//===-- LanaiInstrInfo.cpp - Lanai Instruction Information ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Lanai implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "Lanai.h" #include "LanaiInstrInfo.h" #include "LanaiMachineFunctionInfo.h" #include "LanaiTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #include "LanaiGenInstrInfo.inc" LanaiInstrInfo::LanaiInstrInfo() : LanaiGenInstrInfo(Lanai::ADJCALLSTACKDOWN, Lanai::ADJCALLSTACKUP), RegisterInfo() {} void LanaiInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator Position, const DebugLoc &DL, unsigned DestinationRegister, unsigned SourceRegister, bool KillSource) const { if (!Lanai::GPRRegClass.contains(DestinationRegister, SourceRegister)) { llvm_unreachable("Impossible reg-to-reg copy"); } BuildMI(MBB, Position, DL, get(Lanai::OR_I_LO), DestinationRegister) .addReg(SourceRegister, getKillRegState(KillSource)) .addImm(0); } void LanaiInstrInfo::storeRegToStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator Position, unsigned SourceRegister, bool IsKill, int FrameIndex, const TargetRegisterClass *RegisterClass, const TargetRegisterInfo *RegisterInfo) const { DebugLoc DL; if (Position != MBB.end()) { DL = Position->getDebugLoc(); } if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) { llvm_unreachable("Can't store this register to stack slot"); } BuildMI(MBB, Position, DL, get(Lanai::SW_RI)) .addReg(SourceRegister, getKillRegState(IsKill)) .addFrameIndex(FrameIndex) .addImm(0) .addImm(LPAC::ADD); } void LanaiInstrInfo::loadRegFromStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator Position, unsigned DestinationRegister, int FrameIndex, const TargetRegisterClass *RegisterClass, const TargetRegisterInfo *RegisterInfo) const { DebugLoc DL; if (Position != MBB.end()) { DL = Position->getDebugLoc(); } if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) { llvm_unreachable("Can't load this register from stack slot"); } BuildMI(MBB, Position, DL, get(Lanai::LDW_RI), DestinationRegister) .addFrameIndex(FrameIndex) .addImm(0) .addImm(LPAC::ADD); } bool LanaiInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const { assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) return false; // Retrieve the base register, offset from the base register and width. Width // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If // base registers are identical, and the offset of a lower memory access + // the width doesn't overlap the offset of a higher memory access, // then the memory accesses are different. const TargetRegisterInfo *TRI = &getRegisterInfo(); unsigned BaseRegA = 0, BaseRegB = 0; int64_t OffsetA = 0, OffsetB = 0; unsigned int WidthA = 0, WidthB = 0; if (getMemOpBaseRegImmOfsWidth(MIa, BaseRegA, OffsetA, WidthA, TRI) && getMemOpBaseRegImmOfsWidth(MIb, BaseRegB, OffsetB, WidthB, TRI)) { if (BaseRegA == BaseRegB) { int LowOffset = std::min(OffsetA, OffsetB); int HighOffset = std::max(OffsetA, OffsetB); int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; if (LowOffset + LowWidth <= HighOffset) return true; } } return false; } bool LanaiInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { return false; } static LPCC::CondCode getOppositeCondition(LPCC::CondCode CC) { switch (CC) { case LPCC::ICC_T: // true return LPCC::ICC_F; case LPCC::ICC_F: // false return LPCC::ICC_T; case LPCC::ICC_HI: // high return LPCC::ICC_LS; case LPCC::ICC_LS: // low or same return LPCC::ICC_HI; case LPCC::ICC_CC: // carry cleared return LPCC::ICC_CS; case LPCC::ICC_CS: // carry set return LPCC::ICC_CC; case LPCC::ICC_NE: // not equal return LPCC::ICC_EQ; case LPCC::ICC_EQ: // equal return LPCC::ICC_NE; case LPCC::ICC_VC: // oVerflow cleared return LPCC::ICC_VS; case LPCC::ICC_VS: // oVerflow set return LPCC::ICC_VC; case LPCC::ICC_PL: // plus (note: 0 is "minus" too here) return LPCC::ICC_MI; case LPCC::ICC_MI: // minus return LPCC::ICC_PL; case LPCC::ICC_GE: // greater than or equal return LPCC::ICC_LT; case LPCC::ICC_LT: // less than return LPCC::ICC_GE; case LPCC::ICC_GT: // greater than return LPCC::ICC_LE; case LPCC::ICC_LE: // less than or equal return LPCC::ICC_GT; default: llvm_unreachable("Invalid condtional code"); } } std::pair<unsigned, unsigned> LanaiInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { return std::make_pair(TF, 0u); } ArrayRef<std::pair<unsigned, const char *>> LanaiInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { using namespace LanaiII; static const std::pair<unsigned, const char *> TargetFlags[] = { {MO_ABS_HI, "lanai-hi"}, {MO_ABS_LO, "lanai-lo"}, {MO_NO_FLAG, "lanai-nf"}}; return makeArrayRef(TargetFlags); } bool LanaiInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, unsigned &SrcReg2, int &CmpMask, int &CmpValue) const { switch (MI.getOpcode()) { default: break; case Lanai::SFSUB_F_RI_LO: case Lanai::SFSUB_F_RI_HI: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = 0; CmpMask = ~0; CmpValue = MI.getOperand(1).getImm(); return true; case Lanai::SFSUB_F_RR: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = MI.getOperand(1).getReg(); CmpMask = ~0; CmpValue = 0; return true; } return false; } // isRedundantFlagInstr - check whether the first instruction, whose only // purpose is to update flags, can be made redundant. // * SFSUB_F_RR can be made redundant by SUB_RI if the operands are the same. // * SFSUB_F_RI can be made redundant by SUB_I if the operands are the same. inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg, unsigned SrcReg2, int ImmValue, MachineInstr *OI) { if (CmpI->getOpcode() == Lanai::SFSUB_F_RR && OI->getOpcode() == Lanai::SUB_R && ((OI->getOperand(1).getReg() == SrcReg && OI->getOperand(2).getReg() == SrcReg2) || (OI->getOperand(1).getReg() == SrcReg2 && OI->getOperand(2).getReg() == SrcReg))) return true; if (((CmpI->getOpcode() == Lanai::SFSUB_F_RI_LO && OI->getOpcode() == Lanai::SUB_I_LO) || (CmpI->getOpcode() == Lanai::SFSUB_F_RI_HI && OI->getOpcode() == Lanai::SUB_I_HI)) && OI->getOperand(1).getReg() == SrcReg && OI->getOperand(2).getImm() == ImmValue) return true; return false; } inline static unsigned flagSettingOpcodeVariant(unsigned OldOpcode) { switch (OldOpcode) { case Lanai::ADD_I_HI: return Lanai::ADD_F_I_HI; case Lanai::ADD_I_LO: return Lanai::ADD_F_I_LO; case Lanai::ADD_R: return Lanai::ADD_F_R; case Lanai::ADDC_I_HI: return Lanai::ADDC_F_I_HI; case Lanai::ADDC_I_LO: return Lanai::ADDC_F_I_LO; case Lanai::ADDC_R: return Lanai::ADDC_F_R; case Lanai::AND_I_HI: return Lanai::AND_F_I_HI; case Lanai::AND_I_LO: return Lanai::AND_F_I_LO; case Lanai::AND_R: return Lanai::AND_F_R; case Lanai::OR_I_HI: return Lanai::OR_F_I_HI; case Lanai::OR_I_LO: return Lanai::OR_F_I_LO; case Lanai::OR_R: return Lanai::OR_F_R; case Lanai::SL_I: return Lanai::SL_F_I; case Lanai::SRL_R: return Lanai::SRL_F_R; case Lanai::SA_I: return Lanai::SA_F_I; case Lanai::SRA_R: return Lanai::SRA_F_R; case Lanai::SUB_I_HI: return Lanai::SUB_F_I_HI; case Lanai::SUB_I_LO: return Lanai::SUB_F_I_LO; case Lanai::SUB_R: return Lanai::SUB_F_R; case Lanai::SUBB_I_HI: return Lanai::SUBB_F_I_HI; case Lanai::SUBB_I_LO: return Lanai::SUBB_F_I_LO; case Lanai::SUBB_R: return Lanai::SUBB_F_R; case Lanai::XOR_I_HI: return Lanai::XOR_F_I_HI; case Lanai::XOR_I_LO: return Lanai::XOR_F_I_LO; case Lanai::XOR_R: return Lanai::XOR_F_R; default: return Lanai::NOP; } } bool LanaiInstrInfo::optimizeCompareInstr( MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const { // Get the unique definition of SrcReg. MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); if (!MI) return false; // Get ready to iterate backward from CmpInstr. MachineBasicBlock::iterator I = CmpInstr, E = MI, B = CmpInstr.getParent()->begin(); // Early exit if CmpInstr is at the beginning of the BB. if (I == B) return false; // There are two possible candidates which can be changed to set SR: // One is MI, the other is a SUB instruction. // * For SFSUB_F_RR(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). // * For SFSUB_F_RI(r1, CmpValue), we are looking for SUB(r1, CmpValue). MachineInstr *Sub = nullptr; if (SrcReg2 != 0) // MI is not a candidate to transform into a flag setting instruction. MI = nullptr; else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { // Conservatively refuse to convert an instruction which isn't in the same // BB as the comparison. Don't return if SFSUB_F_RI and CmpValue != 0 as Sub // may still be a candidate. if (CmpInstr.getOpcode() == Lanai::SFSUB_F_RI_LO) MI = nullptr; else return false; } // Check that SR isn't set between the comparison instruction and the // instruction we want to change while searching for Sub. const TargetRegisterInfo *TRI = &getRegisterInfo(); for (--I; I != E; --I) { const MachineInstr &Instr = *I; if (Instr.modifiesRegister(Lanai::SR, TRI) || Instr.readsRegister(Lanai::SR, TRI)) // This instruction modifies or uses SR after the one we want to change. // We can't do this transformation. return false; // Check whether CmpInstr can be made redundant by the current instruction. if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) { Sub = &*I; break; } // Don't search outside the containing basic block. if (I == B) return false; } // Return false if no candidates exist. if (!MI && !Sub) return false; // The single candidate is called MI. if (!MI) MI = Sub; if (flagSettingOpcodeVariant(MI->getOpcode()) != Lanai::NOP) { bool isSafe = false; SmallVector<std::pair<MachineOperand *, LPCC::CondCode>, 4> OperandsToUpdate; I = CmpInstr; E = CmpInstr.getParent()->end(); while (!isSafe && ++I != E) { const MachineInstr &Instr = *I; for (unsigned IO = 0, EO = Instr.getNumOperands(); !isSafe && IO != EO; ++IO) { const MachineOperand &MO = Instr.getOperand(IO); if (MO.isRegMask() && MO.clobbersPhysReg(Lanai::SR)) { isSafe = true; break; } if (!MO.isReg() || MO.getReg() != Lanai::SR) continue; if (MO.isDef()) { isSafe = true; break; } // Condition code is after the operand before SR. LPCC::CondCode CC; CC = (LPCC::CondCode)Instr.getOperand(IO - 1).getImm(); if (Sub) { LPCC::CondCode NewCC = getOppositeCondition(CC); if (NewCC == LPCC::ICC_T) return false; // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on // CMP needs to be updated to be based on SUB. Push the condition // code operands to OperandsToUpdate. If it is safe to remove // CmpInstr, the condition code of these operands will be modified. if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && Sub->getOperand(2).getReg() == SrcReg) { OperandsToUpdate.push_back( std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); } } else { // No Sub, so this is x = <op> y, z; cmp x, 0. switch (CC) { case LPCC::ICC_EQ: // Z case LPCC::ICC_NE: // Z case LPCC::ICC_MI: // N case LPCC::ICC_PL: // N case LPCC::ICC_F: // none case LPCC::ICC_T: // none // SR can be used multiple times, we should continue. break; case LPCC::ICC_CS: // C case LPCC::ICC_CC: // C case LPCC::ICC_VS: // V case LPCC::ICC_VC: // V case LPCC::ICC_HI: // C Z case LPCC::ICC_LS: // C Z case LPCC::ICC_GE: // N V case LPCC::ICC_LT: // N V case LPCC::ICC_GT: // Z N V case LPCC::ICC_LE: // Z N V // The instruction uses the V bit or C bit which is not safe. return false; case LPCC::UNKNOWN: return false; } } } } // If SR is not killed nor re-defined, we should check whether it is // live-out. If it is live-out, do not optimize. if (!isSafe) { MachineBasicBlock *MBB = CmpInstr.getParent(); for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) if ((*SI)->isLiveIn(Lanai::SR)) return false; } // Toggle the optional operand to SR. MI->setDesc(get(flagSettingOpcodeVariant(MI->getOpcode()))); MI->addRegisterDefined(Lanai::SR); CmpInstr.eraseFromParent(); return true; } return false; } bool LanaiInstrInfo::analyzeSelect(const MachineInstr &MI, SmallVectorImpl<MachineOperand> &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const { assert(MI.getOpcode() == Lanai::SELECT && "unknown select instruction"); // Select operands: // 0: Def. // 1: True use. // 2: False use. // 3: Condition code. TrueOp = 1; FalseOp = 2; Cond.push_back(MI.getOperand(3)); Optimizable = true; return false; } // Identify instructions that can be folded into a SELECT instruction, and // return the defining instruction. static MachineInstr *canFoldIntoSelect(unsigned Reg, const MachineRegisterInfo &MRI, const TargetInstrInfo *TII) { if (!TargetRegisterInfo::isVirtualRegister(Reg)) return nullptr; if (!MRI.hasOneNonDBGUse(Reg)) return nullptr; MachineInstr *MI = MRI.getVRegDef(Reg); if (!MI) return nullptr; // MI is folded into the SELECT by predicating it. if (!MI->isPredicable()) return nullptr; // Check if MI has any non-dead defs or physreg uses. This also detects // predicated instructions which will be reading SR. for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); // Reject frame index operands. if (MO.isFI() || MO.isCPI() || MO.isJTI()) return nullptr; if (!MO.isReg()) continue; // MI can't have any tied operands, that would conflict with predication. if (MO.isTied()) return nullptr; if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) return nullptr; if (MO.isDef() && !MO.isDead()) return nullptr; } bool DontMoveAcrossStores = true; if (!MI->isSafeToMove(/*AliasAnalysis=*/nullptr, DontMoveAcrossStores)) return nullptr; return MI; } MachineInstr * LanaiInstrInfo::optimizeSelect(MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &SeenMIs, bool PreferFalse) const { assert(MI.getOpcode() == Lanai::SELECT && "unknown select instruction"); MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); MachineInstr *DefMI = canFoldIntoSelect(MI.getOperand(1).getReg(), MRI, this); bool Invert = !DefMI; if (!DefMI) DefMI = canFoldIntoSelect(MI.getOperand(2).getReg(), MRI, this); if (!DefMI) return nullptr; // Find new register class to use. MachineOperand FalseReg = MI.getOperand(Invert ? 1 : 2); unsigned DestReg = MI.getOperand(0).getReg(); const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); if (!MRI.constrainRegClass(DestReg, PreviousClass)) return nullptr; // Create a new predicated version of DefMI. MachineInstrBuilder NewMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); // Copy all the DefMI operands, excluding its (null) predicate. const MCInstrDesc &DefDesc = DefMI->getDesc(); for (unsigned i = 1, e = DefDesc.getNumOperands(); i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) NewMI.addOperand(DefMI->getOperand(i)); unsigned CondCode = MI.getOperand(3).getImm(); if (Invert) NewMI.addImm(getOppositeCondition(LPCC::CondCode(CondCode))); else NewMI.addImm(CondCode); NewMI.copyImplicitOps(MI); // The output register value when the predicate is false is an implicit // register operand tied to the first def. The tie makes the register // allocator ensure the FalseReg is allocated the same register as operand 0. FalseReg.setImplicit(); NewMI.addOperand(FalseReg); NewMI->tieOperands(0, NewMI->getNumOperands() - 1); // Update SeenMIs set: register newly created MI and erase removed DefMI. SeenMIs.insert(NewMI); SeenMIs.erase(DefMI); // If MI is inside a loop, and DefMI is outside the loop, then kill flags on // DefMI would be invalid when transferred inside the loop. Checking for a // loop is expensive, but at least remove kill flags if they are in different // BBs. if (DefMI->getParent() != MI.getParent()) NewMI->clearKillInfo(); // The caller will erase MI, but not DefMI. DefMI->eraseFromParent(); return NewMI; } // The AnalyzeBranch function is used to examine conditional instructions and // remove unnecessary instructions. This method is used by BranchFolder and // IfConverter machine function passes to improve the CFG. // - TrueBlock is set to the destination if condition evaluates true (it is the // nullptr if the destination is the fall-through branch); // - FalseBlock is set to the destination if condition evaluates to false (it // is the nullptr if the branch is unconditional); // - condition is populated with machine operands needed to generate the branch // to insert in InsertBranch; // Returns: false if branch could successfully be analyzed. bool LanaiInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TrueBlock, MachineBasicBlock *&FalseBlock, SmallVectorImpl<MachineOperand> &Condition, bool AllowModify) const { // Iterator to current instruction being considered. MachineBasicBlock::iterator Instruction = MBB.end(); // Start from the bottom of the block and work up, examining the // terminator instructions. while (Instruction != MBB.begin()) { --Instruction; // Skip over debug values. if (Instruction->isDebugValue()) continue; // Working from the bottom, when we see a non-terminator // instruction, we're done. if (!isUnpredicatedTerminator(*Instruction)) break; // A terminator that isn't a branch can't easily be handled // by this analysis. if (!Instruction->isBranch()) return true; // Handle unconditional branches. if (Instruction->getOpcode() == Lanai::BT) { if (!AllowModify) { TrueBlock = Instruction->getOperand(0).getMBB(); continue; } // If the block has any instructions after a branch, delete them. while (std::next(Instruction) != MBB.end()) { std::next(Instruction)->eraseFromParent(); } Condition.clear(); FalseBlock = nullptr; // Delete the jump if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(Instruction->getOperand(0).getMBB())) { TrueBlock = nullptr; Instruction->eraseFromParent(); Instruction = MBB.end(); continue; } // TrueBlock is used to indicate the unconditional destination. TrueBlock = Instruction->getOperand(0).getMBB(); continue; } // Handle conditional branches unsigned Opcode = Instruction->getOpcode(); if (Opcode != Lanai::BRCC) return true; // Unknown opcode. // Multiple conditional branches are not handled here so only proceed if // there are no conditions enqueued. if (Condition.empty()) { LPCC::CondCode BranchCond = static_cast<LPCC::CondCode>(Instruction->getOperand(1).getImm()); // TrueBlock is the target of the previously seen unconditional branch. FalseBlock = TrueBlock; TrueBlock = Instruction->getOperand(0).getMBB(); Condition.push_back(MachineOperand::CreateImm(BranchCond)); continue; } // Multiple conditional branches are not handled. return true; } // Return false indicating branch successfully analyzed. return false; } // ReverseBranchCondition - Reverses the branch condition of the specified // condition list, returning false on success and true if it cannot be // reversed. bool LanaiInstrInfo::ReverseBranchCondition( SmallVectorImpl<llvm::MachineOperand> &Condition) const { assert((Condition.size() == 1) && "Lanai branch conditions should have one component."); LPCC::CondCode BranchCond = static_cast<LPCC::CondCode>(Condition[0].getImm()); Condition[0].setImm(getOppositeCondition(BranchCond)); return false; } // Insert the branch with condition specified in condition and given targets // (TrueBlock and FalseBlock). This function returns the number of machine // instructions inserted. unsigned LanaiInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TrueBlock, MachineBasicBlock *FalseBlock, ArrayRef<MachineOperand> Condition, const DebugLoc &DL) const { // Shouldn't be a fall through. assert(TrueBlock && "InsertBranch must not be told to insert a fallthrough"); // If condition is empty then an unconditional branch is being inserted. if (Condition.empty()) { assert(!FalseBlock && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(TrueBlock); return 1; } // Else a conditional branch is inserted. assert((Condition.size() == 1) && "Lanai branch conditions should have one component."); unsigned ConditionalCode = Condition[0].getImm(); BuildMI(&MBB, DL, get(Lanai::BRCC)).addMBB(TrueBlock).addImm(ConditionalCode); // If no false block, then false behavior is fall through and no branch needs // to be inserted. if (!FalseBlock) return 1; BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(FalseBlock); return 2; } unsigned LanaiInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator Instruction = MBB.end(); unsigned Count = 0; while (Instruction != MBB.begin()) { --Instruction; if (Instruction->isDebugValue()) continue; if (Instruction->getOpcode() != Lanai::BT && Instruction->getOpcode() != Lanai::BRCC) { break; } // Remove the branch. Instruction->eraseFromParent(); Instruction = MBB.end(); ++Count; } return Count; } unsigned LanaiInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == Lanai::LDW_RI) if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { FrameIndex = MI.getOperand(1).getIndex(); return MI.getOperand(0).getReg(); } return 0; } unsigned LanaiInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == Lanai::LDW_RI) { unsigned Reg; if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasLoadFromStackSlot(MI, Dummy, FrameIndex); } return 0; } unsigned LanaiInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == Lanai::SW_RI) if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) { FrameIndex = MI.getOperand(0).getIndex(); return MI.getOperand(2).getReg(); } return 0; } bool LanaiInstrInfo::getMemOpBaseRegImmOfsWidth( MachineInstr &LdSt, unsigned &BaseReg, int64_t &Offset, unsigned &Width, const TargetRegisterInfo *TRI) const { // Handle only loads/stores with base register followed by immediate offset // and with add as ALU op. if (LdSt.getNumOperands() != 4) return false; if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm() || !(LdSt.getOperand(3).isImm() && LdSt.getOperand(3).getImm() == LPAC::ADD)) return false; switch (LdSt.getOpcode()) { default: return false; case Lanai::LDW_RI: case Lanai::LDW_RR: case Lanai::SW_RR: case Lanai::SW_RI: Width = 4; break; case Lanai::LDHs_RI: case Lanai::LDHz_RI: case Lanai::STH_RI: Width = 2; break; case Lanai::LDBs_RI: case Lanai::LDBz_RI: case Lanai::STB_RI: Width = 1; break; } BaseReg = LdSt.getOperand(1).getReg(); Offset = LdSt.getOperand(2).getImm(); return true; } bool LanaiInstrInfo::getMemOpBaseRegImmOfs( MachineInstr &LdSt, unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI) const { switch (LdSt.getOpcode()) { default: return false; case Lanai::LDW_RI: case Lanai::LDW_RR: case Lanai::SW_RR: case Lanai::SW_RI: case Lanai::LDHs_RI: case Lanai::LDHz_RI: case Lanai::STH_RI: case Lanai::LDBs_RI: case Lanai::LDBz_RI: unsigned Width; return getMemOpBaseRegImmOfsWidth(LdSt, BaseReg, Offset, Width, TRI); } }