//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // /// The pass tries to use the 32-bit encoding for instructions when possible. //===----------------------------------------------------------------------===// // #include "AMDGPU.h" #include "AMDGPUMCInstLower.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "si-shrink-instructions" STATISTIC(NumInstructionsShrunk, "Number of 64-bit instruction reduced to 32-bit."); STATISTIC(NumLiteralConstantsFolded, "Number of literal constants folded into 32-bit instructions."); using namespace llvm; namespace { class SIShrinkInstructions : public MachineFunctionPass { public: static char ID; public: SIShrinkInstructions() : MachineFunctionPass(ID) { } bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "SI Shrink Instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE, "SI Shrink Instructions", false, false) char SIShrinkInstructions::ID = 0; FunctionPass *llvm::createSIShrinkInstructionsPass() { return new SIShrinkInstructions(); } static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) { if (!MO->isReg()) return false; if (TargetRegisterInfo::isVirtualRegister(MO->getReg())) return TRI.hasVGPRs(MRI.getRegClass(MO->getReg())); return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg())); } static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII, const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) { const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); // Can't shrink instruction with three operands. // FIXME: v_cndmask_b32 has 3 operands and is shrinkable, but we need to add // a special case for it. It can only be shrunk if the third operand // is vcc. We should handle this the same way we handle vopc, by addding // a register allocation hint pre-regalloc and then do the shrining // post-regalloc. if (Src2) { switch (MI.getOpcode()) { default: return false; case AMDGPU::V_MAC_F32_e64: if (!isVGPR(Src2, TRI, MRI) || TII->hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers)) return false; break; case AMDGPU::V_CNDMASK_B32_e64: break; } } const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); const MachineOperand *Src1Mod = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0))) return false; // We don't need to check src0, all input types are legal, so just make sure // src0 isn't using any modifiers. if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers)) return false; // Check output modifiers if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) return false; return !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp); } /// \brief This function checks \p MI for operands defined by a move immediate /// instruction and then folds the literal constant into the instruction if it /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction /// and will only fold literal constants if we are still in SSA. static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII, MachineRegisterInfo &MRI, bool TryToCommute = true) { if (!MRI.isSSA()) return; assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI)); const SIRegisterInfo &TRI = TII->getRegisterInfo(); int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); MachineOperand &Src0 = MI.getOperand(Src0Idx); // Only one literal constant is allowed per instruction, so if src0 is a // literal constant then we can't do any folding. if (Src0.isImm() && TII->isLiteralConstant(Src0, TII->getOpSize(MI, Src0Idx))) return; // Literal constants and SGPRs can only be used in Src0, so if Src0 is an // SGPR, we cannot commute the instruction, so we can't fold any literal // constants. if (Src0.isReg() && !isVGPR(&Src0, TRI, MRI)) return; // Try to fold Src0 if (Src0.isReg() && MRI.hasOneUse(Src0.getReg())) { unsigned Reg = Src0.getReg(); MachineInstr *Def = MRI.getUniqueVRegDef(Reg); if (Def && Def->isMoveImmediate()) { MachineOperand &MovSrc = Def->getOperand(1); bool ConstantFolded = false; if (MovSrc.isImm() && isUInt<32>(MovSrc.getImm())) { Src0.ChangeToImmediate(MovSrc.getImm()); ConstantFolded = true; } if (ConstantFolded) { if (MRI.use_empty(Reg)) Def->eraseFromParent(); ++NumLiteralConstantsFolded; return; } } } // We have failed to fold src0, so commute the instruction and try again. if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(MI)) foldImmediates(MI, TII, MRI, false); } // Copy MachineOperand with all flags except setting it as implicit. static void copyFlagsToImplicitVCC(MachineInstr &MI, const MachineOperand &Orig) { for (MachineOperand &Use : MI.implicit_operands()) { if (Use.getReg() == AMDGPU::VCC) { Use.setIsUndef(Orig.isUndef()); Use.setIsKill(Orig.isKill()); return; } } } static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) { return isInt<16>(Src.getImm()) && !TII->isInlineConstant(Src, 4); } bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(*MF.getFunction())) return false; MachineRegisterInfo &MRI = MF.getRegInfo(); const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); std::vector<unsigned> I1Defs; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = *BI; MachineBasicBlock::iterator I, Next; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) { // If this has a literal constant source that is the same as the // reversed bits of an inline immediate, replace with a bitreverse of // that constant. This saves 4 bytes in the common case of materializing // sign bits. // Test if we are after regalloc. We only want to do this after any // optimizations happen because this will confuse them. // XXX - not exactly a check for post-regalloc run. MachineOperand &Src = MI.getOperand(1); if (Src.isImm() && TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) { int64_t Imm = Src.getImm(); if (isInt<32>(Imm) && !TII->isInlineConstant(Src, 4)) { int32_t ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Imm)); if (ReverseImm >= -16 && ReverseImm <= 64) { MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32)); Src.setImm(ReverseImm); continue; } } } } // Combine adjacent s_nops to use the immediate operand encoding how long // to wait. // // s_nop N // s_nop M // => // s_nop (N + M) if (MI.getOpcode() == AMDGPU::S_NOP && Next != MBB.end() && (*Next).getOpcode() == AMDGPU::S_NOP) { MachineInstr &NextMI = *Next; // The instruction encodes the amount to wait with an offset of 1, // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back // after adding. uint8_t Nop0 = MI.getOperand(0).getImm() + 1; uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1; // Make sure we don't overflow the bounds. if (Nop0 + Nop1 <= 8) { NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1); MI.eraseFromParent(); } continue; } // FIXME: We also need to consider movs of constant operands since // immediate operands are not folded if they have more than one use, and // the operand folding pass is unaware if the immediate will be free since // it won't know if the src == dest constraint will end up being // satisfied. if (MI.getOpcode() == AMDGPU::S_ADD_I32 || MI.getOpcode() == AMDGPU::S_MUL_I32) { const MachineOperand &Dest = MI.getOperand(0); const MachineOperand &Src0 = MI.getOperand(1); const MachineOperand &Src1 = MI.getOperand(2); // FIXME: This could work better if hints worked with subregisters. If // we have a vector add of a constant, we usually don't get the correct // allocation due to the subregister usage. if (TargetRegisterInfo::isVirtualRegister(Dest.getReg()) && Src0.isReg()) { MRI.setRegAllocationHint(Dest.getReg(), 0, Src0.getReg()); continue; } if (Src0.isReg() && Src0.getReg() == Dest.getReg()) { if (Src1.isImm() && isKImmOperand(TII, Src1)) { unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ? AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32; MI.setDesc(TII->get(Opc)); MI.tieOperands(0, 1); } } } // Try to use S_MOVK_I32, which will save 4 bytes for small immediates. if (MI.getOpcode() == AMDGPU::S_MOV_B32) { const MachineOperand &Src = MI.getOperand(1); if (Src.isImm() && isKImmOperand(TII, Src)) MI.setDesc(TII->get(AMDGPU::S_MOVK_I32)); continue; } if (!TII->hasVALU32BitEncoding(MI.getOpcode())) continue; if (!canShrink(MI, TII, TRI, MRI)) { // Try commuting the instruction and see if that enables us to shrink // it. if (!MI.isCommutable() || !TII->commuteInstruction(MI) || !canShrink(MI, TII, TRI, MRI)) continue; } // getVOPe32 could be -1 here if we started with an instruction that had // a 32-bit encoding and then commuted it to an instruction that did not. if (!TII->hasVALU32BitEncoding(MI.getOpcode())) continue; int Op32 = AMDGPU::getVOPe32(MI.getOpcode()); if (TII->isVOPC(Op32)) { unsigned DstReg = MI.getOperand(0).getReg(); if (TargetRegisterInfo::isVirtualRegister(DstReg)) { // VOPC instructions can only write to the VCC register. We can't // force them to use VCC here, because this is only one register and // cannot deal with sequences which would require multiple copies of // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...) // // So, instead of forcing the instruction to write to VCC, we provide // a hint to the register allocator to use VCC and then we we will run // this pass again after RA and shrink it if it outputs to VCC. MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC); continue; } if (DstReg != AMDGPU::VCC) continue; } if (Op32 == AMDGPU::V_CNDMASK_B32_e32) { // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC // instructions. const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); if (!Src2->isReg()) continue; unsigned SReg = Src2->getReg(); if (TargetRegisterInfo::isVirtualRegister(SReg)) { MRI.setRegAllocationHint(SReg, 0, AMDGPU::VCC); continue; } if (SReg != AMDGPU::VCC) continue; } // We can shrink this instruction DEBUG(dbgs() << "Shrinking " << MI); MachineInstrBuilder Inst32 = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32)); // Add the dst operand if the 32-bit encoding also has an explicit $vdst. // For VOPC instructions, this is replaced by an implicit def of vcc. int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst); if (Op32DstIdx != -1) { // dst Inst32.addOperand(MI.getOperand(0)); } else { assert(MI.getOperand(0).getReg() == AMDGPU::VCC && "Unexpected case"); } Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0)); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (Src1) Inst32.addOperand(*Src1); const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); if (Src2) { int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2); if (Op32Src2Idx != -1) { Inst32.addOperand(*Src2); } else { // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is // replaced with an implicit read of vcc. This was already added // during the initial BuildMI, so find it to preserve the flags. copyFlagsToImplicitVCC(*Inst32, *Src2); } } ++NumInstructionsShrunk; MI.eraseFromParent(); foldImmediates(*Inst32, TII, MRI); DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n'); } } return false; }