmChunk != 0) { TOut.emitDSLL(TmpReg, TmpReg, ShiftCarriedForwards, IDLoc, STI); TOut.emitRRI(Mips::ORi, TmpReg, TmpReg, ImmChunk, IDLoc, STI); ShiftCarriedForwards = 0; } ShiftCarriedForwards += 16; } ShiftCarriedForwards -= 16; // Finish any remaining shifts left by trailing zeros. if (ShiftCarriedForwards) TOut.emitDSLL(TmpReg, TmpReg, ShiftCarriedForwards, IDLoc, STI); if (UseSrcReg) TOut.emitRRR(AdduOp, DstReg, TmpReg, SrcReg, IDLoc, STI); return false; } bool MipsAsmParser::expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { const MCOperand &ImmOp = Inst.getOperand(1); assert(ImmOp.isImm() && "expected immediate operand kind"); const MCOperand &DstRegOp = Inst.getOperand(0); assert(DstRegOp.isReg() && "expected register operand kind"); if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister, Is32BitImm, false, IDLoc, Out, STI)) return true; return false; } bool MipsAsmParser::expandLoadAddress(unsigned DstReg, unsigned BaseReg, const MCOperand &Offset, bool Is32BitAddress, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { // la can't produce a usable address when addresses are 64-bit. if (Is32BitAddress && ABI.ArePtrs64bit()) { // FIXME: Demote this to a warning and continue as if we had 'dla' instead. // We currently can't do this because we depend on the equality // operator and N64 can end up with a GPR32/GPR64 mismatch. Error(IDLoc, "la used to load 64-bit address"); // Continue as if we had 'dla' instead. Is32BitAddress = false; } // dla requires 64-bit addresses. if (!Is32BitAddress && !hasMips3()) { Error(IDLoc, "instruction requires a 64-bit architecture"); return true; } if (!Offset.isImm()) return loadAndAddSymbolAddress(Offset.getExpr(), DstReg, BaseReg, Is32BitAddress, IDLoc, Out, STI); if (!ABI.ArePtrs64bit()) { // Continue as if we had 'la' whether we had 'la' or 'dla'. Is32BitAddress = true; } return loadImmediate(Offset.getImm(), DstReg, BaseReg, Is32BitAddress, true, IDLoc, Out, STI); } bool MipsAsmParser::loadAndAddSymbolAddress(const MCExpr *SymExpr, unsigned DstReg, unsigned SrcReg, bool Is32BitSym, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); bool UseSrcReg = SrcReg != Mips::NoRegister; warnIfNoMacro(IDLoc); if (inPicMode() && ABI.IsO32()) { MCValue Res; if (!SymExpr->evaluateAsRelocatable(Res, nullptr, nullptr)) { Error(IDLoc, "expected relocatable expression"); return true; } if (Res.getSymB() != nullptr) { Error(IDLoc, "expected relocatable expression with only one symbol"); return true; } // The case where the result register is $25 is somewhat special. If the // symbol in the final relocation is external and not modified with a // constant then we must use R_MIPS_CALL16 instead of R_MIPS_GOT16. if ((DstReg == Mips::T9 || DstReg == Mips::T9_64) && !UseSrcReg && Res.getConstant() == 0 && !Res.getSymA()->getSymbol().isInSection() && !Res.getSymA()->getSymbol().isTemporary()) { const MCExpr *CallExpr = MipsMCExpr::create(MipsMCExpr::MEK_GOT_CALL, SymExpr, getContext()); TOut.emitRRX(Mips::LW, DstReg, ABI.GetGlobalPtr(), MCOperand::createExpr(CallExpr), IDLoc, STI); return false; } // The remaining cases are: // External GOT: lw $tmp, %got(symbol+offset)($gp) // >addiu $tmp, $tmp, %lo(offset) // >addiu $rd, $tmp, $rs // Local GOT: lw $tmp, %got(symbol+offset)($gp) // addiu $tmp, $tmp, %lo(symbol+offset)($gp) // >addiu $rd, $tmp, $rs // The addiu's marked with a '>' may be omitted if they are redundant. If // this happens then the last instruction must use $rd as the result // register. const MipsMCExpr *GotExpr = MipsMCExpr::create(MipsMCExpr::MEK_GOT, SymExpr, getContext()); const MCExpr *LoExpr = nullptr; if (Res.getSymA()->getSymbol().isInSection() || Res.getSymA()->getSymbol().isTemporary()) LoExpr = MipsMCExpr::create(MipsMCExpr::MEK_LO, SymExpr, getContext()); else if (Res.getConstant() != 0) { // External symbols fully resolve the symbol with just the %got(symbol) // but we must still account for any offset to the symbol for expressions // like symbol+8. LoExpr = MCConstantExpr::create(Res.getConstant(), getContext()); } unsigned TmpReg = DstReg; if (UseSrcReg && getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, SrcReg)) { // If $rs is the same as $rd, we need to use AT. // If it is not available we exit. unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; TmpReg = ATReg; } TOut.emitRRX(Mips::LW, TmpReg, ABI.GetGlobalPtr(), MCOperand::createExpr(GotExpr), IDLoc, STI); if (LoExpr) TOut.emitRRX(Mips::ADDiu, TmpReg, TmpReg, MCOperand::createExpr(LoExpr), IDLoc, STI); if (UseSrcReg) TOut.emitRRR(Mips::ADDu, DstReg, TmpReg, SrcReg, IDLoc, STI); return false; } const MipsMCExpr *HiExpr = MipsMCExpr::create(MipsMCExpr::MEK_HI, SymExpr, getContext()); const MipsMCExpr *LoExpr = MipsMCExpr::create(MipsMCExpr::MEK_LO, SymExpr, getContext()); // This is the 64-bit symbol address expansion. if (ABI.ArePtrs64bit() && isGP64bit()) { // We always need AT for the 64-bit expansion. // If it is not available we exit. unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; const MipsMCExpr *HighestExpr = MipsMCExpr::create(MipsMCExpr::MEK_HIGHEST, SymExpr, getContext()); const MipsMCExpr *HigherExpr = MipsMCExpr::create(MipsMCExpr::MEK_HIGHER, SymExpr, getContext()); if (UseSrcReg && getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, SrcReg)) { // If $rs is the same as $rd: // (d)la $rd, sym($rd) => lui $at, %highest(sym) // daddiu $at, $at, %higher(sym) // dsll $at, $at, 16 // daddiu $at, $at, %hi(sym) // dsll $at, $at, 16 // daddiu $at, $at, %lo(sym) // daddu $rd, $at, $rd TOut.emitRX(Mips::LUi, ATReg, MCOperand::createExpr(HighestExpr), IDLoc, STI); TOut.emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(HigherExpr), IDLoc, STI); TOut.emitRRI(Mips::DSLL, ATReg, ATReg, 16, IDLoc, STI); TOut.emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(HiExpr), IDLoc, STI); TOut.emitRRI(Mips::DSLL, ATReg, ATReg, 16, IDLoc, STI); TOut.emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(LoExpr), IDLoc, STI); TOut.emitRRR(Mips::DADDu, DstReg, ATReg, SrcReg, IDLoc, STI); return false; } // Otherwise, if the $rs is different from $rd or if $rs isn't specified: // (d)la $rd, sym/sym($rs) => lui $rd, %highest(sym) // lui $at, %hi(sym) // daddiu $rd, $rd, %higher(sym) // daddiu $at, $at, %lo(sym) // dsll32 $rd, $rd, 0 // daddu $rd, $rd, $at // (daddu $rd, $rd, $rs) TOut.emitRX(Mips::LUi, DstReg, MCOperand::createExpr(HighestExpr), IDLoc, STI); TOut.emitRX(Mips::LUi, ATReg, MCOperand::createExpr(HiExpr), IDLoc, STI); TOut.emitRRX(Mips::DADDiu, DstReg, DstReg, MCOperand::createExpr(HigherExpr), IDLoc, STI); TOut.emitRRX(Mips::DADDiu, ATReg, ATReg, MCOperand::createExpr(LoExpr), IDLoc, STI); TOut.emitRRI(Mips::DSLL32, DstReg, DstReg, 0, IDLoc, STI); TOut.emitRRR(Mips::DADDu, DstReg, DstReg, ATReg, IDLoc, STI); if (UseSrcReg) TOut.emitRRR(Mips::DADDu, DstReg, DstReg, SrcReg, IDLoc, STI); return false; } // And now, the 32-bit symbol address expansion: // If $rs is the same as $rd: // (d)la $rd, sym($rd) => lui $at, %hi(sym) // ori $at, $at, %lo(sym) // addu $rd, $at, $rd // Otherwise, if the $rs is different from $rd or if $rs isn't specified: // (d)la $rd, sym/sym($rs) => lui $rd, %hi(sym) // ori $rd, $rd, %lo(sym) // (addu $rd, $rd, $rs) unsigned TmpReg = DstReg; if (UseSrcReg && getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, SrcReg)) { // If $rs is the same as $rd, we need to use AT. // If it is not available we exit. unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; TmpReg = ATReg; } TOut.emitRX(Mips::LUi, TmpReg, MCOperand::createExpr(HiExpr), IDLoc, STI); TOut.emitRRX(Mips::ADDiu, TmpReg, TmpReg, MCOperand::createExpr(LoExpr), IDLoc, STI); if (UseSrcReg) TOut.emitRRR(Mips::ADDu, DstReg, TmpReg, SrcReg, IDLoc, STI); else assert( getContext().getRegisterInfo()->isSuperOrSubRegisterEq(DstReg, TmpReg)); return false; } bool MipsAsmParser::expandUncondBranchMMPseudo(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); assert(getInstDesc(Inst.getOpcode()).getNumOperands() == 1 && "unexpected number of operands"); MCOperand Offset = Inst.getOperand(0); if (Offset.isExpr()) { Inst.clear(); Inst.setOpcode(Mips::BEQ_MM); Inst.addOperand(MCOperand::createReg(Mips::ZERO)); Inst.addOperand(MCOperand::createReg(Mips::ZERO)); Inst.addOperand(MCOperand::createExpr(Offset.getExpr())); } else { assert(Offset.isImm() && "expected immediate operand kind"); if (isInt<11>(Offset.getImm())) { // If offset fits into 11 bits then this instruction becomes microMIPS // 16-bit unconditional branch instruction. if (inMicroMipsMode()) Inst.setOpcode(hasMips32r6() ? Mips::BC16_MMR6 : Mips::B16_MM); } else { if (!isInt<17>(Offset.getImm())) Error(IDLoc, "branch target out of range"); if (OffsetToAlignment(Offset.getImm(), 1LL << 1)) Error(IDLoc, "branch to misaligned address"); Inst.clear(); Inst.setOpcode(Mips::BEQ_MM); Inst.addOperand(MCOperand::createReg(Mips::ZERO)); Inst.addOperand(MCOperand::createReg(Mips::ZERO)); Inst.addOperand(MCOperand::createImm(Offset.getImm())); } } Out.EmitInstruction(Inst, *STI); // If .set reorder is active and branch instruction has a delay slot, // emit a NOP after it. const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode()); if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder()) TOut.emitEmptyDelaySlot(true, IDLoc, STI); return false; } bool MipsAsmParser::expandBranchImm(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); const MCOperand &DstRegOp = Inst.getOperand(0); assert(DstRegOp.isReg() && "expected register operand kind"); const MCOperand &ImmOp = Inst.getOperand(1); assert(ImmOp.isImm() && "expected immediate operand kind"); const MCOperand &MemOffsetOp = Inst.getOperand(2); assert((MemOffsetOp.isImm() || MemOffsetOp.isExpr()) && "expected immediate or expression operand"); unsigned OpCode = 0; switch(Inst.getOpcode()) { case Mips::BneImm: OpCode = Mips::BNE; break; case Mips::BeqImm: OpCode = Mips::BEQ; break; default: llvm_unreachable("Unknown immediate branch pseudo-instruction."); break; } int64_t ImmValue = ImmOp.getImm(); if (ImmValue == 0) TOut.emitRRX(OpCode, DstRegOp.getReg(), Mips::ZERO, MemOffsetOp, IDLoc, STI); else { warnIfNoMacro(IDLoc); unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; if (loadImmediate(ImmValue, ATReg, Mips::NoRegister, !isGP64bit(), true, IDLoc, Out, STI)) return true; TOut.emitRRX(OpCode, DstRegOp.getReg(), ATReg, MemOffsetOp, IDLoc, STI); } return false; } void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, bool IsLoad, bool IsImmOpnd) { if (IsLoad) { expandLoadInst(Inst, IDLoc, Out, STI, IsImmOpnd); return; } expandStoreInst(Inst, IDLoc, Out, STI, IsImmOpnd); } void MipsAsmParser::expandLoadInst(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, bool IsImmOpnd) { MipsTargetStreamer &TOut = getTargetStreamer(); unsigned DstReg = Inst.getOperand(0).getReg(); unsigned BaseReg = Inst.getOperand(1).getReg(); const MCInstrDesc &Desc = getInstDesc(Inst.getOpcode()); int16_t DstRegClass = Desc.OpInfo[0].RegClass; unsigned DstRegClassID = getContext().getRegisterInfo()->getRegClass(DstRegClass).getID(); bool IsGPR = (DstRegClassID == Mips::GPR32RegClassID) || (DstRegClassID == Mips::GPR64RegClassID); if (IsImmOpnd) { // Try to use DstReg as the temporary. if (IsGPR && (BaseReg != DstReg)) { TOut.emitLoadWithImmOffset(Inst.getOpcode(), DstReg, BaseReg, Inst.getOperand(2).getImm(), DstReg, IDLoc, STI); return; } // At this point we need AT to perform the expansions and we exit if it is // not available. unsigned ATReg = getATReg(IDLoc); if (!ATReg) return; TOut.emitLoadWithImmOffset(Inst.getOpcode(), DstReg, BaseReg, Inst.getOperand(2).getImm(), ATReg, IDLoc, STI); return; } const MCExpr *ExprOffset = Inst.getOperand(2).getExpr(); MCOperand LoOperand = MCOperand::createExpr( MipsMCExpr::create(MipsMCExpr::MEK_LO, ExprOffset, getContext())); MCOperand HiOperand = MCOperand::createExpr( MipsMCExpr::create(MipsMCExpr::MEK_HI, ExprOffset, getContext())); // Try to use DstReg as the temporary. if (IsGPR && (BaseReg != DstReg)) { TOut.emitLoadWithSymOffset(Inst.getOpcode(), DstReg, BaseReg, HiOperand, LoOperand, DstReg, IDLoc, STI); return; } // At this point we need AT to perform the expansions and we exit if it is // not available. unsigned ATReg = getATReg(IDLoc); if (!ATReg) return; TOut.emitLoadWithSymOffset(Inst.getOpcode(), DstReg, BaseReg, HiOperand, LoOperand, ATReg, IDLoc, STI); } void MipsAsmParser::expandStoreInst(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, bool IsImmOpnd) { MipsTargetStreamer &TOut = getTargetStreamer(); unsigned SrcReg = Inst.getOperand(0).getReg(); unsigned BaseReg = Inst.getOperand(1).getReg(); if (IsImmOpnd) { TOut.emitStoreWithImmOffset(Inst.getOpcode(), SrcReg, BaseReg, Inst.getOperand(2).getImm(), [&]() { return getATReg(IDLoc); }, IDLoc, STI); return; } unsigned ATReg = getATReg(IDLoc); if (!ATReg) return; const MCExpr *ExprOffset = Inst.getOperand(2).getExpr(); MCOperand LoOperand = MCOperand::createExpr( MipsMCExpr::create(MipsMCExpr::MEK_LO, ExprOffset, getContext())); MCOperand HiOperand = MCOperand::createExpr( MipsMCExpr::create(MipsMCExpr::MEK_HI, ExprOffset, getContext())); TOut.emitStoreWithSymOffset(Inst.getOpcode(), SrcReg, BaseReg, HiOperand, LoOperand, ATReg, IDLoc, STI); } bool MipsAsmParser::expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { unsigned OpNum = Inst.getNumOperands(); unsigned Opcode = Inst.getOpcode(); unsigned NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM32_MM : Mips::LWM32_MM; assert (Inst.getOperand(OpNum - 1).isImm() && Inst.getOperand(OpNum - 2).isReg() && Inst.getOperand(OpNum - 3).isReg() && "Invalid instruction operand."); if (OpNum < 8 && Inst.getOperand(OpNum - 1).getImm() <= 60 && Inst.getOperand(OpNum - 1).getImm() >= 0 && (Inst.getOperand(OpNum - 2).getReg() == Mips::SP || Inst.getOperand(OpNum - 2).getReg() == Mips::SP_64) && (Inst.getOperand(OpNum - 3).getReg() == Mips::RA || Inst.getOperand(OpNum - 3).getReg() == Mips::RA_64)) { // It can be implemented as SWM16 or LWM16 instruction. if (inMicroMipsMode() && hasMips32r6()) NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM16_MMR6 : Mips::LWM16_MMR6; else NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM16_MM : Mips::LWM16_MM; } Inst.setOpcode(NewOpcode); Out.EmitInstruction(Inst, *STI); return false; } bool MipsAsmParser::expandCondBranches(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); bool EmittedNoMacroWarning = false; unsigned PseudoOpcode = Inst.getOpcode(); unsigned SrcReg = Inst.getOperand(0).getReg(); const MCOperand &TrgOp = Inst.getOperand(1); const MCExpr *OffsetExpr = Inst.getOperand(2).getExpr(); unsigned ZeroSrcOpcode, ZeroTrgOpcode; bool ReverseOrderSLT, IsUnsigned, IsLikely, AcceptsEquality; unsigned TrgReg; if (TrgOp.isReg()) TrgReg = TrgOp.getReg(); else if (TrgOp.isImm()) { warnIfNoMacro(IDLoc); EmittedNoMacroWarning = true; TrgReg = getATReg(IDLoc); if (!TrgReg) return true; switch(PseudoOpcode) { default: llvm_unreachable("unknown opcode for branch pseudo-instruction"); case Mips::BLTImmMacro: PseudoOpcode = Mips::BLT; break; case Mips::BLEImmMacro: PseudoOpcode = Mips::BLE; break; case Mips::BGEImmMacro: PseudoOpcode = Mips::BGE; break; case Mips::BGTImmMacro: PseudoOpcode = Mips::BGT; break; case Mips::BLTUImmMacro: PseudoOpcode = Mips::BLTU; break; case Mips::BLEUImmMacro: PseudoOpcode = Mips::BLEU; break; case Mips::BGEUImmMacro: PseudoOpcode = Mips::BGEU; break; case Mips::BGTUImmMacro: PseudoOpcode = Mips::BGTU; break; case Mips::BLTLImmMacro: PseudoOpcode = Mips::BLTL; break; case Mips::BLELImmMacro: PseudoOpcode = Mips::BLEL; break; case Mips::BGELImmMacro: PseudoOpcode = Mips::BGEL; break; case Mips::BGTLImmMacro: PseudoOpcode = Mips::BGTL; break; case Mips::BLTULImmMacro: PseudoOpcode = Mips::BLTUL; break; case Mips::BLEULImmMacro: PseudoOpcode = Mips::BLEUL; break; case Mips::BGEULImmMacro: PseudoOpcode = Mips::BGEUL; break; case Mips::BGTULImmMacro: PseudoOpcode = Mips::BGTUL; break; } if (loadImmediate(TrgOp.getImm(), TrgReg, Mips::NoRegister, !isGP64bit(), false, IDLoc, Out, STI)) return true; } switch (PseudoOpcode) { case Mips::BLT: case Mips::BLTU: case Mips::BLTL: case Mips::BLTUL: AcceptsEquality = false; ReverseOrderSLT = false; IsUnsigned = ((PseudoOpcode == Mips::BLTU) || (PseudoOpcode == Mips::BLTUL)); IsLikely = ((PseudoOpcode == Mips::BLTL) || (PseudoOpcode == Mips::BLTUL)); ZeroSrcOpcode = Mips::BGTZ; ZeroTrgOpcode = Mips::BLTZ; break; case Mips::BLE: case Mips::BLEU: case Mips::BLEL: case Mips::BLEUL: AcceptsEquality = true; ReverseOrderSLT = true; IsUnsigned = ((PseudoOpcode == Mips::BLEU) || (PseudoOpcode == Mips::BLEUL)); IsLikely = ((PseudoOpcode == Mips::BLEL) || (PseudoOpcode == Mips::BLEUL)); ZeroSrcOpcode = Mips::BGEZ; ZeroTrgOpcode = Mips::BLEZ; break; case Mips::BGE: case Mips::BGEU: case Mips::BGEL: case Mips::BGEUL: AcceptsEquality = true; ReverseOrderSLT = false; IsUnsigned = ((PseudoOpcode == Mips::BGEU) || (PseudoOpcode == Mips::BGEUL)); IsLikely = ((PseudoOpcode == Mips::BGEL) || (PseudoOpcode == Mips::BGEUL)); ZeroSrcOpcode = Mips::BLEZ; ZeroTrgOpcode = Mips::BGEZ; break; case Mips::BGT: case Mips::BGTU: case Mips::BGTL: case Mips::BGTUL: AcceptsEquality = false; ReverseOrderSLT = true; IsUnsigned = ((PseudoOpcode == Mips::BGTU) || (PseudoOpcode == Mips::BGTUL)); IsLikely = ((PseudoOpcode == Mips::BGTL) || (PseudoOpcode == Mips::BGTUL)); ZeroSrcOpcode = Mips::BLTZ; ZeroTrgOpcode = Mips::BGTZ; break; default: llvm_unreachable("unknown opcode for branch pseudo-instruction"); } bool IsTrgRegZero = (TrgReg == Mips::ZERO); bool IsSrcRegZero = (SrcReg == Mips::ZERO); if (IsSrcRegZero && IsTrgRegZero) { // FIXME: All of these Opcode-specific if's are needed for compatibility // with GAS' behaviour. However, they may not generate the most efficient // code in some circumstances. if (PseudoOpcode == Mips::BLT) { TOut.emitRX(Mips::BLTZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); return false; } if (PseudoOpcode == Mips::BLE) { TOut.emitRX(Mips::BLEZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); Warning(IDLoc, "branch is always taken"); return false; } if (PseudoOpcode == Mips::BGE) { TOut.emitRX(Mips::BGEZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); Warning(IDLoc, "branch is always taken"); return false; } if (PseudoOpcode == Mips::BGT) { TOut.emitRX(Mips::BGTZ, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); return false; } if (PseudoOpcode == Mips::BGTU) { TOut.emitRRX(Mips::BNE, Mips::ZERO, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); return false; } if (AcceptsEquality) { // If both registers are $0 and the pseudo-branch accepts equality, it // will always be taken, so we emit an unconditional branch. TOut.emitRRX(Mips::BEQ, Mips::ZERO, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); Warning(IDLoc, "branch is always taken"); return false; } // If both registers are $0 and the pseudo-branch does not accept // equality, it will never be taken, so we don't have to emit anything. return false; } if (IsSrcRegZero || IsTrgRegZero) { if ((IsSrcRegZero && PseudoOpcode == Mips::BGTU) || (IsTrgRegZero && PseudoOpcode == Mips::BLTU)) { // If the $rs is $0 and the pseudo-branch is BGTU (0 > x) or // if the $rt is $0 and the pseudo-branch is BLTU (x < 0), // the pseudo-branch will never be taken, so we don't emit anything. // This only applies to unsigned pseudo-branches. return false; } if ((IsSrcRegZero && PseudoOpcode == Mips::BLEU) || (IsTrgRegZero && PseudoOpcode == Mips::BGEU)) { // If the $rs is $0 and the pseudo-branch is BLEU (0 <= x) or // if the $rt is $0 and the pseudo-branch is BGEU (x >= 0), // the pseudo-branch will always be taken, so we emit an unconditional // branch. // This only applies to unsigned pseudo-branches. TOut.emitRRX(Mips::BEQ, Mips::ZERO, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); Warning(IDLoc, "branch is always taken"); return false; } if (IsUnsigned) { // If the $rs is $0 and the pseudo-branch is BLTU (0 < x) or // if the $rt is $0 and the pseudo-branch is BGTU (x > 0), // the pseudo-branch will be taken only when the non-zero register is // different from 0, so we emit a BNEZ. // // If the $rs is $0 and the pseudo-branch is BGEU (0 >= x) or // if the $rt is $0 and the pseudo-branch is BLEU (x <= 0), // the pseudo-branch will be taken only when the non-zero register is // equal to 0, so we emit a BEQZ. // // Because only BLEU and BGEU branch on equality, we can use the // AcceptsEquality variable to decide when to emit the BEQZ. TOut.emitRRX(AcceptsEquality ? Mips::BEQ : Mips::BNE, IsSrcRegZero ? TrgReg : SrcReg, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); return false; } // If we have a signed pseudo-branch and one of the registers is $0, // we can use an appropriate compare-to-zero branch. We select which one // to use in the switch statement above. TOut.emitRX(IsSrcRegZero ? ZeroSrcOpcode : ZeroTrgOpcode, IsSrcRegZero ? TrgReg : SrcReg, MCOperand::createExpr(OffsetExpr), IDLoc, STI); return false; } // If neither the SrcReg nor the TrgReg are $0, we need AT to perform the // expansions. If it is not available, we return. unsigned ATRegNum = getATReg(IDLoc); if (!ATRegNum) return true; if (!EmittedNoMacroWarning) warnIfNoMacro(IDLoc); // SLT fits well with 2 of our 4 pseudo-branches: // BLT, where $rs < $rt, translates into "slt $at, $rs, $rt" and // BGT, where $rs > $rt, translates into "slt $at, $rt, $rs". // If the result of the SLT is 1, we branch, and if it's 0, we don't. // This is accomplished by using a BNEZ with the result of the SLT. // // The other 2 pseudo-branches are opposites of the above 2 (BGE with BLT // and BLE with BGT), so we change the BNEZ into a a BEQZ. // Because only BGE and BLE branch on equality, we can use the // AcceptsEquality variable to decide when to emit the BEQZ. // Note that the order of the SLT arguments doesn't change between // opposites. // // The same applies to the unsigned variants, except that SLTu is used // instead of SLT. TOut.emitRRR(IsUnsigned ? Mips::SLTu : Mips::SLT, ATRegNum, ReverseOrderSLT ? TrgReg : SrcReg, ReverseOrderSLT ? SrcReg : TrgReg, IDLoc, STI); TOut.emitRRX(IsLikely ? (AcceptsEquality ? Mips::BEQL : Mips::BNEL) : (AcceptsEquality ? Mips::BEQ : Mips::BNE), ATRegNum, Mips::ZERO, MCOperand::createExpr(OffsetExpr), IDLoc, STI); return false; } bool MipsAsmParser::expandDiv(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI, const bool IsMips64, const bool Signed) { MipsTargetStreamer &TOut = getTargetStreamer(); warnIfNoMacro(IDLoc); const MCOperand &RdRegOp = Inst.getOperand(0); assert(RdRegOp.isReg() && "expected register operand kind"); unsigned RdReg = RdRegOp.getReg(); const MCOperand &RsRegOp = Inst.getOperand(1); assert(RsRegOp.isReg() && "expected register operand kind"); unsigned RsReg = RsRegOp.getReg(); const MCOperand &RtRegOp = Inst.getOperand(2); assert(RtRegOp.isReg() && "expected register operand kind"); unsigned RtReg = RtRegOp.getReg(); unsigned DivOp; unsigned ZeroReg; if (IsMips64) { DivOp = Signed ? Mips::DSDIV : Mips::DUDIV; ZeroReg = Mips::ZERO_64; } else { DivOp = Signed ? Mips::SDIV : Mips::UDIV; ZeroReg = Mips::ZERO; } bool UseTraps = useTraps(); if (RsReg == Mips::ZERO || RsReg == Mips::ZERO_64) { if (RtReg == Mips::ZERO || RtReg == Mips::ZERO_64) Warning(IDLoc, "dividing zero by zero"); if (IsMips64) { if (Signed && (RtReg == Mips::ZERO || RtReg == Mips::ZERO_64)) { if (UseTraps) { TOut.emitRRI(Mips::TEQ, RtReg, ZeroReg, 0x7, IDLoc, STI); return false; } TOut.emitII(Mips::BREAK, 0x7, 0, IDLoc, STI); return false; } } else { TOut.emitRR(DivOp, RsReg, RtReg, IDLoc, STI); return false; } } if (RtReg == Mips::ZERO || RtReg == Mips::ZERO_64) { Warning(IDLoc, "division by zero"); if (Signed) { if (UseTraps) { TOut.emitRRI(Mips::TEQ, RtReg, ZeroReg, 0x7, IDLoc, STI); return false; } TOut.emitII(Mips::BREAK, 0x7, 0, IDLoc, STI); return false; } } // FIXME: The values for these two BranchTarget variables may be different in // micromips. These magic numbers need to be removed. unsigned BranchTargetNoTraps; unsigned BranchTarget; if (UseTraps) { BranchTarget = IsMips64 ? 12 : 8; TOut.emitRRI(Mips::TEQ, RtReg, ZeroReg, 0x7, IDLoc, STI); } else { BranchTarget = IsMips64 ? 20 : 16; BranchTargetNoTraps = 8; // Branch to the li instruction. TOut.emitRRI(Mips::BNE, RtReg, ZeroReg, BranchTargetNoTraps, IDLoc, STI); } TOut.emitRR(DivOp, RsReg, RtReg, IDLoc, STI); if (!UseTraps) TOut.emitII(Mips::BREAK, 0x7, 0, IDLoc, STI); if (!Signed) { TOut.emitR(Mips::MFLO, RdReg, IDLoc, STI); return false; } unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; TOut.emitRRI(Mips::ADDiu, ATReg, ZeroReg, -1, IDLoc, STI); if (IsMips64) { // Branch to the mflo instruction. TOut.emitRRI(Mips::BNE, RtReg, ATReg, BranchTarget, IDLoc, STI); TOut.emitRRI(Mips::ADDiu, ATReg, ZeroReg, 1, IDLoc, STI); TOut.emitRRI(Mips::DSLL32, ATReg, ATReg, 0x1f, IDLoc, STI); } else { // Branch to the mflo instruction. TOut.emitRRI(Mips::BNE, RtReg, ATReg, BranchTarget, IDLoc, STI); TOut.emitRI(Mips::LUi, ATReg, (uint16_t)0x8000, IDLoc, STI); } if (UseTraps) TOut.emitRRI(Mips::TEQ, RsReg, ATReg, 0x6, IDLoc, STI); else { // Branch to the mflo instruction. TOut.emitRRI(Mips::BNE, RsReg, ATReg, BranchTargetNoTraps, IDLoc, STI); TOut.emitRRI(Mips::SLL, ZeroReg, ZeroReg, 0, IDLoc, STI); TOut.emitII(Mips::BREAK, 0x6, 0, IDLoc, STI); } TOut.emitR(Mips::MFLO, RdReg, IDLoc, STI); return false; } bool MipsAsmParser::expandTrunc(MCInst &Inst, bool IsDouble, bool Is64FPU, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); assert(Inst.getNumOperands() == 3 && "Invalid operand count"); assert(Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg() && Inst.getOperand(2).isReg() && "Invalid instruction operand."); unsigned FirstReg = Inst.getOperand(0).getReg(); unsigned SecondReg = Inst.getOperand(1).getReg(); unsigned ThirdReg = Inst.getOperand(2).getReg(); if (hasMips1() && !hasMips2()) { unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; TOut.emitRR(Mips::CFC1, ThirdReg, Mips::RA, IDLoc, STI); TOut.emitRR(Mips::CFC1, ThirdReg, Mips::RA, IDLoc, STI); TOut.emitNop(IDLoc, STI); TOut.emitRRI(Mips::ORi, ATReg, ThirdReg, 0x3, IDLoc, STI); TOut.emitRRI(Mips::XORi, ATReg, ATReg, 0x2, IDLoc, STI); TOut.emitRR(Mips::CTC1, Mips::RA, ATReg, IDLoc, STI); TOut.emitNop(IDLoc, STI); TOut.emitRR(IsDouble ? (Is64FPU ? Mips::CVT_W_D64 : Mips::CVT_W_D32) : Mips::CVT_W_S, FirstReg, SecondReg, IDLoc, STI); TOut.emitRR(Mips::CTC1, Mips::RA, ThirdReg, IDLoc, STI); TOut.emitNop(IDLoc, STI); return false; } TOut.emitRR(IsDouble ? (Is64FPU ? Mips::TRUNC_W_D64 : Mips::TRUNC_W_D32) : Mips::TRUNC_W_S, FirstReg, SecondReg, IDLoc, STI); return false; } bool MipsAsmParser::expandUlh(MCInst &Inst, bool Signed, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); if (hasMips32r6() || hasMips64r6()) { Error(IDLoc, "instruction not supported on mips32r6 or mips64r6"); return false; } warnIfNoMacro(IDLoc); const MCOperand &DstRegOp = Inst.getOperand(0); assert(DstRegOp.isReg() && "expected register operand kind"); const MCOperand &SrcRegOp = Inst.getOperand(1); assert(SrcRegOp.isReg() && "expected register operand kind"); const MCOperand &OffsetImmOp = Inst.getOperand(2); assert(OffsetImmOp.isImm() && "expected immediate operand kind"); unsigned DstReg = DstRegOp.getReg(); unsigned SrcReg = SrcRegOp.getReg(); int64_t OffsetValue = OffsetImmOp.getImm(); // NOTE: We always need AT for ULHU, as it is always used as the source // register for one of the LBu's. unsigned ATReg = getATReg(IDLoc); if (!ATReg) return true; // When the value of offset+1 does not fit in 16 bits, we have to load the // offset in AT, (D)ADDu the original source register (if there was one), and // then use AT as the source register for the 2 generated LBu's. bool LoadedOffsetInAT = false; if (!isInt<16>(OffsetValue + 1) || !isInt<16>(OffsetValue)) { LoadedOffsetInAT = true; if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(), true, IDLoc, Out, STI)) return true; // NOTE: We do this (D)ADDu here instead of doing it in loadImmediate() // because it will make our output more similar to GAS'. For example, // generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9", // instead of just an "ori $1, $9, 32768". // NOTE: If there is no source register specified in the ULHU, the parser // will interpret it as $0. if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64) TOut.emitAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), STI); } unsigned FirstLbuDstReg = LoadedOffsetInAT ? DstReg : ATReg; unsigned SecondLbuDstReg = LoadedOffsetInAT ? ATReg : DstReg; unsigned LbuSrcReg = LoadedOffsetInAT ? ATReg : SrcReg; int64_t FirstLbuOffset = 0, SecondLbuOffset = 0; if (isLittle()) { FirstLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1); SecondLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue; } else { FirstLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue; SecondLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1); } unsigned SllReg = LoadedOffsetInAT ? DstReg : ATReg; TOut.emitRRI(Signed ? Mips::LB : Mips::LBu, FirstLbuDstReg, LbuSrcReg, FirstLbuOffset, IDLoc, STI); TOut.emitRRI(Mips::LBu, SecondLbuDstReg, LbuSrcReg, SecondLbuOffset, IDLoc, STI); TOut.emitRRI(Mips::SLL, SllReg, SllReg, 8, IDLoc, STI); TOut.emitRRR(Mips::OR, DstReg, DstReg, ATReg, IDLoc, STI); return false; } bool MipsAsmParser::expandUlw(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); if (hasMips32r6() || hasMips64r6()) { Error(IDLoc, "instruction not supported on mips32r6 or mips64r6"); return false; } const MCOperand &DstRegOp = Inst.getOperand(0); assert(DstRegOp.isReg() && "expected register operand kind"); const MCOperand &SrcRegOp = Inst.getOperand(1); assert(SrcRegOp.isReg() && "expected register operand kind"); const MCOperand &OffsetImmOp = Inst.getOperand(2); assert(OffsetImmOp.isImm() && "expected immediate operand kind"); unsigned SrcReg = SrcRegOp.getReg(); int64_t OffsetValue = OffsetImmOp.getImm(); unsigned ATReg = 0; // When the value of offset+3 does not fit in 16 bits, we have to load the // offset in AT, (D)ADDu the original source register (if there was one), and // then use AT as the source register for the generated LWL and LWR. bool LoadedOffsetInAT = false; if (!isInt<16>(OffsetValue + 3) || !isInt<16>(OffsetValue)) { ATReg = getATReg(IDLoc); if (!ATReg) return true; LoadedOffsetInAT = true; warnIfNoMacro(IDLoc); if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(), true, IDLoc, Out, STI)) return true; // NOTE: We do this (D)ADDu here instead of doing it in loadImmediate() // because it will make our output more similar to GAS'. For example, // generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9", // instead of just an "ori $1, $9, 32768". // NOTE: If there is no source register specified in the ULW, the parser // will interpret it as $0. if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64) TOut.emitAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), STI); } unsigned FinalSrcReg = LoadedOffsetInAT ? ATReg : SrcReg; int64_t LeftLoadOffset = 0, RightLoadOffset = 0; if (isLittle()) { LeftLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3); RightLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue; } else { LeftLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue; RightLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3); } TOut.emitRRI(Mips::LWL, DstRegOp.getReg(), FinalSrcReg, LeftLoadOffset, IDLoc, STI); TOut.emitRRI(Mips::LWR, DstRegOp.getReg(), FinalSrcReg, RightLoadOffset, IDLoc, STI); return false; } bool MipsAsmParser::expandAliasImmediate(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); assert (Inst.getNumOperands() == 3 && "Invalid operand count"); assert (Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg() && Inst.getOperand(2).isImm() && "Invalid instruction operand."); unsigned ATReg = Mips::NoRegister; unsigned FinalDstReg = Mips::NoRegister; unsigned DstReg = Inst.getOperand(0).getReg(); unsigned SrcReg = Inst.getOperand(1).getReg(); int64_t ImmValue = Inst.getOperand(2).getImm(); bool Is32Bit = isInt<32>(ImmValue) || isUInt<32>(ImmValue); unsigned FinalOpcode = Inst.getOpcode(); if (DstReg == SrcReg) { ATReg = getATReg(Inst.getLoc()); if (!ATReg) return true; FinalDstReg = DstReg; DstReg = ATReg; } if (!loadImmediate(ImmValue, DstReg, Mips::NoRegister, Is32Bit, false, Inst.getLoc(), Out, STI)) { switch (FinalOpcode) { default: llvm_unreachable("unimplemented expansion"); case (Mips::ADDi): FinalOpcode = Mips::ADD; break; case (Mips::ADDiu): FinalOpcode = Mips::ADDu; break; case (Mips::ANDi): FinalOpcode = Mips::AND; break; case (Mips::NORImm): FinalOpcode = Mips::NOR; break; case (Mips::ORi): FinalOpcode = Mips::OR; break; case (Mips::SLTi): FinalOpcode = Mips::SLT; break; case (Mips::SLTiu): FinalOpcode = Mips::SLTu; break; case (Mips::XORi): FinalOpcode = Mips::XOR; break; } if (FinalDstReg == Mips::NoRegister) TOut.emitRRR(FinalOpcode, DstReg, DstReg, SrcReg, IDLoc, STI); else TOut.emitRRR(FinalOpcode, FinalDstReg, FinalDstReg, DstReg, IDLoc, STI); return false; } return true; } bool MipsAsmParser::expandRotation(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); unsigned ATReg = Mips::NoRegister; unsigned DReg = Inst.getOperand(0).getReg(); unsigned SReg = Inst.getOperand(1).getReg(); unsigned TReg = Inst.getOperand(2).getReg(); unsigned TmpReg = DReg; unsigned FirstShift = Mips::NOP; unsigned SecondShift = Mips::NOP; if (hasMips32r2()) { if (DReg == SReg) { TmpReg = getATReg(Inst.getLoc()); if (!TmpReg) return true; } if (Inst.getOpcode() == Mips::ROL) { TOut.emitRRR(Mips::SUBu, TmpReg, Mips::ZERO, TReg, Inst.getLoc(), STI); TOut.emitRRR(Mips::ROTRV, DReg, SReg, TmpReg, Inst.getLoc(), STI); return false; } if (Inst.getOpcode() == Mips::ROR) { TOut.emitRRR(Mips::ROTRV, DReg, SReg, TReg, Inst.getLoc(), STI); return false; } return true; } if (hasMips32()) { switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected instruction opcode"); case Mips::ROL: FirstShift = Mips::SRLV; SecondShift = Mips::SLLV; break; case Mips::ROR: FirstShift = Mips::SLLV; SecondShift = Mips::SRLV; break; } ATReg = getATReg(Inst.getLoc()); if (!ATReg) return true; TOut.emitRRR(Mips::SUBu, ATReg, Mips::ZERO, TReg, Inst.getLoc(), STI); TOut.emitRRR(FirstShift, ATReg, SReg, ATReg, Inst.getLoc(), STI); TOut.emitRRR(SecondShift, DReg, SReg, TReg, Inst.getLoc(), STI); TOut.emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), STI); return false; } return true; } bool MipsAsmParser::expandRotationImm(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); unsigned ATReg = Mips::NoRegister; unsigned DReg = Inst.getOperand(0).getReg(); unsigned SReg = Inst.getOperand(1).getReg(); int64_t ImmValue = Inst.getOperand(2).getImm(); unsigned FirstShift = Mips::NOP; unsigned SecondShift = Mips::NOP; if (hasMips32r2()) { if (Inst.getOpcode() == Mips::ROLImm) { uint64_t MaxShift = 32; uint64_t ShiftValue = ImmValue; if (ImmValue != 0) ShiftValue = MaxShift - ImmValue; TOut.emitRRI(Mips::ROTR, DReg, SReg, ShiftValue, Inst.getLoc(), STI); return false; } if (Inst.getOpcode() == Mips::RORImm) { TOut.emitRRI(Mips::ROTR, DReg, SReg, ImmValue, Inst.getLoc(), STI); return false; } return true; } if (hasMips32()) { if (ImmValue == 0) { TOut.emitRRI(Mips::SRL, DReg, SReg, 0, Inst.getLoc(), STI); return false; } switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected instruction opcode"); case Mips::ROLImm: FirstShift = Mips::SLL; SecondShift = Mips::SRL; break; case Mips::RORImm: FirstShift = Mips::SRL; SecondShift = Mips::SLL; break; } ATReg = getATReg(Inst.getLoc()); if (!ATReg) return true; TOut.emitRRI(FirstShift, ATReg, SReg, ImmValue, Inst.getLoc(), STI); TOut.emitRRI(SecondShift, DReg, SReg, 32 - ImmValue, Inst.getLoc(), STI); TOut.emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), STI); return false; } return true; } bool MipsAsmParser::expandDRotation(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); unsigned ATReg = Mips::NoRegister; unsigned DReg = Inst.getOperand(0).getReg(); unsigned SReg = Inst.getOperand(1).getReg(); unsigned TReg = Inst.getOperand(2).getReg(); unsigned TmpReg = DReg; unsigned FirstShift = Mips::NOP; unsigned SecondShift = Mips::NOP; if (hasMips64r2()) { if (TmpReg == SReg) { TmpReg = getATReg(Inst.getLoc()); if (!TmpReg) return true; } if (Inst.getOpcode() == Mips::DROL) { TOut.emitRRR(Mips::DSUBu, TmpReg, Mips::ZERO, TReg, Inst.getLoc(), STI); TOut.emitRRR(Mips::DROTRV, DReg, SReg, TmpReg, Inst.getLoc(), STI); return false; } if (Inst.getOpcode() == Mips::DROR) { TOut.emitRRR(Mips::DROTRV, DReg, SReg, TReg, Inst.getLoc(), STI); return false; } return true; } if (hasMips64()) { switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected instruction opcode"); case Mips::DROL: FirstShift = Mips::DSRLV; SecondShift = Mips::DSLLV; break; case Mips::DROR: FirstShift = Mips::DSLLV; SecondShift = Mips::DSRLV; break; } ATReg = getATReg(Inst.getLoc()); if (!ATReg) return true; TOut.emitRRR(Mips::DSUBu, ATReg, Mips::ZERO, TReg, Inst.getLoc(), STI); TOut.emitRRR(FirstShift, ATReg, SReg, ATReg, Inst.getLoc(), STI); TOut.emitRRR(SecondShift, DReg, SReg, TReg, Inst.getLoc(), STI); TOut.emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), STI); return false; } return true; } bool MipsAsmParser::expandDRotationImm(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); unsigned ATReg = Mips::NoRegister; unsigned DReg = Inst.getOperand(0).getReg(); unsigned SReg = Inst.getOperand(1).getReg(); int64_t ImmValue = Inst.getOperand(2).getImm() % 64; unsigned FirstShift = Mips::NOP; unsigned SecondShift = Mips::NOP; MCInst TmpInst; if (hasMips64r2()) { unsigned FinalOpcode = Mips::NOP; if (ImmValue == 0) FinalOpcode = Mips::DROTR; else if (ImmValue % 32 == 0) FinalOpcode = Mips::DROTR32; else if ((ImmValue >= 1) && (ImmValue <= 32)) { if (Inst.getOpcode() == Mips::DROLImm) FinalOpcode = Mips::DROTR32; else FinalOpcode = Mips::DROTR; } else if (ImmValue >= 33) { if (Inst.getOpcode() == Mips::DROLImm) FinalOpcode = Mips::DROTR; else FinalOpcode = Mips::DROTR32; } uint64_t ShiftValue = ImmValue % 32; if (Inst.getOpcode() == Mips::DROLImm) ShiftValue = (32 - ImmValue % 32) % 32; TOut.emitRRI(FinalOpcode, DReg, SReg, ShiftValue, Inst.getLoc(), STI); return false; } if (hasMips64()) { if (ImmValue == 0) { TOut.emitRRI(Mips::DSRL, DReg, SReg, 0, Inst.getLoc(), STI); return false; } switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected instruction opcode"); case Mips::DROLImm: if ((ImmValue >= 1) && (ImmValue <= 31)) { FirstShift = Mips::DSLL; SecondShift = Mips::DSRL32; } if (ImmValue == 32) { FirstShift = Mips::DSLL32; SecondShift = Mips::DSRL32; } if ((ImmValue >= 33) && (ImmValue <= 63)) { FirstShift = Mips::DSLL32; SecondShift = Mips::DSRL; } break; case Mips::DRORImm: if ((ImmValue >= 1) && (ImmValue <= 31)) { FirstShift = Mips::DSRL; SecondShift = Mips::DSLL32; } if (ImmValue == 32) { FirstShift = Mips::DSRL32; SecondShift = Mips::DSLL32; } if ((ImmValue >= 33) && (ImmValue <= 63)) { FirstShift = Mips::DSRL32; SecondShift = Mips::DSLL; } break; } ATReg = getATReg(Inst.getLoc()); if (!ATReg) return true; TOut.emitRRI(FirstShift, ATReg, SReg, ImmValue % 32, Inst.getLoc(), STI); TOut.emitRRI(SecondShift, DReg, SReg, (32 - ImmValue % 32) % 32, Inst.getLoc(), STI); TOut.emitRRR(Mips::OR, DReg, DReg, ATReg, Inst.getLoc(), STI); return false; } return true; } bool MipsAsmParser::expandAbs(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out, const MCSubtargetInfo *STI) { MipsTargetStreamer &TOut = getTargetStreamer(); unsigned FirstRegOp = Inst.getOperand(0).getReg(); unsigned SecondRegOp = Inst.getOperand(1).getReg(); TOut.emitRI(Mips::BGEZ, SecondRegOp, 8, IDLoc, STI); if (FirstRegOp != SecondRegOp) TOut.emitRRR(Mips::ADDu, FirstRegOp, SecondRegOp, Mips::ZERO, IDLoc, STI); else TOut.emitEmptyDelaySlot(false, IDLoc, STI); TOut.emitRRR(Mips::SUB, FirstRegOp, Mips::ZERO, SecondRegOp, IDLoc, STI); return false; } unsigned MipsAsmParser::checkTargetMatchPredicate(MCInst &Inst) { switch (Inst.getOpcode()) { // As described by the Mips32r2 spec, the registers Rd and Rs for // jalr.hb must be different. // It also applies for registers Rt and Rs of microMIPSr6 jalrc.hb instruction // and registers Rd and Base for microMIPS lwp instruction case Mips::JALR_HB: case Mips::JALRC_HB_MMR6: case Mips::JALRC_MMR6: if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) return Match_RequiresDifferentSrcAndDst; return Match_Success; case Mips::LWP_MM: case Mips::LWP_MMR6: if (Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) return Match_RequiresDifferentSrcAndDst; return Match_Success; // As described the MIPSR6 spec, the compact branches that compare registers // must: // a) Not use the zero register. // b) Not use the same register twice. // c) rs < rt for bnec, beqc. // NB: For this case, the encoding will swap the operands as their // ordering doesn't matter. GAS performs this transformation too. // Hence, that constraint does not have to be enforced. // // The compact branches that branch iff the signed addition of two registers // would overflow must have rs >= rt. That can be handled like beqc/bnec with // operand swapping. They do not have restriction of using the zero register. case Mips::BLEZC: case Mips::BGEZC: case Mips::BGTZC: case Mips::BLTZC: case Mips::BEQZC: case Mips::BNEZC: if (Inst.getOperand(0).getReg() == Mips::ZERO) return Match_RequiresNoZeroRegister; return Match_Success; case Mips::BGEC: case Mips::BLTC: case Mips::BGEUC: case Mips::BLTUC: case Mips::BEQC: case Mips::BNEC: if (Inst.getOperand(0).getReg() == Mips::ZERO) return Match_RequiresNoZeroRegister; if (Inst.getOperand(1).getReg() == Mips::ZERO) return Match_RequiresNoZeroRegister; if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) return Match_RequiresDifferentOperands; return Match_Success; default: return Match_Success; } } static SMLoc RefineErrorLoc(const SMLoc Loc, const OperandVector &Operands, uint64_t ErrorInfo) { if (ErrorInfo != ~0ULL && ErrorInfo < Operands.size()) { SMLoc ErrorLoc = Operands[ErrorInfo]->getStartLoc(); if (ErrorLoc == SMLoc()) return Loc; return ErrorLoc; } return Loc; } bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); switch (MatchResult) { case Match_Success: { if (processInstruction(Inst, IDLoc, Out, STI)) return true; return false; } case Match_MissingFeature: Error(IDLoc, "instruction requires a CPU feature not currently enabled"); return true; case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = Operands[ErrorInfo]->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "invalid instruction"); case Match_RequiresDifferentSrcAndDst: return Error(IDLoc, "source and destination must be different"); case Match_RequiresDifferentOperands: return Error(IDLoc, "registers must be different"); case Match_RequiresNoZeroRegister: return Error(IDLoc, "invalid operand ($zero) for instruction"); case Match_Immz: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected '0'"); case Match_UImm1_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 1-bit unsigned immediate"); case Match_UImm2_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 2-bit unsigned immediate"); case Match_UImm2_1: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected immediate in range 1 .. 4"); case Match_UImm3_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 3-bit unsigned immediate"); case Match_UImm4_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 4-bit unsigned immediate"); case Match_SImm4_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 4-bit signed immediate"); case Match_UImm5_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 5-bit unsigned immediate"); case Match_SImm5_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 5-bit signed immediate"); case Match_UImm5_1: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected immediate in range 1 .. 32"); case Match_UImm5_32: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected immediate in range 32 .. 63"); case Match_UImm5_33: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected immediate in range 33 .. 64"); case Match_UImm5_0_Report_UImm6: // This is used on UImm5 operands that have a corresponding UImm5_32 // operand to avoid confusing the user. return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 6-bit unsigned immediate"); case Match_UImm5_Lsl2: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected both 7-bit unsigned immediate and multiple of 4"); case Match_UImmRange2_64: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected immediate in range 2 .. 64"); case Match_UImm6_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 6-bit unsigned immediate"); case Match_UImm6_Lsl2: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected both 8-bit unsigned immediate and multiple of 4"); case Match_SImm6_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 6-bit signed immediate"); case Match_UImm7_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 7-bit unsigned immediate"); case Match_UImm7_N1: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected immediate in range -1 .. 126"); case Match_SImm7_Lsl2: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected both 9-bit signed immediate and multiple of 4"); case Match_UImm8_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 8-bit unsigned immediate"); case Match_UImm10_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 10-bit unsigned immediate"); case Match_SImm10_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 10-bit signed immediate"); case Match_SImm11_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 11-bit signed immediate"); case Match_UImm16: case Match_UImm16_Relaxed: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 16-bit unsigned immediate"); case Match_SImm16: case Match_SImm16_Relaxed: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 16-bit signed immediate"); case Match_UImm20_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 20-bit unsigned immediate"); case Match_UImm26_0: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 26-bit unsigned immediate"); case Match_SImm32: case Match_SImm32_Relaxed: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected 32-bit signed immediate"); case Match_MemSImm9: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 9-bit signed offset"); case Match_MemSImm10: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 10-bit signed offset"); case Match_MemSImm10Lsl1: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 11-bit signed offset and multiple of 2"); case Match_MemSImm10Lsl2: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 12-bit signed offset and multiple of 4"); case Match_MemSImm10Lsl3: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 13-bit signed offset and multiple of 8"); case Match_MemSImm11: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 11-bit signed offset"); case Match_MemSImm12: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 12-bit signed offset"); case Match_MemSImm16: return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo), "expected memory with 16-bit signed offset"); } llvm_unreachable("Implement any new match types added!"); } void MipsAsmParser::warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc) { if (RegIndex != 0 && AssemblerOptions.back()->getATRegIndex() == RegIndex) Warning(Loc, "used $at (currently $" + Twine(RegIndex) + ") without \".set noat\""); } void MipsAsmParser::warnIfNoMacro(SMLoc Loc) { if (!AssemblerOptions.back()->isMacro()) Warning(Loc, "macro instruction expanded into multiple instructions"); } void MipsAsmParser::printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg, SMRange Range, bool ShowColors) { getSourceManager().PrintMessage(Range.Start, SourceMgr::DK_Warning, Msg, Range, SMFixIt(Range, FixMsg), ShowColors); } int MipsAsmParser::matchCPURegisterName(StringRef Name) { int CC; CC = StringSwitch<unsigned>(Name) .Case("zero", 0) .Case("at", 1) .Case("a0", 4) .Case("a1", 5) .Case("a2", 6) .Case("a3", 7) .Case("v0", 2) .Case("v1", 3) .Case("s0", 16) .Case("s1", 17) .Case("s2", 18) .Case("s3", 19) .Case("s4", 20) .Case("s5", 21) .Case("s6", 22) .Case("s7", 23) .Case("k0", 26) .Case("k1", 27) .Case("gp", 28) .Case("sp", 29) .Case("fp", 30) .Case("s8", 30) .Case("ra", 31) .Case("t0", 8) .Case("t1", 9) .Case("t2", 10) .Case("t3", 11) .Case("t4", 12) .Case("t5", 13) .Case("t6", 14) .Case("t7", 15) .Case("t8", 24) .Case("t9", 25) .Default(-1); if (!(isABI_N32() || isABI_N64())) return CC; if (12 <= CC && CC <= 15) { // Name is one of t4-t7 AsmToken RegTok = getLexer().peekTok(); SMRange RegRange = RegTok.getLocRange(); StringRef FixedName = StringSwitch<StringRef>(Name) .Case("t4", "t0") .Case("t5", "t1") .Case("t6", "t2") .Case("t7", "t3") .Default(""); assert(FixedName != "" && "Register name is not one of t4-t7."); printWarningWithFixIt("register names $t4-$t7 are only available in O32.", "Did you mean $" + FixedName + "?", RegRange); } // Although SGI documentation just cuts out t0-t3 for n32/n64, // GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7 // We are supporting both cases, so for t0-t3 we'll just push them to t4-t7. if (8 <= CC && CC <= 11) CC += 4; if (CC == -1) CC = StringSwitch<unsigned>(Name) .Case("a4", 8) .Case("a5", 9) .Case("a6", 10) .Case("a7", 11) .Case("kt0", 26) .Case("kt1", 27) .Default(-1); return CC; } int MipsAsmParser::matchHWRegsRegisterName(StringRef Name) { int CC; CC = StringSwitch<unsigned>(Name) .Case("hwr_cpunum", 0) .Case("hwr_synci_step", 1) .Case("hwr_cc", 2) .Case("hwr_ccres", 3) .Case("hwr_ulr", 29) .Default(-1); return CC; } int MipsAsmParser::matchFPURegisterName(StringRef Name) { if (Name[0] == 'f') { StringRef NumString = Name.substr(1); unsigned IntVal; if (NumString.getAsInteger(10, IntVal)) return -1; // This is not an integer. if (IntVal > 31) // Maximum index for fpu register. return -1; return IntVal; } return -1; } int MipsAsmParser::matchFCCRegisterName(StringRef Name) { if (Name.startswith("fcc")) { StringRef NumString = Name.substr(3); unsigned IntVal; if (NumString.getAsInteger(10, IntVal)) return -1; // This is not an integer. if (IntVal > 7) // There are only 8 fcc registers. return -1; return IntVal; } return -1; } int MipsAsmParser::matchACRegisterName(StringRef Name) { if (Name.startswith("ac")) { StringRef NumString = Name.substr(2); unsigned IntVal; if (NumString.getAsInteger(10, IntVal)) return -1; // This is not an integer. if (IntVal > 3) // There are only 3 acc registers. return -1; return IntVal; } return -1; } int MipsAsmParser::matchMSA128RegisterName(StringRef Name) { unsigned IntVal; if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal)) return -1; if (IntVal > 31) return -1; return IntVal; } int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) { int CC; CC = StringSwitch<unsigned>(Name) .Case("msair", 0) .Case("msacsr", 1) .Case("msaaccess", 2) .Case("msasave", 3) .Case("msamodify", 4) .Case("msarequest", 5) .Case("msamap", 6) .Case("msaunmap", 7) .Default(-1); return CC; } unsigned MipsAsmParser::getATReg(SMLoc Loc) { unsigned ATIndex = AssemblerOptions.back()->getATRegIndex(); if (ATIndex == 0) { reportParseError(Loc, "pseudo-instruction requires $at, which is not available"); return 0; } unsigned AT = getReg( (isGP64bit()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, ATIndex); return AT; } unsigned MipsAsmParser::getReg(int RC, int RegNo) { return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo); } bool MipsAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { MCAsmParser &Parser = getParser(); DEBUG(dbgs() << "parseOperand\n"); // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); if (ResTy == MatchOperand_Success) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_ParseFail) return true; DEBUG(dbgs() << ".. Generic Parser\n"); switch (getLexer().getKind()) { default: Error(Parser.getTok().getLoc(), "unexpected token in operand"); return true; case AsmToken::Dollar: { // Parse the register. SMLoc S = Parser.getTok().getLoc(); // Almost all registers have been parsed by custom parsers. There is only // one exception to this. $zero (and it's alias $0) will reach this point // for div, divu, and similar instructions because it is not an operand // to the instruction definition but an explicit register. Special case // this situation for now. if (parseAnyRegister(Operands) != MatchOperand_NoMatch) return false; // Maybe it is a symbol reference. StringRef Identifier; if (Parser.parseIdentifier(Identifier)) return true; SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); MCSymbol *Sym = getContext().getOrCreateSymbol("$" + Identifier); // Otherwise create a symbol reference. const MCExpr *Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); Operands.push_back(MipsOperand::CreateImm(Res, S, E, *this)); return false; } // Else drop to expression parsing. case AsmToken::LParen: case AsmToken::Minus: case AsmToken::Plus: case AsmToken::Integer: case AsmToken::Tilde: case AsmToken::String: { DEBUG(dbgs() << ".. generic integer\n"); OperandMatchResultTy ResTy = parseImm(Operands); return ResTy != MatchOperand_Success; } case AsmToken::Percent: { // It is a symbol reference or constant expression. const MCExpr *IdVal; SMLoc S = Parser.getTok().getLoc(); // Start location of the operand. if (parseRelocOperand(IdVal)) return true; SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this)); return false; } // case AsmToken::Percent } // switch(getLexer().getKind()) return true; } const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr) { if (RelocStr == "hi(%neg(%gp_rel") return MipsMCExpr::createGpOff(MipsMCExpr::MEK_HI, Expr, getContext()); else if (RelocStr == "lo(%neg(%gp_rel") return MipsMCExpr::createGpOff(MipsMCExpr::MEK_LO, Expr, getContext()); MipsMCExpr::MipsExprKind Kind = StringSwitch<MipsMCExpr::MipsExprKind>(RelocStr) .Case("call16", MipsMCExpr::MEK_GOT_CALL) .Case("call_hi", MipsMCExpr::MEK_CALL_HI16) .Case("call_lo", MipsMCExpr::MEK_CALL_LO16) .Case("dtprel_hi", MipsMCExpr::MEK_DTPREL_HI) .Case("dtprel_lo", MipsMCExpr::MEK_DTPREL_LO) .Case("got", MipsMCExpr::MEK_GOT) .Case("got_disp", MipsMCExpr::MEK_GOT_DISP) .Case("got_hi", MipsMCExpr::MEK_GOT_HI16) .Case("got_lo", MipsMCExpr::MEK_GOT_LO16) .Case("got_ofst", MipsMCExpr::MEK_GOT_OFST) .Case("got_page", MipsMCExpr::MEK_GOT_PAGE) .Case("gottprel", MipsMCExpr::MEK_GOTTPREL) .Case("gp_rel", MipsMCExpr::MEK_GPREL) .Case("hi", MipsMCExpr::MEK_HI) .Case("higher", MipsMCExpr::MEK_HIGHER) .Case("highest", MipsMCExpr::MEK_HIGHEST) .Case("lo", MipsMCExpr::MEK_LO) .Case("neg", MipsMCExpr::MEK_NEG) .Case("pcrel_hi", MipsMCExpr::MEK_PCREL_HI16) .Case("pcrel_lo", MipsMCExpr::MEK_PCREL_LO16) .Case("tlsgd", MipsMCExpr::MEK_TLSGD) .Case("tlsldm", MipsMCExpr::MEK_TLSLDM) .Case("tprel_hi", MipsMCExpr::MEK_TPREL_HI) .Case("tprel_lo", MipsMCExpr::MEK_TPREL_LO) .Default(MipsMCExpr::MEK_None); assert(Kind != MipsMCExpr::MEK_None); return MipsMCExpr::create(Kind, Expr, getContext()); } bool MipsAsmParser::isEvaluated(const MCExpr *Expr) { switch (Expr->getKind()) { case MCExpr::Constant: return true; case MCExpr::SymbolRef: return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None); case MCExpr::Binary: if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) { if (!isEvaluated(BE->getLHS())) return false; return isEvaluated(BE->getRHS()); } case MCExpr::Unary: return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr()); case MCExpr::Target: return true; } return false; } bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) { MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat the % token. const AsmToken &Tok = Parser.getTok(); // Get next token, operation. if (Tok.isNot(AsmToken::Identifier)) return true; std::string Str = Tok.getIdentifier(); Parser.Lex(); // Eat the identifier. // Now make an expression from the rest of the operand. const MCExpr *IdVal; SMLoc EndLoc; if (getLexer().getKind() == AsmToken::LParen) { while (1) { Parser.Lex(); // Eat the '(' token. if (getLexer().getKind() == AsmToken::Percent) { Parser.Lex(); // Eat the % token. const AsmToken &nextTok = Parser.getTok(); if (nextTok.isNot(AsmToken::Identifier)) return true; Str += "(%"; Str += nextTok.getIdentifier(); Parser.Lex(); // Eat the identifier. if (getLexer().getKind() != AsmToken::LParen) return true; } else break; } if (getParser().parseParenExpression(IdVal, EndLoc)) return true; while (getLexer().getKind() == AsmToken::RParen) Parser.Lex(); // Eat the ')' token. } else return true; // Parenthesis must follow the relocation operand. Res = evaluateRelocExpr(IdVal, Str); return false; } bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; OperandMatchResultTy ResTy = parseAnyRegister(Operands); if (ResTy == MatchOperand_Success) { assert(Operands.size() == 1); MipsOperand &Operand = static_cast<MipsOperand &>(*Operands.front()); StartLoc = Operand.getStartLoc(); EndLoc = Operand.getEndLoc(); // AFAIK, we only support numeric registers and named GPR's in CFI // directives. // Don't worry about eating tokens before failing. Using an unrecognised // register is a parse error. if (Operand.isGPRAsmReg()) { // Resolve to GPR32 or GPR64 appropriately. RegNo = isGP64bit() ? Operand.getGPR64Reg() : Operand.getGPR32Reg(); } return (RegNo == (unsigned)-1); } assert(Operands.size() == 0); return (RegNo == (unsigned)-1); } bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) { MCAsmParser &Parser = getParser(); SMLoc S; bool Result = true; unsigned NumOfLParen = 0; while (getLexer().getKind() == AsmToken::LParen) { Parser.Lex(); ++NumOfLParen; } switch (getLexer().getKind()) { default: return true; case AsmToken::Identifier: case AsmToken::LParen: case AsmToken::Integer: case AsmToken::Minus: case AsmToken::Plus: if (isParenExpr) Result = getParser().parseParenExprOfDepth(NumOfLParen, Res, S); else Result = (getParser().parseExpression(Res)); while (getLexer().getKind() == AsmToken::RParen) Parser.Lex(); break; case AsmToken::Percent: Result = parseRelocOperand(Res); } return Result; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMemOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); DEBUG(dbgs() << "parseMemOperand\n"); const MCExpr *IdVal = nullptr; SMLoc S; bool isParenExpr = false; MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch; // First operand is the offset. S = Parser.getTok().getLoc(); if (getLexer().getKind() == AsmToken::LParen) { Parser.Lex(); isParenExpr = true; } if (getLexer().getKind() != AsmToken::Dollar) { if (parseMemOffset(IdVal, isParenExpr)) return MatchOperand_ParseFail; const AsmToken &Tok = Parser.getTok(); // Get the next token. if (Tok.isNot(AsmToken::LParen)) { MipsOperand &Mnemonic = static_cast<MipsOperand &>(*Operands[0]); if (Mnemonic.getToken() == "la" || Mnemonic.getToken() == "dla") { SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this)); return MatchOperand_Success; } if (Tok.is(AsmToken::EndOfStatement)) { SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); // Zero register assumed, add a memory operand with ZERO as its base. // "Base" will be managed by k_Memory. auto Base = MipsOperand::createGPRReg(0, getContext().getRegisterInfo(), S, E, *this); Operands.push_back( MipsOperand::CreateMem(std::move(Base), IdVal, S, E, *this)); return MatchOperand_Success; } Error(Parser.getTok().getLoc(), "'(' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat the '(' token. } Res = parseAnyRegister(Operands); if (Res != MatchOperand_Success) return Res; if (Parser.getTok().isNot(AsmToken::RParen)) { Error(Parser.getTok().getLoc(), "')' expected"); return MatchOperand_ParseFail; } SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Parser.Lex(); // Eat the ')' token. if (!IdVal) IdVal = MCConstantExpr::create(0, getContext()); // Replace the register operand with the memory operand. std::unique_ptr<MipsOperand> op( static_cast<MipsOperand *>(Operands.back().release())); // Remove the register from the operands. // "op" will be managed by k_Memory. Operands.pop_back(); // Add the memory operand. if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) { int64_t Imm; if (IdVal->evaluateAsAbsolute(Imm)) IdVal = MCConstantExpr::create(Imm, getContext()); else if (BE->getLHS()->getKind() != MCExpr::SymbolRef) IdVal = MCBinaryExpr::create(BE->getOpcode(), BE->getRHS(), BE->getLHS(), getContext()); } Operands.push_back(MipsOperand::CreateMem(std::move(op), IdVal, S, E, *this)); return MatchOperand_Success; } bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) { MCAsmParser &Parser = getParser(); MCSymbol *Sym = getContext().lookupSymbol(Parser.getTok().getIdentifier()); if (Sym) { SMLoc S = Parser.getTok().getLoc(); const MCExpr *Expr; if (Sym->isVariable()) Expr = Sym->getVariableValue(); else return false; if (Expr->getKind() == MCExpr::SymbolRef) { const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); StringRef DefSymbol = Ref->getSymbol().getName(); if (DefSymbol.startswith("$")) { OperandMatchResultTy ResTy = matchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S); if (ResTy == MatchOperand_Success) { Parser.Lex(); return true; } else if (ResTy == MatchOperand_ParseFail) llvm_unreachable("Should never ParseFail"); return false; } } } return false; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::matchAnyRegisterNameWithoutDollar(OperandVector &Operands, StringRef Identifier, SMLoc S) { int Index = matchCPURegisterName(Identifier); if (Index != -1) { Operands.push_back(MipsOperand::createGPRReg( Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); return MatchOperand_Success; } Index = matchHWRegsRegisterName(Identifier); if (Index != -1) { Operands.push_back(MipsOperand::createHWRegsReg( Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); return MatchOperand_Success; } Index = matchFPURegisterName(Identifier); if (Index != -1) { Operands.push_back(MipsOperand::createFGRReg( Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); return MatchOperand_Success; } Index = matchFCCRegisterName(Identifier); if (Index != -1) { Operands.push_back(MipsOperand::createFCCReg( Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); return MatchOperand_Success; } Index = matchACRegisterName(Identifier); if (Index != -1) { Operands.push_back(MipsOperand::createACCReg( Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); return MatchOperand_Success; } Index = matchMSA128RegisterName(Identifier); if (Index != -1) { Operands.push_back(MipsOperand::createMSA128Reg( Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); return MatchOperand_Success; } Index = matchMSA128CtrlRegisterName(Identifier); if (Index != -1) { Operands.push_back(MipsOperand::createMSACtrlReg( Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); return MatchOperand_Success; } return MatchOperand_NoMatch; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) { MCAsmParser &Parser = getParser(); auto Token = Parser.getLexer().peekTok(false); if (Token.is(AsmToken::Identifier)) { DEBUG(dbgs() << ".. identifier\n"); StringRef Identifier = Token.getIdentifier(); OperandMatchResultTy ResTy = matchAnyRegisterNameWithoutDollar(Operands, Identifier, S); return ResTy; } else if (Token.is(AsmToken::Integer)) { DEBUG(dbgs() << ".. integer\n"); Operands.push_back(MipsOperand::createNumericReg( Token.getIntVal(), getContext().getRegisterInfo(), S, Token.getLoc(), *this)); return MatchOperand_Success; } DEBUG(dbgs() << Parser.getTok().getKind() << "\n"); return MatchOperand_NoMatch; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseAnyRegister(OperandVector &Operands) { MCAsmParser &Parser = getParser(); DEBUG(dbgs() << "parseAnyRegister\n"); auto Token = Parser.getTok(); SMLoc S = Token.getLoc(); if (Token.isNot(AsmToken::Dollar)) { DEBUG(dbgs() << ".. !$ -> try sym aliasing\n"); if (Token.is(AsmToken::Identifier)) { if (searchSymbolAlias(Operands)) return MatchOperand_Success; } DEBUG(dbgs() << ".. !symalias -> NoMatch\n"); return MatchOperand_NoMatch; } DEBUG(dbgs() << ".. $\n"); OperandMatchResultTy ResTy = matchAnyRegisterWithoutDollar(Operands, S); if (ResTy == MatchOperand_Success) { Parser.Lex(); // $ Parser.Lex(); // identifier } return ResTy; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); switch (getLexer().getKind()) { default: return MatchOperand_NoMatch; case AsmToken::LParen: case AsmToken::Minus: case AsmToken::Plus: case AsmToken::Integer: case AsmToken::Tilde: case AsmToken::String: break; } const MCExpr *IdVal; SMLoc S = Parser.getTok().getLoc(); if (getParser().parseExpression(IdVal)) return MatchOperand_ParseFail; SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this)); return MatchOperand_Success; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseJumpTarget(OperandVector &Operands) { MCAsmParser &Parser = getParser(); DEBUG(dbgs() << "parseJumpTarget\n"); SMLoc S = getLexer().getLoc(); // Integers and expressions are acceptable OperandMatchResultTy ResTy = parseImm(Operands); if (ResTy != MatchOperand_NoMatch) return ResTy; // Registers are a valid target and have priority over symbols. ResTy = parseAnyRegister(Operands); if (ResTy != MatchOperand_NoMatch) return ResTy; const MCExpr *Expr = nullptr; if (Parser.parseExpression(Expr)) { // We have no way of knowing if a symbol was consumed so we must ParseFail return MatchOperand_ParseFail; } Operands.push_back( MipsOperand::CreateImm(Expr, S, getLexer().getLoc(), *this)); return MatchOperand_Success; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseInvNum(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const MCExpr *IdVal; // If the first token is '$' we may have register operand. if (Parser.getTok().is(AsmToken::Dollar)) return MatchOperand_NoMatch; SMLoc S = Parser.getTok().getLoc(); if (getParser().parseExpression(IdVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal); assert(MCE && "Unexpected MCExpr type."); int64_t Val = MCE->getValue(); SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(MipsOperand::CreateImm( MCConstantExpr::create(0 - Val, getContext()), S, E, *this)); return MatchOperand_Success; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseRegisterList(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SmallVector<unsigned, 10> Regs; unsigned RegNo; unsigned PrevReg = Mips::NoRegister; bool RegRange = false; SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands; if (Parser.getTok().isNot(AsmToken::Dollar)) return MatchOperand_ParseFail; SMLoc S = Parser.getTok().getLoc(); while (parseAnyRegister(TmpOperands) == MatchOperand_Success) { SMLoc E = getLexer().getLoc(); MipsOperand &Reg = static_cast<MipsOperand &>(*TmpOperands.back()); RegNo = isGP64bit() ? Reg.getGPR64Reg() : Reg.getGPR32Reg(); if (RegRange) { // Remove last register operand because registers from register range // should be inserted first. if ((isGP64bit() && RegNo == Mips::RA_64) || (!isGP64bit() && RegNo == Mips::RA)) { Regs.push_back(RegNo); } else { unsigned TmpReg = PrevReg + 1; while (TmpReg <= RegNo) { if ((((TmpReg < Mips::S0) || (TmpReg > Mips::S7)) && !isGP64bit()) || (((TmpReg < Mips::S0_64) || (TmpReg > Mips::S7_64)) && isGP64bit())) { Error(E, "invalid register operand"); return MatchOperand_ParseFail; } PrevReg = TmpReg; Regs.push_back(TmpReg++); } } RegRange = false; } else { if ((PrevReg == Mips::NoRegister) && ((isGP64bit() && (RegNo != Mips::S0_64) && (RegNo != Mips::RA_64)) || (!isGP64bit() && (RegNo != Mips::S0) && (RegNo != Mips::RA)))) { Error(E, "$16 or $31 expected"); return MatchOperand_ParseFail; } else if (!(((RegNo == Mips::FP || RegNo == Mips::RA || (RegNo >= Mips::S0 && RegNo <= Mips::S7)) && !isGP64bit()) || ((RegNo == Mips::FP_64 || RegNo == Mips::RA_64 || (RegNo >= Mips::S0_64 && RegNo <= Mips::S7_64)) && isGP64bit()))) { Error(E, "invalid register operand"); return MatchOperand_ParseFail; } else if ((PrevReg != Mips::NoRegister) && (RegNo != PrevReg + 1) && ((RegNo != Mips::FP && RegNo != Mips::RA && !isGP64bit()) || (RegNo != Mips::FP_64 && RegNo != Mips::RA_64 && isGP64bit()))) { Error(E, "consecutive register numbers expected"); return MatchOperand_ParseFail; } Regs.push_back(RegNo); } if (Parser.getTok().is(AsmToken::Minus)) RegRange = true; if (!Parser.getTok().isNot(AsmToken::Minus) && !Parser.getTok().isNot(AsmToken::Comma)) { Error(E, "',' or '-' expected"); return MatchOperand_ParseFail; } Lex(); // Consume comma or minus if (Parser.getTok().isNot(AsmToken::Dollar)) break; PrevReg = RegNo; } SMLoc E = Parser.getTok().getLoc(); Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this)); parseMemOperand(Operands); return MatchOperand_Success; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseRegisterPair(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); if (parseAnyRegister(Operands) != MatchOperand_Success) return MatchOperand_ParseFail; SMLoc E = Parser.getTok().getLoc(); MipsOperand Op = static_cast<MipsOperand &>(*Operands.back()); Operands.pop_back(); Operands.push_back(MipsOperand::CreateRegPair(Op, S, E, *this)); return MatchOperand_Success; } MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMovePRegPair(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands; SmallVector<unsigned, 10> Regs; if (Parser.getTok().isNot(AsmToken::Dollar)) return MatchOperand_ParseFail; SMLoc S = Parser.getTok().getLoc(); if (parseAnyRegister(TmpOperands) != MatchOperand_Success) return MatchOperand_ParseFail; MipsOperand *Reg = &static_cast<MipsOperand &>(*TmpOperands.back()); unsigned RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg(); Regs.push_back(RegNo); SMLoc E = Parser.getTok().getLoc(); if (Parser.getTok().isNot(AsmToken::Comma)) { Error(E, "',' expected"); return MatchOperand_ParseFail; } // Remove comma. Parser.Lex(); if (parseAnyRegister(TmpOperands) != MatchOperand_Success) return MatchOperand_ParseFail; Reg = &static_cast<MipsOperand &>(*TmpOperands.back()); RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg(); Regs.push_back(RegNo); Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this)); return MatchOperand_Success; } /// Sometimes (i.e. load/stores) the operand may be followed immediately by /// either this. /// ::= '(', register, ')' /// handle it before we iterate so we don't get tripped up by the lack of /// a comma. bool MipsAsmParser::parseParenSuffix(StringRef Name, OperandVector &Operands) { MCAsmParser &Parser = getParser(); if (getLexer().is(AsmToken::LParen)) { Operands.push_back( MipsOperand::CreateToken("(", getLexer().getLoc(), *this)); Parser.Lex(); if (parseOperand(Operands, Name)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } if (Parser.getTok().isNot(AsmToken::RParen)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token, expected ')'"); } Operands.push_back( MipsOperand::CreateToken(")", getLexer().getLoc(), *this)); Parser.Lex(); } return false; } /// Sometimes (i.e. in MSA) the operand may be followed immediately by /// either one of these. /// ::= '[', register, ']' /// ::= '[', integer, ']' /// handle it before we iterate so we don't get tripped up by the lack of /// a comma. bool MipsAsmParser::parseBracketSuffix(StringRef Name, OperandVector &Operands) { MCAsmParser &Parser = getParser(); if (getLexer().is(AsmToken::LBrac)) { Operands.push_back( MipsOperand::CreateToken("[", getLexer().getLoc(), *this)); Parser.Lex(); if (parseOperand(Operands, Name)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } if (Parser.getTok().isNot(AsmToken::RBrac)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token, expected ']'"); } Operands.push_back( MipsOperand::CreateToken("]", getLexer().getLoc(), *this)); Parser.Lex(); } return false; } bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { MCAsmParser &Parser = getParser(); DEBUG(dbgs() << "ParseInstruction\n"); // We have reached first instruction, module directive are now forbidden. getTargetStreamer().forbidModuleDirective(); // Check if we have valid mnemonic if (!mnemonicIsValid(Name, 0)) { Parser.eatToEndOfStatement(); return Error(NameLoc, "unknown instruction"); } // First operand in MCInst is instruction mnemonic. Operands.push_back(MipsOperand::CreateToken(Name, NameLoc, *this)); // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (parseOperand(Operands, Name)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } if (getLexer().is(AsmToken::LBrac) && parseBracketSuffix(Name, Operands)) return true; // AFAIK, parenthesis suffixes are never on the first operand while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (parseOperand(Operands, Name)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } // Parse bracket and parenthesis suffixes before we iterate if (getLexer().is(AsmToken::LBrac)) { if (parseBracketSuffix(Name, Operands)) return true; } else if (getLexer().is(AsmToken::LParen) && parseParenSuffix(Name, Operands)) return true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } Parser.Lex(); // Consume the EndOfStatement. return false; } // FIXME: Given that these have the same name, these should both be // consistent on affecting the Parser. bool MipsAsmParser::reportParseError(Twine ErrorMsg) { MCAsmParser &Parser = getParser(); SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, ErrorMsg); } bool MipsAsmParser::reportParseError(SMLoc Loc, Twine ErrorMsg) { return Error(Loc, ErrorMsg); } bool MipsAsmParser::parseSetNoAtDirective() { MCAsmParser &Parser = getParser(); // Line should look like: ".set noat". // Set the $at register to $0. AssemblerOptions.back()->setATRegIndex(0); Parser.Lex(); // Eat "noat". // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } getTargetStreamer().emitDirectiveSetNoAt(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetAtDirective() { // Line can be: ".set at", which sets $at to $1 // or ".set at=$reg", which sets $at to $reg. MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat "at". if (getLexer().is(AsmToken::EndOfStatement)) { // No register was specified, so we set $at to $1. AssemblerOptions.back()->setATRegIndex(1); getTargetStreamer().emitDirectiveSetAt(); Parser.Lex(); // Consume the EndOfStatement. return false; } if (getLexer().isNot(AsmToken::Equal)) { reportParseError("unexpected token, expected equals sign"); return false; } Parser.Lex(); // Eat "=". if (getLexer().isNot(AsmToken::Dollar)) { if (getLexer().is(AsmToken::EndOfStatement)) { reportParseError("no register specified"); return false; } else { reportParseError("unexpected token, expected dollar sign '$'"); return false; } } Parser.Lex(); // Eat "$". // Find out what "reg" is. unsigned AtRegNo; const AsmToken &Reg = Parser.getTok(); if (Reg.is(AsmToken::Identifier)) { AtRegNo = matchCPURegisterName(Reg.getIdentifier()); } else if (Reg.is(AsmToken::Integer)) { AtRegNo = Reg.getIntVal(); } else { reportParseError("unexpected token, expected identifier or integer"); return false; } // Check if $reg is a valid register. If it is, set $at to $reg. if (!AssemblerOptions.back()->setATRegIndex(AtRegNo)) { reportParseError("invalid register"); return false; } Parser.Lex(); // Eat "reg". // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } getTargetStreamer().emitDirectiveSetAtWithArg(AtRegNo); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetReorderDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } AssemblerOptions.back()->setReorder(); getTargetStreamer().emitDirectiveSetReorder(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetNoReorderDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } AssemblerOptions.back()->setNoReorder(); getTargetStreamer().emitDirectiveSetNoReorder(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetMacroDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } AssemblerOptions.back()->setMacro(); getTargetStreamer().emitDirectiveSetMacro(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetNoMacroDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } if (AssemblerOptions.back()->isReorder()) { reportParseError("`noreorder' must be set before `nomacro'"); return false; } AssemblerOptions.back()->setNoMacro(); getTargetStreamer().emitDirectiveSetNoMacro(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetMsaDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); setFeatureBits(Mips::FeatureMSA, "msa"); getTargetStreamer().emitDirectiveSetMsa(); return false; } bool MipsAsmParser::parseSetNoMsaDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); clearFeatureBits(Mips::FeatureMSA, "msa"); getTargetStreamer().emitDirectiveSetNoMsa(); return false; } bool MipsAsmParser::parseSetNoDspDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat "nodsp". // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } clearFeatureBits(Mips::FeatureDSP, "dsp"); getTargetStreamer().emitDirectiveSetNoDsp(); return false; } bool MipsAsmParser::parseSetMips16Directive() { MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat "mips16". // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } setFeatureBits(Mips::FeatureMips16, "mips16"); getTargetStreamer().emitDirectiveSetMips16(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetNoMips16Directive() { MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat "nomips16". // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } clearFeatureBits(Mips::FeatureMips16, "mips16"); getTargetStreamer().emitDirectiveSetNoMips16(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetFpDirective() { MCAsmParser &Parser = getParser(); MipsABIFlagsSection::FpABIKind FpAbiVal; // Line can be: .set fp=32 // .set fp=xx // .set fp=64 Parser.Lex(); // Eat fp token AsmToken Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Equal)) { reportParseError("unexpected token, expected equals sign '='"); return false; } Parser.Lex(); // Eat '=' token. Tok = Parser.getTok(); if (!parseFpABIValue(FpAbiVal, ".set")) return false; if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } getTargetStreamer().emitDirectiveSetFp(FpAbiVal); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseSetOddSPRegDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat "oddspreg". if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } clearFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); getTargetStreamer().emitDirectiveSetOddSPReg(); return false; } bool MipsAsmParser::parseSetNoOddSPRegDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat "nooddspreg". if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } setFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); getTargetStreamer().emitDirectiveSetNoOddSPReg(); return false; } bool MipsAsmParser::parseSetPopDirective() { MCAsmParser &Parser = getParser(); SMLoc Loc = getLexer().getLoc(); Parser.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); // Always keep an element on the options "stack" to prevent the user // from changing the initial options. This is how we remember them. if (AssemblerOptions.size() == 2) return reportParseError(Loc, ".set pop with no .set push"); MCSubtargetInfo &STI = copySTI(); AssemblerOptions.pop_back(); setAvailableFeatures( ComputeAvailableFeatures(AssemblerOptions.back()->getFeatures())); STI.setFeatureBits(AssemblerOptions.back()->getFeatures()); getTargetStreamer().emitDirectiveSetPop(); return false; } bool MipsAsmParser::parseSetPushDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); // Create a copy of the current assembler options environment and push it. AssemblerOptions.push_back( make_unique<MipsAssemblerOptions>(AssemblerOptions.back().get())); getTargetStreamer().emitDirectiveSetPush(); return false; } bool MipsAsmParser::parseSetSoftFloatDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); setFeatureBits(Mips::FeatureSoftFloat, "soft-float"); getTargetStreamer().emitDirectiveSetSoftFloat(); return false; } bool MipsAsmParser::parseSetHardFloatDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); clearFeatureBits(Mips::FeatureSoftFloat, "soft-float"); getTargetStreamer().emitDirectiveSetHardFloat(); return false; } bool MipsAsmParser::parseSetAssignment() { StringRef Name; const MCExpr *Value; MCAsmParser &Parser = getParser(); if (Parser.parseIdentifier(Name)) reportParseError("expected identifier after .set"); if (getLexer().isNot(AsmToken::Comma)) return reportParseError("unexpected token, expected comma"); Lex(); // Eat comma if (Parser.parseExpression(Value)) return reportParseError("expected valid expression after comma"); MCSymbol *Sym = getContext().getOrCreateSymbol(Name); Sym->setVariableValue(Value); return false; } bool MipsAsmParser::parseSetMips0Directive() { MCAsmParser &Parser = getParser(); Parser.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); // Reset assembler options to their initial values. MCSubtargetInfo &STI = copySTI(); setAvailableFeatures( ComputeAvailableFeatures(AssemblerOptions.front()->getFeatures())); STI.setFeatureBits(AssemblerOptions.front()->getFeatures()); AssemblerOptions.back()->setFeatures(AssemblerOptions.front()->getFeatures()); getTargetStreamer().emitDirectiveSetMips0(); return false; } bool MipsAsmParser::parseSetArchDirective() { MCAsmParser &Parser = getParser(); Parser.Lex(); if (getLexer().isNot(AsmToken::Equal)) return reportParseError("unexpected token, expected equals sign"); Parser.Lex(); StringRef Arch; if (Parser.parseIdentifier(Arch)) return reportParseError("expected arch identifier"); StringRef ArchFeatureName = StringSwitch<StringRef>(Arch) .Case("mips1", "mips1") .Case("mips2", "mips2") .Case("mips3", "mips3") .Case("mips4", "mips4") .Case("mips5", "mips5") .Case("mips32", "mips32") .Case("mips32r2", "mips32r2") .Case("mips32r3", "mips32r3") .Case("mips32r5", "mips32r5") .Case("mips32r6", "mips32r6") .Case("mips64", "mips64") .Case("mips64r2", "mips64r2") .Case("mips64r3", "mips64r3") .Case("mips64r5", "mips64r5") .Case("mips64r6", "mips64r6") .Case("octeon", "cnmips") .Case("r4000", "mips3") // This is an implementation of Mips3. .Default(""); if (ArchFeatureName.empty()) return reportParseError("unsupported architecture"); selectArch(ArchFeatureName); getTargetStreamer().emitDirectiveSetArch(Arch); return false; } bool MipsAsmParser::parseSetFeature(uint64_t Feature) { MCAsmParser &Parser = getParser(); Parser.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return reportParseError("unexpected token, expected end of statement"); switch (Feature) { default: llvm_unreachable("Unimplemented feature"); case Mips::FeatureDSP: setFeatureBits(Mips::FeatureDSP, "dsp"); getTargetStreamer().emitDirectiveSetDsp(); break; case Mips::FeatureMicroMips: setFeatureBits(Mips::FeatureMicroMips, "micromips"); getTargetStreamer().emitDirectiveSetMicroMips(); break; case Mips::FeatureMips1: selectArch("mips1"); getTargetStreamer().emitDirectiveSetMips1(); break; case Mips::FeatureMips2: selectArch("mips2"); getTargetStreamer().emitDirectiveSetMips2(); break; case Mips::FeatureMips3: selectArch("mips3"); getTargetStreamer().emitDirectiveSetMips3(); break; case Mips::FeatureMips4: selectArch("mips4"); getTargetStreamer().emitDirectiveSetMips4(); break; case Mips::FeatureMips5: selectArch("mips5"); getTargetStreamer().emitDirectiveSetMips5(); break; case Mips::FeatureMips32: selectArch("mips32"); getTargetStreamer().emitDirectiveSetMips32(); break; case Mips::FeatureMips32r2: selectArch("mips32r2"); getTargetStreamer().emitDirectiveSetMips32R2(); break; case Mips::FeatureMips32r3: selectArch("mips32r3"); getTargetStreamer().emitDirectiveSetMips32R3(); break; case Mips::FeatureMips32r5: selectArch("mips32r5"); getTargetStreamer().emitDirectiveSetMips32R5(); break; case Mips::FeatureMips32r6: selectArch("mips32r6"); getTargetStreamer().emitDirectiveSetMips32R6(); break; case Mips::FeatureMips64: selectArch("mips64"); getTargetStreamer().emitDirectiveSetMips64(); break; case Mips::FeatureMips64r2: selectArch("mips64r2"); getTargetStreamer().emitDirectiveSetMips64R2(); break; case Mips::FeatureMips64r3: selectArch("mips64r3"); getTargetStreamer().emitDirectiveSetMips64R3(); break; case Mips::FeatureMips64r5: selectArch("mips64r5"); getTargetStreamer().emitDirectiveSetMips64R5(); break; case Mips::FeatureMips64r6: selectArch("mips64r6"); getTargetStreamer().emitDirectiveSetMips64R6(); break; } return false; } bool MipsAsmParser::eatComma(StringRef ErrorStr) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::Comma)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, ErrorStr); } Parser.Lex(); // Eat the comma. return true; } // Used to determine if .cpload, .cprestore, and .cpsetup have any effect. // In this class, it is only used for .cprestore. // FIXME: Only keep track of IsPicEnabled in one place, instead of in both // MipsTargetELFStreamer and MipsAsmParser. bool MipsAsmParser::isPicAndNotNxxAbi() { return inPicMode() && !(isABI_N32() || isABI_N64()); } bool MipsAsmParser::parseDirectiveCpLoad(SMLoc Loc) { if (AssemblerOptions.back()->isReorder()) Warning(Loc, ".cpload should be inside a noreorder section"); if (inMips16Mode()) { reportParseError(".cpload is not supported in Mips16 mode"); return false; } SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Reg; OperandMatchResultTy ResTy = parseAnyRegister(Reg); if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) { reportParseError("expected register containing function address"); return false; } MipsOperand &RegOpnd = static_cast<MipsOperand &>(*Reg[0]); if (!RegOpnd.isGPRAsmReg()) { reportParseError(RegOpnd.getStartLoc(), "invalid register"); return false; } // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } getTargetStreamer().emitDirectiveCpLoad(RegOpnd.getGPR32Reg()); return false; } bool MipsAsmParser::parseDirectiveCpRestore(SMLoc Loc) { MCAsmParser &Parser = getParser(); // Note that .cprestore is ignored if used with the N32 and N64 ABIs or if it // is used in non-PIC mode. if (inMips16Mode()) { reportParseError(".cprestore is not supported in Mips16 mode"); return false; } // Get the stack offset value. const MCExpr *StackOffset; int64_t StackOffsetVal; if (Parser.parseExpression(StackOffset)) { reportParseError("expected stack offset value"); return false; } if (!StackOffset->evaluateAsAbsolute(StackOffsetVal)) { reportParseError("stack offset is not an absolute expression"); return false; } if (StackOffsetVal < 0) { Warning(Loc, ".cprestore with negative stack offset has no effect"); IsCpRestoreSet = false; } else { IsCpRestoreSet = true; CpRestoreOffset = StackOffsetVal; } // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } if (!getTargetStreamer().emitDirectiveCpRestore( CpRestoreOffset, [&]() { return getATReg(Loc); }, Loc, STI)) return true; Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseDirectiveCPSetup() { MCAsmParser &Parser = getParser(); unsigned FuncReg; unsigned Save; bool SaveIsReg = true; SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg; OperandMatchResultTy ResTy = parseAnyRegister(TmpReg); if (ResTy == MatchOperand_NoMatch) { reportParseError("expected register containing function address"); return false; } MipsOperand &FuncRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]); if (!FuncRegOpnd.isGPRAsmReg()) { reportParseError(FuncRegOpnd.getStartLoc(), "invalid register"); Parser.eatToEndOfStatement(); return false; } FuncReg = FuncRegOpnd.getGPR32Reg(); TmpReg.clear(); if (!eatComma("unexpected token, expected comma")) return true; ResTy = parseAnyRegister(TmpReg); if (ResTy == MatchOperand_NoMatch) { const MCExpr *OffsetExpr; int64_t OffsetVal; SMLoc ExprLoc = getLexer().getLoc(); if (Parser.parseExpression(OffsetExpr) || !OffsetExpr->evaluateAsAbsolute(OffsetVal)) { reportParseError(ExprLoc, "expected save register or stack offset"); Parser.eatToEndOfStatement(); return false; } Save = OffsetVal; SaveIsReg = false; } else { MipsOperand &SaveOpnd = static_cast<MipsOperand &>(*TmpReg[0]); if (!SaveOpnd.isGPRAsmReg()) { reportParseError(SaveOpnd.getStartLoc(), "invalid register"); Parser.eatToEndOfStatement(); return false; } Save = SaveOpnd.getGPR32Reg(); } if (!eatComma("unexpected token, expected comma")) return true; const MCExpr *Expr; if (Parser.parseExpression(Expr)) { reportParseError("expected expression"); return false; } if (Expr->getKind() != MCExpr::SymbolRef) { reportParseError("expected symbol"); return false; } const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); CpSaveLocation = Save; CpSaveLocationIsRegister = SaveIsReg; getTargetStreamer().emitDirectiveCpsetup(FuncReg, Save, Ref->getSymbol(), SaveIsReg); return false; } bool MipsAsmParser::parseDirectiveCPReturn() { getTargetStreamer().emitDirectiveCpreturn(CpSaveLocation, CpSaveLocationIsRegister); return false; } bool MipsAsmParser::parseDirectiveNaN() { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::EndOfStatement)) { const AsmToken &Tok = Parser.getTok(); if (Tok.getString() == "2008") { Parser.Lex(); getTargetStreamer().emitDirectiveNaN2008(); return false; } else if (Tok.getString() == "legacy") { Parser.Lex(); getTargetStreamer().emitDirectiveNaNLegacy(); return false; } } // If we don't recognize the option passed to the .nan // directive (e.g. no option or unknown option), emit an error. reportParseError("invalid option in .nan directive"); return false; } bool MipsAsmParser::parseDirectiveSet() { MCAsmParser &Parser = getParser(); // Get the next token. const AsmToken &Tok = Parser.getTok(); if (Tok.getString() == "noat") { return parseSetNoAtDirective(); } else if (Tok.getString() == "at") { return parseSetAtDirective(); } else if (Tok.getString() == "arch") { return parseSetArchDirective(); } else if (Tok.getString() == "fp") { return parseSetFpDirective(); } else if (Tok.getString() == "oddspreg") { return parseSetOddSPRegDirective(); } else if (Tok.getString() == "nooddspreg") { return parseSetNoOddSPRegDirective(); } else if (Tok.getString() == "pop") { return parseSetPopDirective(); } else if (Tok.getString() == "push") { return parseSetPushDirective(); } else if (Tok.getString() == "reorder") { return parseSetReorderDirective(); } else if (Tok.getString() == "noreorder") { return parseSetNoReorderDirective(); } else if (Tok.getString() == "macro") { return parseSetMacroDirective(); } else if (Tok.getString() == "nomacro") { return parseSetNoMacroDirective(); } else if (Tok.getString() == "mips16") { return parseSetMips16Directive(); } else if (Tok.getString() == "nomips16") { return parseSetNoMips16Directive(); } else if (Tok.getString() == "nomicromips") { clearFeatureBits(Mips::FeatureMicroMips, "micromips"); getTargetStreamer().emitDirectiveSetNoMicroMips(); Parser.eatToEndOfStatement(); return false; } else if (Tok.getString() == "micromips") { return parseSetFeature(Mips::FeatureMicroMips); } else if (Tok.getString() == "mips0") { return parseSetMips0Directive(); } else if (Tok.getString() == "mips1") { return parseSetFeature(Mips::FeatureMips1); } else if (Tok.getString() == "mips2") { return parseSetFeature(Mips::FeatureMips2); } else if (Tok.getString() == "mips3") { return parseSetFeature(Mips::FeatureMips3); } else if (Tok.getString() == "mips4") { return parseSetFeature(Mips::FeatureMips4); } else if (Tok.getString() == "mips5") { return parseSetFeature(Mips::FeatureMips5); } else if (Tok.getString() == "mips32") { return parseSetFeature(Mips::FeatureMips32); } else if (Tok.getString() == "mips32r2") { return parseSetFeature(Mips::FeatureMips32r2); } else if (Tok.getString() == "mips32r3") { return parseSetFeature(Mips::FeatureMips32r3); } else if (Tok.getString() == "mips32r5") { return parseSetFeature(Mips::FeatureMips32r5); } else if (Tok.getString() == "mips32r6") { return parseSetFeature(Mips::FeatureMips32r6); } else if (Tok.getString() == "mips64") { return parseSetFeature(Mips::FeatureMips64); } else if (Tok.getString() == "mips64r2") { return parseSetFeature(Mips::FeatureMips64r2); } else if (Tok.getString() == "mips64r3") { return parseSetFeature(Mips::FeatureMips64r3); } else if (Tok.getString() == "mips64r5") { return parseSetFeature(Mips::FeatureMips64r5); } else if (Tok.getString() == "mips64r6") { return parseSetFeature(Mips::FeatureMips64r6); } else if (Tok.getString() == "dsp") { return parseSetFeature(Mips::FeatureDSP); } else if (Tok.getString() == "nodsp") { return parseSetNoDspDirective(); } else if (Tok.getString() == "msa") { return parseSetMsaDirective(); } else if (Tok.getString() == "nomsa") { return parseSetNoMsaDirective(); } else if (Tok.getString() == "softfloat") { return parseSetSoftFloatDirective(); } else if (Tok.getString() == "hardfloat") { return parseSetHardFloatDirective(); } else { // It is just an identifier, look for an assignment. parseSetAssignment(); return false; } return true; } /// parseDataDirective /// ::= .word [ expression (, expression)* ] bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().parseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token, expected comma"); Parser.Lex(); } } Parser.Lex(); return false; } /// parseDirectiveGpWord /// ::= .gpword local_sym bool MipsAsmParser::parseDirectiveGpWord() { MCAsmParser &Parser = getParser(); const MCExpr *Value; // EmitGPRel32Value requires an expression, so we are using base class // method to evaluate the expression. if (getParser().parseExpression(Value)) return true; getParser().getStreamer().EmitGPRel32Value(Value); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(getLexer().getLoc(), "unexpected token, expected end of statement"); Parser.Lex(); // Eat EndOfStatement token. return false; } /// parseDirectiveGpDWord /// ::= .gpdword local_sym bool MipsAsmParser::parseDirectiveGpDWord() { MCAsmParser &Parser = getParser(); const MCExpr *Value; // EmitGPRel64Value requires an expression, so we are using base class // method to evaluate the expression. if (getParser().parseExpression(Value)) return true; getParser().getStreamer().EmitGPRel64Value(Value); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(getLexer().getLoc(), "unexpected token, expected end of statement"); Parser.Lex(); // Eat EndOfStatement token. return false; } bool MipsAsmParser::parseDirectiveOption() { MCAsmParser &Parser = getParser(); // Get the option token. AsmToken Tok = Parser.getTok(); // At the moment only identifiers are supported. if (Tok.isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), "unexpected token, expected identifier"); Parser.eatToEndOfStatement(); return false; } StringRef Option = Tok.getIdentifier(); if (Option == "pic0") { // MipsAsmParser needs to know if the current PIC mode changes. IsPicEnabled = false; getTargetStreamer().emitDirectiveOptionPic0(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); Parser.eatToEndOfStatement(); } return false; } if (Option == "pic2") { // MipsAsmParser needs to know if the current PIC mode changes. IsPicEnabled = true; getTargetStreamer().emitDirectiveOptionPic2(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); Parser.eatToEndOfStatement(); } return false; } // Unknown option. Warning(Parser.getTok().getLoc(), "unknown option, expected 'pic0' or 'pic2'"); Parser.eatToEndOfStatement(); return false; } /// parseInsnDirective /// ::= .insn bool MipsAsmParser::parseInsnDirective() { // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } // The actual label marking happens in // MipsELFStreamer::createPendingLabelRelocs(). getTargetStreamer().emitDirectiveInsn(); getParser().Lex(); // Eat EndOfStatement token. return false; } /// parseSSectionDirective /// ::= .sbss /// ::= .sdata bool MipsAsmParser::parseSSectionDirective(StringRef Section, unsigned Type) { // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } MCSection *ELFSection = getContext().getELFSection( Section, Type, ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_MIPS_GPREL); getParser().getStreamer().SwitchSection(ELFSection); getParser().Lex(); // Eat EndOfStatement token. return false; } /// parseDirectiveModule /// ::= .module oddspreg /// ::= .module nooddspreg /// ::= .module fp=value /// ::= .module softfloat /// ::= .module hardfloat bool MipsAsmParser::parseDirectiveModule() { MCAsmParser &Parser = getParser(); MCAsmLexer &Lexer = getLexer(); SMLoc L = Lexer.getLoc(); if (!getTargetStreamer().isModuleDirectiveAllowed()) { // TODO : get a better message. reportParseError(".module directive must appear before any code"); return false; } StringRef Option; if (Parser.parseIdentifier(Option)) { reportParseError("expected .module option identifier"); return false; } if (Option == "oddspreg") { clearModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); // Synchronize the abiflags information with the FeatureBits information we // changed above. getTargetStreamer().updateABIInfo(*this); // If printing assembly, use the recently updated abiflags information. // If generating ELF, don't do anything (the .MIPS.abiflags section gets // emitted at the end). getTargetStreamer().emitDirectiveModuleOddSPReg(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } return false; // parseDirectiveModule has finished successfully. } else if (Option == "nooddspreg") { if (!isABI_O32()) { Error(L, "'.module nooddspreg' requires the O32 ABI"); return false; } setModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); // Synchronize the abiflags information with the FeatureBits information we // changed above. getTargetStreamer().updateABIInfo(*this); // If printing assembly, use the recently updated abiflags information. // If generating ELF, don't do anything (the .MIPS.abiflags section gets // emitted at the end). getTargetStreamer().emitDirectiveModuleOddSPReg(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } return false; // parseDirectiveModule has finished successfully. } else if (Option == "fp") { return parseDirectiveModuleFP(); } else if (Option == "softfloat") { setModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float"); // Synchronize the ABI Flags information with the FeatureBits information we // updated above. getTargetStreamer().updateABIInfo(*this); // If printing assembly, use the recently updated ABI Flags information. // If generating ELF, don't do anything (the .MIPS.abiflags section gets // emitted later). getTargetStreamer().emitDirectiveModuleSoftFloat(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } return false; // parseDirectiveModule has finished successfully. } else if (Option == "hardfloat") { clearModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float"); // Synchronize the ABI Flags information with the FeatureBits information we // updated above. getTargetStreamer().updateABIInfo(*this); // If printing assembly, use the recently updated ABI Flags information. // If generating ELF, don't do anything (the .MIPS.abiflags section gets // emitted later). getTargetStreamer().emitDirectiveModuleHardFloat(); // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } return false; // parseDirectiveModule has finished successfully. } else { return Error(L, "'" + Twine(Option) + "' is not a valid .module option."); } } /// parseDirectiveModuleFP /// ::= =32 /// ::= =xx /// ::= =64 bool MipsAsmParser::parseDirectiveModuleFP() { MCAsmParser &Parser = getParser(); MCAsmLexer &Lexer = getLexer(); if (Lexer.isNot(AsmToken::Equal)) { reportParseError("unexpected token, expected equals sign '='"); return false; } Parser.Lex(); // Eat '=' token. MipsABIFlagsSection::FpABIKind FpABI; if (!parseFpABIValue(FpABI, ".module")) return false; if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } // Synchronize the abiflags information with the FeatureBits information we // changed above. getTargetStreamer().updateABIInfo(*this); // If printing assembly, use the recently updated abiflags information. // If generating ELF, don't do anything (the .MIPS.abiflags section gets // emitted at the end). getTargetStreamer().emitDirectiveModuleFP(); Parser.Lex(); // Consume the EndOfStatement. return false; } bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI, StringRef Directive) { MCAsmParser &Parser = getParser(); MCAsmLexer &Lexer = getLexer(); bool ModuleLevelOptions = Directive == ".module"; if (Lexer.is(AsmToken::Identifier)) { StringRef Value = Parser.getTok().getString(); Parser.Lex(); if (Value != "xx") { reportParseError("unsupported value, expected 'xx', '32' or '64'"); return false; } if (!isABI_O32()) { reportParseError("'" + Directive + " fp=xx' requires the O32 ABI"); return false; } FpABI = MipsABIFlagsSection::FpABIKind::XX; if (ModuleLevelOptions) { setModuleFeatureBits(Mips::FeatureFPXX, "fpxx"); clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64"); } else { setFeatureBits(Mips::FeatureFPXX, "fpxx"); clearFeatureBits(Mips::FeatureFP64Bit, "fp64"); } return true; } if (Lexer.is(AsmToken::Integer)) { unsigned Value = Parser.getTok().getIntVal(); Parser.Lex(); if (Value != 32 && Value != 64) { reportParseError("unsupported value, expected 'xx', '32' or '64'"); return false; } if (Value == 32) { if (!isABI_O32()) { reportParseError("'" + Directive + " fp=32' requires the O32 ABI"); return false; } FpABI = MipsABIFlagsSection::FpABIKind::S32; if (ModuleLevelOptions) { clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx"); clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64"); } else { clearFeatureBits(Mips::FeatureFPXX, "fpxx"); clearFeatureBits(Mips::FeatureFP64Bit, "fp64"); } } else { FpABI = MipsABIFlagsSection::FpABIKind::S64; if (ModuleLevelOptions) { clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx"); setModuleFeatureBits(Mips::FeatureFP64Bit, "fp64"); } else { clearFeatureBits(Mips::FeatureFPXX, "fpxx"); setFeatureBits(Mips::FeatureFP64Bit, "fp64"); } } return true; } return false; } bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) { // This returns false if this function recognizes the directive // regardless of whether it is successfully handles or reports an // error. Otherwise it returns true to give the generic parser a // chance at recognizing it. MCAsmParser &Parser = getParser(); StringRef IDVal = DirectiveID.getString(); if (IDVal == ".cpload") { parseDirectiveCpLoad(DirectiveID.getLoc()); return false; } if (IDVal == ".cprestore") { parseDirectiveCpRestore(DirectiveID.getLoc()); return false; } if (IDVal == ".dword") { parseDataDirective(8, DirectiveID.getLoc()); return false; } if (IDVal == ".ent") { StringRef SymbolName; if (Parser.parseIdentifier(SymbolName)) { reportParseError("expected identifier after .ent"); return false; } // There's an undocumented extension that allows an integer to // follow the name of the procedure which AFAICS is ignored by GAS. // Example: .ent foo,2 if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Comma)) { // Even though we accept this undocumented extension for compatibility // reasons, the additional integer argument does not actually change // the behaviour of the '.ent' directive, so we would like to discourage // its use. We do this by not referring to the extended version in // error messages which are not directly related to its use. reportParseError("unexpected token, expected end of statement"); return false; } Parser.Lex(); // Eat the comma. const MCExpr *DummyNumber; int64_t DummyNumberVal; // If the user was explicitly trying to use the extended version, // we still give helpful extension-related error messages. if (Parser.parseExpression(DummyNumber)) { reportParseError("expected number after comma"); return false; } if (!DummyNumber->evaluateAsAbsolute(DummyNumberVal)) { reportParseError("expected an absolute expression after comma"); return false; } } // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } MCSymbol *Sym = getContext().getOrCreateSymbol(SymbolName); getTargetStreamer().emitDirectiveEnt(*Sym); CurrentFn = Sym; IsCpRestoreSet = false; return false; } if (IDVal == ".end") { StringRef SymbolName; if (Parser.parseIdentifier(SymbolName)) { reportParseError("expected identifier after .end"); return false; } if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } if (CurrentFn == nullptr) { reportParseError(".end used without .ent"); return false; } if ((SymbolName != CurrentFn->getName())) { reportParseError(".end symbol does not match .ent symbol"); return false; } getTargetStreamer().emitDirectiveEnd(SymbolName); CurrentFn = nullptr; IsCpRestoreSet = false; return false; } if (IDVal == ".frame") { // .frame $stack_reg, frame_size_in_bytes, $return_reg SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg; OperandMatchResultTy ResTy = parseAnyRegister(TmpReg); if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) { reportParseError("expected stack register"); return false; } MipsOperand &StackRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]); if (!StackRegOpnd.isGPRAsmReg()) { reportParseError(StackRegOpnd.getStartLoc(), "expected general purpose register"); return false; } unsigned StackReg = StackRegOpnd.getGPR32Reg(); if (Parser.getTok().is(AsmToken::Comma)) Parser.Lex(); else { reportParseError("unexpected token, expected comma"); return false; } // Parse the frame size. const MCExpr *FrameSize; int64_t FrameSizeVal; if (Parser.parseExpression(FrameSize)) { reportParseError("expected frame size value"); return false; } if (!FrameSize->evaluateAsAbsolute(FrameSizeVal)) { reportParseError("frame size not an absolute expression"); return false; } if (Parser.getTok().is(AsmToken::Comma)) Parser.Lex(); else { reportParseError("unexpected token, expected comma"); return false; } // Parse the return register. TmpReg.clear(); ResTy = parseAnyRegister(TmpReg); if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) { reportParseError("expected return register"); return false; } MipsOperand &ReturnRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]); if (!ReturnRegOpnd.isGPRAsmReg()) { reportParseError(ReturnRegOpnd.getStartLoc(), "expected general purpose register"); return false; } // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } getTargetStreamer().emitFrame(StackReg, FrameSizeVal, ReturnRegOpnd.getGPR32Reg()); IsCpRestoreSet = false; return false; } if (IDVal == ".set") { parseDirectiveSet(); return false; } if (IDVal == ".mask" || IDVal == ".fmask") { // .mask bitmask, frame_offset // bitmask: One bit for each register used. // frame_offset: Offset from Canonical Frame Address ($sp on entry) where // first register is expected to be saved. // Examples: // .mask 0x80000000, -4 // .fmask 0x80000000, -4 // // Parse the bitmask const MCExpr *BitMask; int64_t BitMaskVal; if (Parser.parseExpression(BitMask)) { reportParseError("expected bitmask value"); return false; } if (!BitMask->evaluateAsAbsolute(BitMaskVal)) { reportParseError("bitmask not an absolute expression"); return false; } if (Parser.getTok().is(AsmToken::Comma)) Parser.Lex(); else { reportParseError("unexpected token, expected comma"); return false; } // Parse the frame_offset const MCExpr *FrameOffset; int64_t FrameOffsetVal; if (Parser.parseExpression(FrameOffset)) { reportParseError("expected frame offset value"); return false; } if (!FrameOffset->evaluateAsAbsolute(FrameOffsetVal)) { reportParseError("frame offset not an absolute expression"); return false; } // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } if (IDVal == ".mask") getTargetStreamer().emitMask(BitMaskVal, FrameOffsetVal); else getTargetStreamer().emitFMask(BitMaskVal, FrameOffsetVal); return false; } if (IDVal == ".nan") return parseDirectiveNaN(); if (IDVal == ".gpword") { parseDirectiveGpWord(); return false; } if (IDVal == ".gpdword") { parseDirectiveGpDWord(); return false; } if (IDVal == ".word") { parseDataDirective(4, DirectiveID.getLoc()); return false; } if (IDVal == ".hword") { parseDataDirective(2, DirectiveID.getLoc()); return false; } if (IDVal == ".option") { parseDirectiveOption(); return false; } if (IDVal == ".abicalls") { getTargetStreamer().emitDirectiveAbiCalls(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); // Clear line Parser.eatToEndOfStatement(); } return false; } if (IDVal == ".cpsetup") { parseDirectiveCPSetup(); return false; } if (IDVal == ".cpreturn") { parseDirectiveCPReturn(); return false; } if (IDVal == ".module") { parseDirectiveModule(); return false; } if (IDVal == ".llvm_internal_mips_reallow_module_directive") { parseInternalDirectiveReallowModule(); return false; } if (IDVal == ".insn") { parseInsnDirective(); return false; } if (IDVal == ".sbss") { parseSSectionDirective(IDVal, ELF::SHT_NOBITS); return false; } if (IDVal == ".sdata") { parseSSectionDirective(IDVal, ELF::SHT_PROGBITS); return false; } return true; } bool MipsAsmParser::parseInternalDirectiveReallowModule() { // If this is not the end of the statement, report an error. if (getLexer().isNot(AsmToken::EndOfStatement)) { reportParseError("unexpected token, expected end of statement"); return false; } getTargetStreamer().reallowModuleDirective(); getParser().Lex(); // Eat EndOfStatement token. return false; } extern "C" void LLVMInitializeMipsAsmParser() { RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget); RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget); RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target); RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "MipsGenAsmMatcher.inc"