//===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief SI Implementation of TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "SIInstrInfo.h" #include "AMDGPUTargetMachine.h" #include "GCNHazardRecognizer.h" #include "SIDefines.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/IR/Function.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/Debug.h" using namespace llvm; SIInstrInfo::SIInstrInfo(const SISubtarget &ST) : AMDGPUInstrInfo(ST), RI(), ST(ST) {} //===----------------------------------------------------------------------===// // TargetInstrInfo callbacks //===----------------------------------------------------------------------===// static unsigned getNumOperandsNoGlue(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) --N; return N; } static SDValue findChainOperand(SDNode *Load) { SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1); assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node"); return LastOp; } /// \brief Returns true if both nodes have the same value for the given /// operand \p Op, or if both nodes do not have this operand. static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { unsigned Opc0 = N0->getMachineOpcode(); unsigned Opc1 = N1->getMachineOpcode(); int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); if (Op0Idx == -1 && Op1Idx == -1) return true; if ((Op0Idx == -1 && Op1Idx != -1) || (Op1Idx == -1 && Op0Idx != -1)) return false; // getNamedOperandIdx returns the index for the MachineInstr's operands, // which includes the result as the first operand. We are indexing into the // MachineSDNode's operands, so we need to skip the result operand to get // the real index. --Op0Idx; --Op1Idx; return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); } bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, AliasAnalysis *AA) const { // TODO: The generic check fails for VALU instructions that should be // rematerializable due to implicit reads of exec. We really want all of the // generic logic for this except for this. switch (MI.getOpcode()) { case AMDGPU::V_MOV_B32_e32: case AMDGPU::V_MOV_B32_e64: case AMDGPU::V_MOV_B64_PSEUDO: return true; default: return false; } } bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, int64_t &Offset0, int64_t &Offset1) const { if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) return false; unsigned Opc0 = Load0->getMachineOpcode(); unsigned Opc1 = Load1->getMachineOpcode(); // Make sure both are actually loads. if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) return false; if (isDS(Opc0) && isDS(Opc1)) { // FIXME: Handle this case: if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) return false; // Check base reg. if (Load0->getOperand(1) != Load1->getOperand(1)) return false; // Check chain. if (findChainOperand(Load0) != findChainOperand(Load1)) return false; // Skip read2 / write2 variants for simplicity. // TODO: We should report true if the used offsets are adjacent (excluded // st64 versions). if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 || AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1) return false; Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue(); Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue(); return true; } if (isSMRD(Opc0) && isSMRD(Opc1)) { assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1)); // Check base reg. if (Load0->getOperand(0) != Load1->getOperand(0)) return false; const ConstantSDNode *Load0Offset = dyn_cast<ConstantSDNode>(Load0->getOperand(1)); const ConstantSDNode *Load1Offset = dyn_cast<ConstantSDNode>(Load1->getOperand(1)); if (!Load0Offset || !Load1Offset) return false; // Check chain. if (findChainOperand(Load0) != findChainOperand(Load1)) return false; Offset0 = Load0Offset->getZExtValue(); Offset1 = Load1Offset->getZExtValue(); return true; } // MUBUF and MTBUF can access the same addresses. if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { // MUBUF and MTBUF have vaddr at different indices. if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || findChainOperand(Load0) != findChainOperand(Load1) || !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) return false; int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); if (OffIdx0 == -1 || OffIdx1 == -1) return false; // getNamedOperandIdx returns the index for MachineInstrs. Since they // inlcude the output in the operand list, but SDNodes don't, we need to // subtract the index by one. --OffIdx0; --OffIdx1; SDValue Off0 = Load0->getOperand(OffIdx0); SDValue Off1 = Load1->getOperand(OffIdx1); // The offset might be a FrameIndexSDNode. if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) return false; Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue(); Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue(); return true; } return false; } static bool isStride64(unsigned Opc) { switch (Opc) { case AMDGPU::DS_READ2ST64_B32: case AMDGPU::DS_READ2ST64_B64: case AMDGPU::DS_WRITE2ST64_B32: case AMDGPU::DS_WRITE2ST64_B64: return true; default: return false; } } bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI) const { unsigned Opc = LdSt.getOpcode(); if (isDS(LdSt)) { const MachineOperand *OffsetImm = getNamedOperand(LdSt, AMDGPU::OpName::offset); if (OffsetImm) { // Normal, single offset LDS instruction. const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr); BaseReg = AddrReg->getReg(); Offset = OffsetImm->getImm(); return true; } // The 2 offset instructions use offset0 and offset1 instead. We can treat // these as a load with a single offset if the 2 offsets are consecutive. We // will use this for some partially aligned loads. const MachineOperand *Offset0Imm = getNamedOperand(LdSt, AMDGPU::OpName::offset0); const MachineOperand *Offset1Imm = getNamedOperand(LdSt, AMDGPU::OpName::offset1); uint8_t Offset0 = Offset0Imm->getImm(); uint8_t Offset1 = Offset1Imm->getImm(); if (Offset1 > Offset0 && Offset1 - Offset0 == 1) { // Each of these offsets is in element sized units, so we need to convert // to bytes of the individual reads. unsigned EltSize; if (LdSt.mayLoad()) EltSize = getOpRegClass(LdSt, 0)->getSize() / 2; else { assert(LdSt.mayStore()); int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); EltSize = getOpRegClass(LdSt, Data0Idx)->getSize(); } if (isStride64(Opc)) EltSize *= 64; const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr); BaseReg = AddrReg->getReg(); Offset = EltSize * Offset0; return true; } return false; } if (isMUBUF(LdSt) || isMTBUF(LdSt)) { if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1) return false; const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); if (!AddrReg) return false; const MachineOperand *OffsetImm = getNamedOperand(LdSt, AMDGPU::OpName::offset); BaseReg = AddrReg->getReg(); Offset = OffsetImm->getImm(); return true; } if (isSMRD(LdSt)) { const MachineOperand *OffsetImm = getNamedOperand(LdSt, AMDGPU::OpName::offset); if (!OffsetImm) return false; const MachineOperand *SBaseReg = getNamedOperand(LdSt, AMDGPU::OpName::sbase); BaseReg = SBaseReg->getReg(); Offset = OffsetImm->getImm(); return true; } if (isFLAT(LdSt)) { const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr); BaseReg = AddrReg->getReg(); Offset = 0; return true; } return false; } bool SIInstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt, MachineInstr &SecondLdSt, unsigned NumLoads) const { const MachineOperand *FirstDst = nullptr; const MachineOperand *SecondDst = nullptr; if (isDS(FirstLdSt) && isDS(SecondLdSt)) { FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdst); SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdst); } if (isSMRD(FirstLdSt) && isSMRD(SecondLdSt)) { FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::sdst); SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::sdst); } if ((isMUBUF(FirstLdSt) && isMUBUF(SecondLdSt)) || (isMTBUF(FirstLdSt) && isMTBUF(SecondLdSt))) { FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdata); SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdata); } if (!FirstDst || !SecondDst) return false; // Try to limit clustering based on the total number of bytes loaded // rather than the number of instructions. This is done to help reduce // register pressure. The method used is somewhat inexact, though, // because it assumes that all loads in the cluster will load the // same number of bytes as FirstLdSt. // The unit of this value is bytes. // FIXME: This needs finer tuning. unsigned LoadClusterThreshold = 16; const MachineRegisterInfo &MRI = FirstLdSt.getParent()->getParent()->getRegInfo(); const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg()); return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold; } void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // If we are trying to copy to or from SCC, there is a bug somewhere else in // the backend. While it may be theoretically possible to do this, it should // never be necessary. assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC); static const int16_t Sub0_15[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, }; static const int16_t Sub0_15_64[] = { AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, }; static const int16_t Sub0_7[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, }; static const int16_t Sub0_7_64[] = { AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, }; static const int16_t Sub0_3[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, }; static const int16_t Sub0_3_64[] = { AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, }; static const int16_t Sub0_2[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, }; static const int16_t Sub0_1[] = { AMDGPU::sub0, AMDGPU::sub1, }; unsigned Opcode; ArrayRef<int16_t> SubIndices; bool Forward; if (AMDGPU::SReg_32RegClass.contains(DestReg)) { assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) { if (DestReg == AMDGPU::VCC) { if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) .addReg(SrcReg, getKillRegState(KillSrc)); } else { // FIXME: Hack until VReg_1 removed. assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32)) .addImm(0) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } assert(AMDGPU::SReg_64RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) { assert(AMDGPU::SReg_128RegClass.contains(SrcReg)); Opcode = AMDGPU::S_MOV_B64; SubIndices = Sub0_3_64; } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) { assert(AMDGPU::SReg_256RegClass.contains(SrcReg)); Opcode = AMDGPU::S_MOV_B64; SubIndices = Sub0_7_64; } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) { assert(AMDGPU::SReg_512RegClass.contains(SrcReg)); Opcode = AMDGPU::S_MOV_B64; SubIndices = Sub0_15_64; } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) { assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || AMDGPU::SReg_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) { assert(AMDGPU::VReg_64RegClass.contains(SrcReg) || AMDGPU::SReg_64RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_1; } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) { assert(AMDGPU::VReg_96RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_2; } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) { assert(AMDGPU::VReg_128RegClass.contains(SrcReg) || AMDGPU::SReg_128RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_3; } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) { assert(AMDGPU::VReg_256RegClass.contains(SrcReg) || AMDGPU::SReg_256RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_7; } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) { assert(AMDGPU::VReg_512RegClass.contains(SrcReg) || AMDGPU::SReg_512RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_15; } else { llvm_unreachable("Can't copy register!"); } if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg)) Forward = true; else Forward = false; for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { unsigned SubIdx; if (Forward) SubIdx = SubIndices[Idx]; else SubIdx = SubIndices[SubIndices.size() - Idx - 1]; MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, get(Opcode), RI.getSubReg(DestReg, SubIdx)); Builder.addReg(RI.getSubReg(SrcReg, SubIdx)); if (Idx == SubIndices.size() - 1) Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); if (Idx == 0) Builder.addReg(DestReg, RegState::Define | RegState::Implicit); } } int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const { const unsigned Opcode = MI.getOpcode(); int NewOpc; // Try to map original to commuted opcode NewOpc = AMDGPU::getCommuteRev(Opcode); if (NewOpc != -1) // Check if the commuted (REV) opcode exists on the target. return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; // Try to map commuted to original opcode NewOpc = AMDGPU::getCommuteOrig(Opcode); if (NewOpc != -1) // Check if the original (non-REV) opcode exists on the target. return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; return Opcode; } unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { if (DstRC->getSize() == 4) { return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) { return AMDGPU::S_MOV_B64; } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) { return AMDGPU::V_MOV_B64_PSEUDO; } return AMDGPU::COPY; } static unsigned getSGPRSpillSaveOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_S32_SAVE; case 8: return AMDGPU::SI_SPILL_S64_SAVE; case 16: return AMDGPU::SI_SPILL_S128_SAVE; case 32: return AMDGPU::SI_SPILL_S256_SAVE; case 64: return AMDGPU::SI_SPILL_S512_SAVE; default: llvm_unreachable("unknown register size"); } } static unsigned getVGPRSpillSaveOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_V32_SAVE; case 8: return AMDGPU::SI_SPILL_V64_SAVE; case 12: return AMDGPU::SI_SPILL_V96_SAVE; case 16: return AMDGPU::SI_SPILL_V128_SAVE; case 32: return AMDGPU::SI_SPILL_V256_SAVE; case 64: return AMDGPU::SI_SPILL_V512_SAVE; default: llvm_unreachable("unknown register size"); } } void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction *MF = MBB.getParent(); SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); MachineFrameInfo *FrameInfo = MF->getFrameInfo(); DebugLoc DL = MBB.findDebugLoc(MI); unsigned Size = FrameInfo->getObjectSize(FrameIndex); unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(*MF, FrameIndex); MachineMemOperand *MMO = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, Size, Align); if (RI.isSGPRClass(RC)) { MFI->setHasSpilledSGPRs(); if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) { // m0 may not be allowed for readlane. MachineRegisterInfo &MRI = MF->getRegInfo(); MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass); } // We are only allowed to create one new instruction when spilling // registers, so we need to use pseudo instruction for spilling // SGPRs. unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize()); BuildMI(MBB, MI, DL, get(Opcode)) .addReg(SrcReg, getKillRegState(isKill)) // src .addFrameIndex(FrameIndex) // frame_idx .addMemOperand(MMO); return; } if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { LLVMContext &Ctx = MF->getFunction()->getContext(); Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to" " spill register"); BuildMI(MBB, MI, DL, get(AMDGPU::KILL)) .addReg(SrcReg); return; } assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize()); MFI->setHasSpilledVGPRs(); BuildMI(MBB, MI, DL, get(Opcode)) .addReg(SrcReg, getKillRegState(isKill)) // src .addFrameIndex(FrameIndex) // frame_idx .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset .addImm(0) // offset .addMemOperand(MMO); } static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_S32_RESTORE; case 8: return AMDGPU::SI_SPILL_S64_RESTORE; case 16: return AMDGPU::SI_SPILL_S128_RESTORE; case 32: return AMDGPU::SI_SPILL_S256_RESTORE; case 64: return AMDGPU::SI_SPILL_S512_RESTORE; default: llvm_unreachable("unknown register size"); } } static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_V32_RESTORE; case 8: return AMDGPU::SI_SPILL_V64_RESTORE; case 12: return AMDGPU::SI_SPILL_V96_RESTORE; case 16: return AMDGPU::SI_SPILL_V128_RESTORE; case 32: return AMDGPU::SI_SPILL_V256_RESTORE; case 64: return AMDGPU::SI_SPILL_V512_RESTORE; default: llvm_unreachable("unknown register size"); } } void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction *MF = MBB.getParent(); const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); MachineFrameInfo *FrameInfo = MF->getFrameInfo(); DebugLoc DL = MBB.findDebugLoc(MI); unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); unsigned Size = FrameInfo->getObjectSize(FrameIndex); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(*MF, FrameIndex); MachineMemOperand *MMO = MF->getMachineMemOperand( PtrInfo, MachineMemOperand::MOLoad, Size, Align); if (RI.isSGPRClass(RC)) { // FIXME: Maybe this should not include a memoperand because it will be // lowered to non-memory instructions. unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize()); if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) { // m0 may not be allowed for readlane. MachineRegisterInfo &MRI = MF->getRegInfo(); MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass); } BuildMI(MBB, MI, DL, get(Opcode), DestReg) .addFrameIndex(FrameIndex) // frame_idx .addMemOperand(MMO); return; } if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { LLVMContext &Ctx = MF->getFunction()->getContext(); Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to" " restore register"); BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg); return; } assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize()); BuildMI(MBB, MI, DL, get(Opcode), DestReg) .addFrameIndex(FrameIndex) // frame_idx .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset .addImm(0) // offset .addMemOperand(MMO); } /// \param @Offset Offset in bytes of the FrameIndex being spilled unsigned SIInstrInfo::calculateLDSSpillAddress( MachineBasicBlock &MBB, MachineInstr &MI, RegScavenger *RS, unsigned TmpReg, unsigned FrameOffset, unsigned Size) const { MachineFunction *MF = MBB.getParent(); SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); DebugLoc DL = MBB.findDebugLoc(MI); unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF); unsigned WavefrontSize = ST.getWavefrontSize(); unsigned TIDReg = MFI->getTIDReg(); if (!MFI->hasCalculatedTID()) { MachineBasicBlock &Entry = MBB.getParent()->front(); MachineBasicBlock::iterator Insert = Entry.front(); DebugLoc DL = Insert->getDebugLoc(); TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass); if (TIDReg == AMDGPU::NoRegister) return TIDReg; if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) && WorkGroupSize > WavefrontSize) { unsigned TIDIGXReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X); unsigned TIDIGYReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y); unsigned TIDIGZReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z); unsigned InputPtrReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) { if (!Entry.isLiveIn(Reg)) Entry.addLiveIn(Reg); } RS->enterBasicBlock(Entry); // FIXME: Can we scavenge an SReg_64 and access the subregs? unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0) .addReg(InputPtrReg) .addImm(SI::KernelInputOffsets::NGROUPS_Z); BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1) .addReg(InputPtrReg) .addImm(SI::KernelInputOffsets::NGROUPS_Y); // NGROUPS.X * NGROUPS.Y BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1) .addReg(STmp1) .addReg(STmp0); // (NGROUPS.X * NGROUPS.Y) * TIDIG.X BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg) .addReg(STmp1) .addReg(TIDIGXReg); // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X) BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg) .addReg(STmp0) .addReg(TIDIGYReg) .addReg(TIDReg); // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg) .addReg(TIDReg) .addReg(TIDIGZReg); } else { // Get the wave id BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64), TIDReg) .addImm(-1) .addImm(0); BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64), TIDReg) .addImm(-1) .addReg(TIDReg); } BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32), TIDReg) .addImm(2) .addReg(TIDReg); MFI->setTIDReg(TIDReg); } // Add FrameIndex to LDS offset unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize); BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg) .addImm(LDSOffset) .addReg(TIDReg); return TmpReg; } void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, int Count) const { DebugLoc DL = MBB.findDebugLoc(MI); while (Count > 0) { int Arg; if (Count >= 8) Arg = 7; else Arg = Count - 1; Count -= 8; BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)) .addImm(Arg); } } void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { insertWaitStates(MBB, MI, 1); } unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const { switch (MI.getOpcode()) { default: return 1; // FIXME: Do wait states equal cycles? case AMDGPU::S_NOP: return MI.getOperand(0).getImm() + 1; } } bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MBB.findDebugLoc(MI); switch (MI.getOpcode()) { default: return AMDGPUInstrInfo::expandPostRAPseudo(MI); case AMDGPU::V_MOV_B64_PSEUDO: { unsigned Dst = MI.getOperand(0).getReg(); unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); const MachineOperand &SrcOp = MI.getOperand(1); // FIXME: Will this work for 64-bit floating point immediates? assert(!SrcOp.isFPImm()); if (SrcOp.isImm()) { APInt Imm(64, SrcOp.getImm()); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) .addImm(Imm.getLoBits(32).getZExtValue()) .addReg(Dst, RegState::Implicit | RegState::Define); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) .addImm(Imm.getHiBits(32).getZExtValue()) .addReg(Dst, RegState::Implicit | RegState::Define); } else { assert(SrcOp.isReg()); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) .addReg(Dst, RegState::Implicit | RegState::Define); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) .addReg(Dst, RegState::Implicit | RegState::Define); } MI.eraseFromParent(); break; } case AMDGPU::V_CNDMASK_B64_PSEUDO: { unsigned Dst = MI.getOperand(0).getReg(); unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); unsigned Src0 = MI.getOperand(1).getReg(); unsigned Src1 = MI.getOperand(2).getReg(); const MachineOperand &SrcCond = MI.getOperand(3); BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo) .addReg(RI.getSubReg(Src0, AMDGPU::sub0)) .addReg(RI.getSubReg(Src1, AMDGPU::sub0)) .addReg(SrcCond.getReg()) .addReg(Dst, RegState::Implicit | RegState::Define); BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi) .addReg(RI.getSubReg(Src0, AMDGPU::sub1)) .addReg(RI.getSubReg(Src1, AMDGPU::sub1)) .addReg(SrcCond.getReg(), getKillRegState(SrcCond.isKill())) .addReg(Dst, RegState::Implicit | RegState::Define); MI.eraseFromParent(); break; } case AMDGPU::SI_PC_ADD_REL_OFFSET: { const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(ST.getRegisterInfo()); MachineFunction &MF = *MBB.getParent(); unsigned Reg = MI.getOperand(0).getReg(); unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0); unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1); // Create a bundle so these instructions won't be re-ordered by the // post-RA scheduler. MIBundleBuilder Bundler(MBB, MI); Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); // Add 32-bit offset from this instruction to the start of the // constant data. Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo) .addReg(RegLo) .addOperand(MI.getOperand(1))); Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) .addReg(RegHi) .addImm(0)); llvm::finalizeBundle(MBB, Bundler.begin()); MI.eraseFromParent(); break; } } return true; } /// Commutes the operands in the given instruction. /// The commutable operands are specified by their indices OpIdx0 and OpIdx1. /// /// Do not call this method for a non-commutable instruction or for /// non-commutable pair of operand indices OpIdx0 and OpIdx1. /// Even though the instruction is commutable, the method may still /// fail to commute the operands, null pointer is returned in such cases. MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx0, unsigned OpIdx1) const { int CommutedOpcode = commuteOpcode(MI); if (CommutedOpcode == -1) return nullptr; int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); MachineOperand &Src0 = MI.getOperand(Src0Idx); if (!Src0.isReg()) return nullptr; int Src1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1); if ((OpIdx0 != static_cast<unsigned>(Src0Idx) || OpIdx1 != static_cast<unsigned>(Src1Idx)) && (OpIdx0 != static_cast<unsigned>(Src1Idx) || OpIdx1 != static_cast<unsigned>(Src0Idx))) return nullptr; MachineOperand &Src1 = MI.getOperand(Src1Idx); if (isVOP2(MI) || isVOPC(MI)) { const MCInstrDesc &InstrDesc = MI.getDesc(); // For VOP2 and VOPC instructions, any operand type is valid to use for // src0. Make sure we can use the src0 as src1. // // We could be stricter here and only allow commuting if there is a reason // to do so. i.e. if both operands are VGPRs there is no real benefit, // although MachineCSE attempts to find matches by commuting. const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) return nullptr; } MachineInstr *CommutedMI = &MI; if (!Src1.isReg()) { // Allow commuting instructions with Imm operands. if (NewMI || !Src1.isImm() || (!isVOP2(MI) && !isVOP3(MI))) { return nullptr; } // Be sure to copy the source modifiers to the right place. if (MachineOperand *Src0Mods = getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)) { MachineOperand *Src1Mods = getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); int Src0ModsVal = Src0Mods->getImm(); if (!Src1Mods && Src0ModsVal != 0) return nullptr; // XXX - This assert might be a lie. It might be useful to have a neg // modifier with 0.0. int Src1ModsVal = Src1Mods->getImm(); assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates"); Src1Mods->setImm(Src0ModsVal); Src0Mods->setImm(Src1ModsVal); } unsigned Reg = Src0.getReg(); unsigned SubReg = Src0.getSubReg(); if (Src1.isImm()) Src0.ChangeToImmediate(Src1.getImm()); else llvm_unreachable("Should only have immediates"); Src1.ChangeToRegister(Reg, false); Src1.setSubReg(SubReg); } else { CommutedMI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1); } if (CommutedMI) CommutedMI->setDesc(get(CommutedOpcode)); return CommutedMI; } // This needs to be implemented because the source modifiers may be inserted // between the true commutable operands, and the base // TargetInstrInfo::commuteInstruction uses it. bool SIInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx0, unsigned &SrcOpIdx1) const { const MCInstrDesc &MCID = MI.getDesc(); if (!MCID.isCommutable()) return false; unsigned Opc = MI.getOpcode(); int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); if (Src0Idx == -1) return false; // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on // immediate. Also, immediate src0 operand is not handled in // SIInstrInfo::commuteInstruction(); if (!MI.getOperand(Src0Idx).isReg()) return false; int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); if (Src1Idx == -1) return false; MachineOperand &Src1 = MI.getOperand(Src1Idx); if (Src1.isImm()) { // SIInstrInfo::commuteInstruction() does support commuting the immediate // operand src1 in 2 and 3 operand instructions. if (!isVOP2(MI.getOpcode()) && !isVOP3(MI.getOpcode())) return false; } else if (Src1.isReg()) { // If any source modifiers are set, the generic instruction commuting won't // understand how to copy the source modifiers. if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)) return false; } else return false; return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); } unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { switch (Cond) { case SIInstrInfo::SCC_TRUE: return AMDGPU::S_CBRANCH_SCC1; case SIInstrInfo::SCC_FALSE: return AMDGPU::S_CBRANCH_SCC0; case SIInstrInfo::VCCNZ: return AMDGPU::S_CBRANCH_VCCNZ; case SIInstrInfo::VCCZ: return AMDGPU::S_CBRANCH_VCCZ; case SIInstrInfo::EXECNZ: return AMDGPU::S_CBRANCH_EXECNZ; case SIInstrInfo::EXECZ: return AMDGPU::S_CBRANCH_EXECZ; default: llvm_unreachable("invalid branch predicate"); } } SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { switch (Opcode) { case AMDGPU::S_CBRANCH_SCC0: return SCC_FALSE; case AMDGPU::S_CBRANCH_SCC1: return SCC_TRUE; case AMDGPU::S_CBRANCH_VCCNZ: return VCCNZ; case AMDGPU::S_CBRANCH_VCCZ: return VCCZ; case AMDGPU::S_CBRANCH_EXECNZ: return EXECNZ; case AMDGPU::S_CBRANCH_EXECZ: return EXECZ; default: return INVALID_BR; } } bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { MachineBasicBlock::iterator I = MBB.getFirstTerminator(); if (I == MBB.end()) return false; if (I->getOpcode() == AMDGPU::S_BRANCH) { // Unconditional Branch TBB = I->getOperand(0).getMBB(); return false; } BranchPredicate Pred = getBranchPredicate(I->getOpcode()); if (Pred == INVALID_BR) return true; MachineBasicBlock *CondBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(Pred)); ++I; if (I == MBB.end()) { // Conditional branch followed by fall-through. TBB = CondBB; return false; } if (I->getOpcode() == AMDGPU::S_BRANCH) { TBB = CondBB; FBB = I->getOperand(0).getMBB(); return false; } return true; } unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.getFirstTerminator(); unsigned Count = 0; while (I != MBB.end()) { MachineBasicBlock::iterator Next = std::next(I); I->eraseFromParent(); ++Count; I = Next; } return Count; } unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, const DebugLoc &DL) const { if (!FBB && Cond.empty()) { BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) .addMBB(TBB); return 1; } assert(TBB && Cond[0].isImm()); unsigned Opcode = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); if (!FBB) { BuildMI(&MBB, DL, get(Opcode)) .addMBB(TBB); return 1; } assert(TBB && FBB); BuildMI(&MBB, DL, get(Opcode)) .addMBB(TBB); BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) .addMBB(FBB); return 2; } bool SIInstrInfo::ReverseBranchCondition( SmallVectorImpl<MachineOperand> &Cond) const { assert(Cond.size() == 1); Cond[0].setImm(-Cond[0].getImm()); return false; } static void removeModOperands(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2_modifiers); MI.RemoveOperand(Src2ModIdx); MI.RemoveOperand(Src1ModIdx); MI.RemoveOperand(Src0ModIdx); } // TODO: Maybe this should be removed this and custom fold everything in // SIFoldOperands? bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg, MachineRegisterInfo *MRI) const { if (!MRI->hasOneNonDBGUse(Reg)) return false; unsigned Opc = UseMI.getOpcode(); if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) { // Don't fold if we are using source modifiers. The new VOP2 instructions // don't have them. if (hasModifiersSet(UseMI, AMDGPU::OpName::src0_modifiers) || hasModifiersSet(UseMI, AMDGPU::OpName::src1_modifiers) || hasModifiersSet(UseMI, AMDGPU::OpName::src2_modifiers)) { return false; } const MachineOperand &ImmOp = DefMI.getOperand(1); // If this is a free constant, there's no reason to do this. // TODO: We could fold this here instead of letting SIFoldOperands do it // later. if (isInlineConstant(ImmOp, 4)) return false; MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); // Multiplied part is the constant: Use v_madmk_f32 // We should only expect these to be on src0 due to canonicalizations. if (Src0->isReg() && Src0->getReg() == Reg) { if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) return false; if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) return false; // We need to swap operands 0 and 1 since madmk constant is at operand 1. const int64_t Imm = DefMI.getOperand(1).getImm(); // FIXME: This would be a lot easier if we could return a new instruction // instead of having to modify in place. // Remove these first since they are at the end. UseMI.RemoveOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); UseMI.RemoveOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); unsigned Src1Reg = Src1->getReg(); unsigned Src1SubReg = Src1->getSubReg(); Src0->setReg(Src1Reg); Src0->setSubReg(Src1SubReg); Src0->setIsKill(Src1->isKill()); if (Opc == AMDGPU::V_MAC_F32_e64) { UseMI.untieRegOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); } Src1->ChangeToImmediate(Imm); removeModOperands(UseMI); UseMI.setDesc(get(AMDGPU::V_MADMK_F32)); bool DeleteDef = MRI->hasOneNonDBGUse(Reg); if (DeleteDef) DefMI.eraseFromParent(); return true; } // Added part is the constant: Use v_madak_f32 if (Src2->isReg() && Src2->getReg() == Reg) { // Not allowed to use constant bus for another operand. // We can however allow an inline immediate as src0. if (!Src0->isImm() && (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg())))) return false; if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) return false; const int64_t Imm = DefMI.getOperand(1).getImm(); // FIXME: This would be a lot easier if we could return a new instruction // instead of having to modify in place. // Remove these first since they are at the end. UseMI.RemoveOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); UseMI.RemoveOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); if (Opc == AMDGPU::V_MAC_F32_e64) { UseMI.untieRegOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); } // ChangingToImmediate adds Src2 back to the instruction. Src2->ChangeToImmediate(Imm); // These come before src2. removeModOperands(UseMI); UseMI.setDesc(get(AMDGPU::V_MADAK_F32)); bool DeleteDef = MRI->hasOneNonDBGUse(Reg); if (DeleteDef) DefMI.eraseFromParent(); return true; } } return false; } static bool offsetsDoNotOverlap(int WidthA, int OffsetA, int WidthB, int OffsetB) { int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; return LowOffset + LowWidth <= HighOffset; } bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr &MIa, MachineInstr &MIb) const { unsigned BaseReg0, BaseReg1; int64_t Offset0, Offset1; if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) && getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) { if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { // FIXME: Handle ds_read2 / ds_write2. return false; } unsigned Width0 = (*MIa.memoperands_begin())->getSize(); unsigned Width1 = (*MIb.memoperands_begin())->getSize(); if (BaseReg0 == BaseReg1 && offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) { return true; } } return false; } bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const { assert((MIa.mayLoad() || MIa.mayStore()) && "MIa must load from or modify a memory location"); assert((MIb.mayLoad() || MIb.mayStore()) && "MIb must load from or modify a memory location"); if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) return false; // XXX - Can we relax this between address spaces? if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) return false; // TODO: Should we check the address space from the MachineMemOperand? That // would allow us to distinguish objects we know don't alias based on the // underlying address space, even if it was lowered to a different one, // e.g. private accesses lowered to use MUBUF instructions on a scratch // buffer. if (isDS(MIa)) { if (isDS(MIb)) return checkInstOffsetsDoNotOverlap(MIa, MIb); return !isFLAT(MIb); } if (isMUBUF(MIa) || isMTBUF(MIa)) { if (isMUBUF(MIb) || isMTBUF(MIb)) return checkInstOffsetsDoNotOverlap(MIa, MIb); return !isFLAT(MIb) && !isSMRD(MIb); } if (isSMRD(MIa)) { if (isSMRD(MIb)) return checkInstOffsetsDoNotOverlap(MIa, MIb); return !isFLAT(MIb) && !isMUBUF(MIa) && !isMTBUF(MIa); } if (isFLAT(MIa)) { if (isFLAT(MIb)) return checkInstOffsetsDoNotOverlap(MIa, MIb); return false; } return false; } MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB, MachineInstr &MI, LiveVariables *LV) const { switch (MI.getOpcode()) { default: return nullptr; case AMDGPU::V_MAC_F32_e64: break; case AMDGPU::V_MAC_F32_e32: { const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); if (Src0->isImm() && !isInlineConstant(*Src0, 4)) return nullptr; break; } } const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); return BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::V_MAD_F32)) .addOperand(*Dst) .addImm(0) // Src0 mods .addOperand(*Src0) .addImm(0) // Src1 mods .addOperand(*Src1) .addImm(0) // Src mods .addOperand(*Src2) .addImm(0) // clamp .addImm(0); // omod } bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // XXX - Do we want the SP check in the base implementation? // Target-independent instructions do not have an implicit-use of EXEC, even // when they operate on VGPRs. Treating EXEC modifications as scheduling // boundaries prevents incorrect movements of such instructions. return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF) || MI.modifiesRegister(AMDGPU::EXEC, &RI); } bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { int64_t SVal = Imm.getSExtValue(); if (SVal >= -16 && SVal <= 64) return true; if (Imm.getBitWidth() == 64) { uint64_t Val = Imm.getZExtValue(); return (DoubleToBits(0.0) == Val) || (DoubleToBits(1.0) == Val) || (DoubleToBits(-1.0) == Val) || (DoubleToBits(0.5) == Val) || (DoubleToBits(-0.5) == Val) || (DoubleToBits(2.0) == Val) || (DoubleToBits(-2.0) == Val) || (DoubleToBits(4.0) == Val) || (DoubleToBits(-4.0) == Val); } // The actual type of the operand does not seem to matter as long // as the bits match one of the inline immediate values. For example: // // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, // so it is a legal inline immediate. // // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in // floating-point, so it is a legal inline immediate. uint32_t Val = Imm.getZExtValue(); return (FloatToBits(0.0f) == Val) || (FloatToBits(1.0f) == Val) || (FloatToBits(-1.0f) == Val) || (FloatToBits(0.5f) == Val) || (FloatToBits(-0.5f) == Val) || (FloatToBits(2.0f) == Val) || (FloatToBits(-2.0f) == Val) || (FloatToBits(4.0f) == Val) || (FloatToBits(-4.0f) == Val); } bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, unsigned OpSize) const { if (MO.isImm()) { // MachineOperand provides no way to tell the true operand size, since it // only records a 64-bit value. We need to know the size to determine if a // 32-bit floating point immediate bit pattern is legal for an integer // immediate. It would be for any 32-bit integer operand, but would not be // for a 64-bit one. unsigned BitSize = 8 * OpSize; return isInlineConstant(APInt(BitSize, MO.getImm(), true)); } return false; } bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO, unsigned OpSize) const { return MO.isImm() && !isInlineConstant(MO, OpSize); } static bool compareMachineOp(const MachineOperand &Op0, const MachineOperand &Op1) { if (Op0.getType() != Op1.getType()) return false; switch (Op0.getType()) { case MachineOperand::MO_Register: return Op0.getReg() == Op1.getReg(); case MachineOperand::MO_Immediate: return Op0.getImm() == Op1.getImm(); default: llvm_unreachable("Didn't expect to be comparing these operand types"); } } bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, const MachineOperand &MO) const { const MCOperandInfo &OpInfo = get(MI.getOpcode()).OpInfo[OpNo]; assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) return true; if (OpInfo.RegClass < 0) return false; unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize(); if (isLiteralConstant(MO, OpSize)) return RI.opCanUseLiteralConstant(OpInfo.OperandType); return RI.opCanUseInlineConstant(OpInfo.OperandType); } bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { int Op32 = AMDGPU::getVOPe32(Opcode); if (Op32 == -1) return false; return pseudoToMCOpcode(Op32) != -1; } bool SIInstrInfo::hasModifiers(unsigned Opcode) const { // The src0_modifier operand is present on all instructions // that have modifiers. return AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0_modifiers) != -1; } bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, unsigned OpName) const { const MachineOperand *Mods = getNamedOperand(MI, OpName); return Mods && Mods->getImm(); } bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, const MachineOperand &MO, unsigned OpSize) const { // Literal constants use the constant bus. if (isLiteralConstant(MO, OpSize)) return true; if (!MO.isReg() || !MO.isUse()) return false; if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); // FLAT_SCR is just an SGPR pair. if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR)) return true; // EXEC register uses the constant bus. if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC) return true; // SGPRs use the constant bus return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 || (!MO.isImplicit() && (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) || AMDGPU::SGPR_64RegClass.contains(MO.getReg())))); } static unsigned findImplicitSGPRRead(const MachineInstr &MI) { for (const MachineOperand &MO : MI.implicit_operands()) { // We only care about reads. if (MO.isDef()) continue; switch (MO.getReg()) { case AMDGPU::VCC: case AMDGPU::M0: case AMDGPU::FLAT_SCR: return MO.getReg(); default: break; } } return AMDGPU::NoRegister; } static bool shouldReadExec(const MachineInstr &MI) { if (SIInstrInfo::isVALU(MI)) { switch (MI.getOpcode()) { case AMDGPU::V_READLANE_B32: case AMDGPU::V_READLANE_B32_si: case AMDGPU::V_READLANE_B32_vi: case AMDGPU::V_WRITELANE_B32: case AMDGPU::V_WRITELANE_B32_si: case AMDGPU::V_WRITELANE_B32_vi: return false; } return true; } if (SIInstrInfo::isGenericOpcode(MI.getOpcode()) || SIInstrInfo::isSALU(MI) || SIInstrInfo::isSMRD(MI)) return false; return true; } bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const { uint16_t Opcode = MI.getOpcode(); const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); // Make sure the number of operands is correct. const MCInstrDesc &Desc = get(Opcode); if (!Desc.isVariadic() && Desc.getNumOperands() != MI.getNumExplicitOperands()) { ErrInfo = "Instruction has wrong number of operands."; return false; } // Make sure the register classes are correct. for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { if (MI.getOperand(i).isFPImm()) { ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " "all fp values to integers."; return false; } int RegClass = Desc.OpInfo[i].RegClass; switch (Desc.OpInfo[i].OperandType) { case MCOI::OPERAND_REGISTER: if (MI.getOperand(i).isImm()) { ErrInfo = "Illegal immediate value for operand."; return false; } break; case AMDGPU::OPERAND_REG_IMM32: break; case AMDGPU::OPERAND_REG_INLINE_C: if (isLiteralConstant(MI.getOperand(i), RI.getRegClass(RegClass)->getSize())) { ErrInfo = "Illegal immediate value for operand."; return false; } break; case MCOI::OPERAND_IMMEDIATE: case AMDGPU::OPERAND_KIMM32: // Check if this operand is an immediate. // FrameIndex operands will be replaced by immediates, so they are // allowed. if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { ErrInfo = "Expected immediate, but got non-immediate"; return false; } // Fall-through default: continue; } if (!MI.getOperand(i).isReg()) continue; if (RegClass != -1) { unsigned Reg = MI.getOperand(i).getReg(); if (Reg == AMDGPU::NoRegister || TargetRegisterInfo::isVirtualRegister(Reg)) continue; const TargetRegisterClass *RC = RI.getRegClass(RegClass); if (!RC->contains(Reg)) { ErrInfo = "Operand has incorrect register class."; return false; } } } // Verify VOP* if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI)) { // Only look at the true operands. Only a real operand can use the constant // bus, and we don't want to check pseudo-operands like the source modifier // flags. const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx }; unsigned ConstantBusCount = 0; if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1) ++ConstantBusCount; unsigned SGPRUsed = findImplicitSGPRRead(MI); if (SGPRUsed != AMDGPU::NoRegister) ++ConstantBusCount; for (int OpIdx : OpIndices) { if (OpIdx == -1) break; const MachineOperand &MO = MI.getOperand(OpIdx); if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) { if (MO.isReg()) { if (MO.getReg() != SGPRUsed) ++ConstantBusCount; SGPRUsed = MO.getReg(); } else { ++ConstantBusCount; } } } if (ConstantBusCount > 1) { ErrInfo = "VOP* instruction uses the constant bus more than once"; return false; } } // Verify misc. restrictions on specific instructions. if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 || Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) { const MachineOperand &Src0 = MI.getOperand(Src0Idx); const MachineOperand &Src1 = MI.getOperand(Src1Idx); const MachineOperand &Src2 = MI.getOperand(Src2Idx); if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { if (!compareMachineOp(Src0, Src1) && !compareMachineOp(Src0, Src2)) { ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; return false; } } } // Make sure we aren't losing exec uses in the td files. This mostly requires // being careful when using let Uses to try to add other use registers. if (shouldReadExec(MI)) { if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { ErrInfo = "VALU instruction does not implicitly read exec mask"; return false; } } return true; } unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) { switch (MI.getOpcode()) { default: return AMDGPU::INSTRUCTION_LIST_END; case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; case AMDGPU::COPY: return AMDGPU::COPY; case AMDGPU::PHI: return AMDGPU::PHI; case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; case AMDGPU::S_MOV_B32: return MI.getOperand(1).isReg() ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; case AMDGPU::S_ADD_I32: case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32; case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32; case AMDGPU::S_SUB_I32: case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32; case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32; case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32; case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32; case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32; case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32; case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32; case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32; case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32; case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64; case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64; case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64; case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32; case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32; case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32; case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32; case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32; case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32; case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32; case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32; case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32; case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32; case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32; case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32; case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32; case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32; case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32; case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32; case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; } } bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const { return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END; } const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, unsigned OpNo) const { const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); const MCInstrDesc &Desc = get(MI.getOpcode()); if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || Desc.OpInfo[OpNo].RegClass == -1) { unsigned Reg = MI.getOperand(OpNo).getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) return MRI.getRegClass(Reg); return RI.getPhysRegClass(Reg); } unsigned RCID = Desc.OpInfo[OpNo].RegClass; return RI.getRegClass(RCID); } bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const { switch (MI.getOpcode()) { case AMDGPU::COPY: case AMDGPU::REG_SEQUENCE: case AMDGPU::PHI: case AMDGPU::INSERT_SUBREG: return RI.hasVGPRs(getOpRegClass(MI, 0)); default: return RI.hasVGPRs(getOpRegClass(MI, OpNo)); } } void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { MachineBasicBlock::iterator I = MI; MachineBasicBlock *MBB = MI.getParent(); MachineOperand &MO = MI.getOperand(OpIdx); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass; const TargetRegisterClass *RC = RI.getRegClass(RCID); unsigned Opcode = AMDGPU::V_MOV_B32_e32; if (MO.isReg()) Opcode = AMDGPU::COPY; else if (RI.isSGPRClass(RC)) Opcode = AMDGPU::S_MOV_B32; const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC)) VRC = &AMDGPU::VReg_64RegClass; else VRC = &AMDGPU::VGPR_32RegClass; unsigned Reg = MRI.createVirtualRegister(VRC); DebugLoc DL = MBB->findDebugLoc(I); BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).addOperand(MO); MO.ChangeToRegister(Reg, false); } unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const { MachineBasicBlock *MBB = MI->getParent(); DebugLoc DL = MI->getDebugLoc(); unsigned SubReg = MRI.createVirtualRegister(SubRC); if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) .addReg(SuperReg.getReg(), 0, SubIdx); return SubReg; } // Just in case the super register is itself a sub-register, copy it to a new // value so we don't need to worry about merging its subreg index with the // SubIdx passed to this function. The register coalescer should be able to // eliminate this extra copy. unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC); BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) .addReg(NewSuperReg, 0, SubIdx); return SubReg; } MachineOperand SIInstrInfo::buildExtractSubRegOrImm( MachineBasicBlock::iterator MII, MachineRegisterInfo &MRI, MachineOperand &Op, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const { if (Op.isImm()) { // XXX - Is there a better way to do this? if (SubIdx == AMDGPU::sub0) return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF); if (SubIdx == AMDGPU::sub1) return MachineOperand::CreateImm(Op.getImm() >> 32); llvm_unreachable("Unhandled register index for immediate"); } unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, SubIdx, SubRC); return MachineOperand::CreateReg(SubReg, false); } // Change the order of operands from (0, 1, 2) to (0, 2, 1) void SIInstrInfo::swapOperands(MachineInstr &Inst) const { assert(Inst.getNumExplicitOperands() == 3); MachineOperand Op1 = Inst.getOperand(1); Inst.RemoveOperand(1); Inst.addOperand(Op1); } bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, const MCOperandInfo &OpInfo, const MachineOperand &MO) const { if (!MO.isReg()) return false; unsigned Reg = MO.getReg(); const TargetRegisterClass *RC = TargetRegisterInfo::isVirtualRegister(Reg) ? MRI.getRegClass(Reg) : RI.getPhysRegClass(Reg); const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo()); RC = TRI->getSubRegClass(RC, MO.getSubReg()); // In order to be legal, the common sub-class must be equal to the // class of the current operand. For example: // // v_mov_b32 s0 ; Operand defined as vsrc_32 // ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL // // s_sendmsg 0, s0 ; Operand defined as m0reg // ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC; } bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, const MCOperandInfo &OpInfo, const MachineOperand &MO) const { if (MO.isReg()) return isLegalRegOperand(MRI, OpInfo, MO); // Handle non-register types that are treated like immediates. assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); return true; } bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, const MachineOperand *MO) const { const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); const MCInstrDesc &InstDesc = MI.getDesc(); const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; const TargetRegisterClass *DefinedRC = OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; if (!MO) MO = &MI.getOperand(OpIdx); if (isVALU(MI) && usesConstantBus(MRI, *MO, DefinedRC->getSize())) { RegSubRegPair SGPRUsed; if (MO->isReg()) SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg()); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { if (i == OpIdx) continue; const MachineOperand &Op = MI.getOperand(i); if (Op.isReg()) { if ((Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) && usesConstantBus(MRI, Op, getOpSize(MI, i))) { return false; } } else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) { return false; } } } if (MO->isReg()) { assert(DefinedRC); return isLegalRegOperand(MRI, OpInfo, *MO); } // Handle non-register types that are treated like immediates. assert(MO->isImm() || MO->isTargetIndex() || MO->isFI()); if (!DefinedRC) { // This operand expects an immediate. return true; } return isImmOperandLegal(MI, OpIdx, *MO); } void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); const MCInstrDesc &InstrDesc = get(Opc); int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); MachineOperand &Src1 = MI.getOperand(Src1Idx); // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 // we need to only have one constant bus use. // // Note we do not need to worry about literal constants here. They are // disabled for the operand type for instructions because they will always // violate the one constant bus use rule. bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister; if (HasImplicitSGPR) { int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); MachineOperand &Src0 = MI.getOperand(Src0Idx); if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) legalizeOpWithMove(MI, Src0Idx); } // VOP2 src0 instructions support all operand types, so we don't need to check // their legality. If src1 is already legal, we don't need to do anything. if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1)) return; // We do not use commuteInstruction here because it is too aggressive and will // commute if it is possible. We only want to commute here if it improves // legality. This can be called a fairly large number of times so don't waste // compile time pointlessly swapping and checking legality again. if (HasImplicitSGPR || !MI.isCommutable()) { legalizeOpWithMove(MI, Src1Idx); return; } int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); MachineOperand &Src0 = MI.getOperand(Src0Idx); // If src0 can be used as src1, commuting will make the operands legal. // Otherwise we have to give up and insert a move. // // TODO: Other immediate-like operand kinds could be commuted if there was a // MachineOperand::ChangeTo* for them. if ((!Src1.isImm() && !Src1.isReg()) || !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) { legalizeOpWithMove(MI, Src1Idx); return; } int CommutedOpc = commuteOpcode(MI); if (CommutedOpc == -1) { legalizeOpWithMove(MI, Src1Idx); return; } MI.setDesc(get(CommutedOpc)); unsigned Src0Reg = Src0.getReg(); unsigned Src0SubReg = Src0.getSubReg(); bool Src0Kill = Src0.isKill(); if (Src1.isImm()) Src0.ChangeToImmediate(Src1.getImm()); else if (Src1.isReg()) { Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); Src0.setSubReg(Src1.getSubReg()); } else llvm_unreachable("Should only have register or immediate operands"); Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); Src1.setSubReg(Src0SubReg); } // Legalize VOP3 operands. Because all operand types are supported for any // operand, and since literal constants are not allowed and should never be // seen, we only need to worry about inserting copies if we use multiple SGPR // operands. void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); int VOP3Idx[3] = { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) }; // Find the one SGPR operand we are allowed to use. unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx); for (unsigned i = 0; i < 3; ++i) { int Idx = VOP3Idx[i]; if (Idx == -1) break; MachineOperand &MO = MI.getOperand(Idx); // We should never see a VOP3 instruction with an illegal immediate operand. if (!MO.isReg()) continue; if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg()))) continue; // VGPRs are legal if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) { SGPRReg = MO.getReg(); // We can use one SGPR in each VOP3 instruction. continue; } // If we make it this far, then the operand is not legal and we must // legalize it. legalizeOpWithMove(MI, Idx); } } unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr &UseMI, MachineRegisterInfo &MRI) const { const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); unsigned DstReg = MRI.createVirtualRegister(SRC); unsigned SubRegs = VRC->getSize() / 4; SmallVector<unsigned, 8> SRegs; for (unsigned i = 0; i < SubRegs; ++i) { unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(AMDGPU::V_READFIRSTLANE_B32), SGPR) .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); SRegs.push_back(SGPR); } MachineInstrBuilder MIB = BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), DstReg); for (unsigned i = 0; i < SubRegs; ++i) { MIB.addReg(SRegs[i]); MIB.addImm(RI.getSubRegFromChannel(i)); } return DstReg; } void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, MachineInstr &MI) const { // If the pointer is store in VGPRs, then we need to move them to // SGPRs using v_readfirstlane. This is safe because we only select // loads with uniform pointers to SMRD instruction so we know the // pointer value is uniform. MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); SBase->setReg(SGPR); } } void SIInstrInfo::legalizeOperands(MachineInstr &MI) const { MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); // Legalize VOP2 if (isVOP2(MI) || isVOPC(MI)) { legalizeOperandsVOP2(MRI, MI); return; } // Legalize VOP3 if (isVOP3(MI)) { legalizeOperandsVOP3(MRI, MI); return; } // Legalize SMRD if (isSMRD(MI)) { legalizeOperandsSMRD(MRI, MI); return; } // Legalize REG_SEQUENCE and PHI // The register class of the operands much be the same type as the register // class of the output. if (MI.getOpcode() == AMDGPU::PHI) { const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { if (!MI.getOperand(i).isReg() || !TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg())) continue; const TargetRegisterClass *OpRC = MRI.getRegClass(MI.getOperand(i).getReg()); if (RI.hasVGPRs(OpRC)) { VRC = OpRC; } else { SRC = OpRC; } } // If any of the operands are VGPR registers, then they all most be // otherwise we will create illegal VGPR->SGPR copies when legalizing // them. if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { if (!VRC) { assert(SRC); VRC = RI.getEquivalentVGPRClass(SRC); } RC = VRC; } else { RC = SRC; } // Update all the operands so they have the same type. for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { MachineOperand &Op = MI.getOperand(I); if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) continue; unsigned DstReg = MRI.createVirtualRegister(RC); // MI is a PHI instruction. MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); BuildMI(*InsertBB, Insert, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg) .addOperand(Op); Op.setReg(DstReg); } } // REG_SEQUENCE doesn't really require operand legalization, but if one has a // VGPR dest type and SGPR sources, insert copies so all operands are // VGPRs. This seems to help operand folding / the register coalescer. if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { MachineBasicBlock *MBB = MI.getParent(); const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); if (RI.hasVGPRs(DstRC)) { // Update all the operands so they are VGPR register classes. These may // not be the same register class because REG_SEQUENCE supports mixing // subregister index types e.g. sub0_sub1 + sub2 + sub3 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { MachineOperand &Op = MI.getOperand(I); if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) continue; const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); if (VRC == OpRC) continue; unsigned DstReg = MRI.createVirtualRegister(VRC); BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg) .addOperand(Op); Op.setReg(DstReg); Op.setIsKill(); } } return; } // Legalize INSERT_SUBREG // src0 must have the same register class as dst if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { unsigned Dst = MI.getOperand(0).getReg(); unsigned Src0 = MI.getOperand(1).getReg(); const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); if (DstRC != Src0RC) { MachineBasicBlock &MBB = *MI.getParent(); unsigned NewSrc0 = MRI.createVirtualRegister(DstRC); BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), NewSrc0) .addReg(Src0); MI.getOperand(1).setReg(NewSrc0); } return; } // Legalize MIMG if (isMIMG(MI)) { MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc); if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) { unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI); SRsrc->setReg(SGPR); } MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp); if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) { unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI); SSamp->setReg(SGPR); } return; } // Legalize MUBUF* instructions // FIXME: If we start using the non-addr64 instructions for compute, we // may need to legalize them here. int SRsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); if (SRsrcIdx != -1) { // We have an MUBUF instruction MachineOperand *SRsrc = &MI.getOperand(SRsrcIdx); unsigned SRsrcRC = get(MI.getOpcode()).OpInfo[SRsrcIdx].RegClass; if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()), RI.getRegClass(SRsrcRC))) { // The operands are legal. // FIXME: We may need to legalize operands besided srsrc. return; } MachineBasicBlock &MBB = *MI.getParent(); // Extract the ptr from the resource descriptor. unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc, &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); // Create an empty resource descriptor unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass); uint64_t RsrcDataFormat = getDefaultRsrcDataFormat(); // Zero64 = 0 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B64), Zero64) .addImm(0); // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatLo) .addImm(RsrcDataFormat & 0xFFFFFFFF); // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatHi) .addImm(RsrcDataFormat >> 32); // NewSRsrc = {Zero64, SRsrcFormat} BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc) .addReg(Zero64) .addImm(AMDGPU::sub0_sub1) .addReg(SRsrcFormatLo) .addImm(AMDGPU::sub2) .addReg(SRsrcFormatHi) .addImm(AMDGPU::sub3); MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); if (VAddr) { // This is already an ADDR64 instruction so we need to add the pointer // extracted from the resource descriptor to the current value of VAddr. unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0 DebugLoc DL = MI.getDebugLoc(); BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo) .addReg(SRsrcPtr, 0, AMDGPU::sub0) .addReg(VAddr->getReg(), 0, AMDGPU::sub0); // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi) .addReg(SRsrcPtr, 0, AMDGPU::sub1) .addReg(VAddr->getReg(), 0, AMDGPU::sub1); // NewVaddr = {NewVaddrHi, NewVaddrLo} BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) .addReg(NewVAddrLo) .addImm(AMDGPU::sub0) .addReg(NewVAddrHi) .addImm(AMDGPU::sub1); } else { // This instructions is the _OFFSET variant, so we need to convert it to // ADDR64. assert(MBB.getParent()->getSubtarget<SISubtarget>().getGeneration() < SISubtarget::VOLCANIC_ISLANDS && "FIXME: Need to emit flat atomics here"); MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); // Atomics rith return have have an additional tied operand and are // missing some of the special bits. MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); MachineInstr *Addr64; if (!VDataIn) { // Regular buffer load / store. MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) .addOperand(*VData) .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. // This will be replaced later // with the new value of vaddr. .addOperand(*SRsrc) .addOperand(*SOffset) .addOperand(*Offset); // Atomics do not have this operand. if (const MachineOperand *GLC = getNamedOperand(MI, AMDGPU::OpName::glc)) { MIB.addImm(GLC->getImm()); } MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc)); if (const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe)) { MIB.addImm(TFE->getImm()); } MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); Addr64 = MIB; } else { // Atomics with return. Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) .addOperand(*VData) .addOperand(*VDataIn) .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. // This will be replaced later // with the new value of vaddr. .addOperand(*SRsrc) .addOperand(*SOffset) .addOperand(*Offset) .addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc)) .setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); } MI.removeFromParent(); // NewVaddr = {NewVaddrHi, NewVaddrLo} BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) .addReg(SRsrcPtr, 0, AMDGPU::sub0) .addImm(AMDGPU::sub0) .addReg(SRsrcPtr, 0, AMDGPU::sub1) .addImm(AMDGPU::sub1); VAddr = getNamedOperand(*Addr64, AMDGPU::OpName::vaddr); SRsrc = getNamedOperand(*Addr64, AMDGPU::OpName::srsrc); } // Update the instruction to use NewVaddr VAddr->setReg(NewVAddr); // Update the instruction to use NewSRsrc SRsrc->setReg(NewSRsrc); } } void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const { SmallVector<MachineInstr *, 128> Worklist; Worklist.push_back(&TopInst); while (!Worklist.empty()) { MachineInstr &Inst = *Worklist.pop_back_val(); MachineBasicBlock *MBB = Inst.getParent(); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); unsigned Opcode = Inst.getOpcode(); unsigned NewOpcode = getVALUOp(Inst); // Handle some special cases switch (Opcode) { default: break; case AMDGPU::S_AND_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64); Inst.eraseFromParent(); continue; case AMDGPU::S_OR_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64); Inst.eraseFromParent(); continue; case AMDGPU::S_XOR_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64); Inst.eraseFromParent(); continue; case AMDGPU::S_NOT_B64: splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32); Inst.eraseFromParent(); continue; case AMDGPU::S_BCNT1_I32_B64: splitScalar64BitBCNT(Worklist, Inst); Inst.eraseFromParent(); continue; case AMDGPU::S_BFE_I64: { splitScalar64BitBFE(Worklist, Inst); Inst.eraseFromParent(); continue; } case AMDGPU::S_LSHL_B32: if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { NewOpcode = AMDGPU::V_LSHLREV_B32_e64; swapOperands(Inst); } break; case AMDGPU::S_ASHR_I32: if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { NewOpcode = AMDGPU::V_ASHRREV_I32_e64; swapOperands(Inst); } break; case AMDGPU::S_LSHR_B32: if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { NewOpcode = AMDGPU::V_LSHRREV_B32_e64; swapOperands(Inst); } break; case AMDGPU::S_LSHL_B64: if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { NewOpcode = AMDGPU::V_LSHLREV_B64; swapOperands(Inst); } break; case AMDGPU::S_ASHR_I64: if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { NewOpcode = AMDGPU::V_ASHRREV_I64; swapOperands(Inst); } break; case AMDGPU::S_LSHR_B64: if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { NewOpcode = AMDGPU::V_LSHRREV_B64; swapOperands(Inst); } break; case AMDGPU::S_ABS_I32: lowerScalarAbs(Worklist, Inst); Inst.eraseFromParent(); continue; case AMDGPU::S_CBRANCH_SCC0: case AMDGPU::S_CBRANCH_SCC1: // Clear unused bits of vcc BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B64), AMDGPU::VCC) .addReg(AMDGPU::EXEC) .addReg(AMDGPU::VCC); break; case AMDGPU::S_BFE_U64: case AMDGPU::S_BFM_B64: llvm_unreachable("Moving this op to VALU not implemented"); } if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { // We cannot move this instruction to the VALU, so we should try to // legalize its operands instead. legalizeOperands(Inst); continue; } // Use the new VALU Opcode. const MCInstrDesc &NewDesc = get(NewOpcode); Inst.setDesc(NewDesc); // Remove any references to SCC. Vector instructions can't read from it, and // We're just about to add the implicit use / defs of VCC, and we don't want // both. for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) { MachineOperand &Op = Inst.getOperand(i); if (Op.isReg() && Op.getReg() == AMDGPU::SCC) { Inst.RemoveOperand(i); addSCCDefUsersToVALUWorklist(Inst, Worklist); } } if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { // We are converting these to a BFE, so we need to add the missing // operands for the size and offset. unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; Inst.addOperand(MachineOperand::CreateImm(0)); Inst.addOperand(MachineOperand::CreateImm(Size)); } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { // The VALU version adds the second operand to the result, so insert an // extra 0 operand. Inst.addOperand(MachineOperand::CreateImm(0)); } Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent()); if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { const MachineOperand &OffsetWidthOp = Inst.getOperand(2); // If we need to move this to VGPRs, we need to unpack the second operand // back into the 2 separate ones for bit offset and width. assert(OffsetWidthOp.isImm() && "Scalar BFE is only implemented for constant width and offset"); uint32_t Imm = OffsetWidthOp.getImm(); uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. Inst.RemoveOperand(2); // Remove old immediate. Inst.addOperand(MachineOperand::CreateImm(Offset)); Inst.addOperand(MachineOperand::CreateImm(BitWidth)); } bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef(); unsigned NewDstReg = AMDGPU::NoRegister; if (HasDst) { // Update the destination register class. const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); if (!NewDstRC) continue; unsigned DstReg = Inst.getOperand(0).getReg(); NewDstReg = MRI.createVirtualRegister(NewDstRC); MRI.replaceRegWith(DstReg, NewDstReg); } // Legalize the operands legalizeOperands(Inst); if (HasDst) addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); } } void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; DebugLoc DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src = Inst.getOperand(1); unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg) .addImm(0) .addReg(Src.getReg()); BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) .addReg(Src.getReg()) .addReg(TmpReg); MRI.replaceRegWith(Dest.getReg(), ResultReg); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitUnaryOp( SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst, unsigned Opcode) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); DebugLoc DL = Inst.getDebugLoc(); MachineBasicBlock::iterator MII = Inst; const MCInstrDesc &InstDesc = get(Opcode); const TargetRegisterClass *Src0RC = Src0.isReg() ? MRI.getRegClass(Src0.getReg()) : &AMDGPU::SGPR_32RegClass; const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); BuildMI(MBB, MII, DL, InstDesc, DestSub0) .addOperand(SrcReg0Sub0); MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); BuildMI(MBB, MII, DL, InstDesc, DestSub1) .addOperand(SrcReg0Sub1); unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), FullDestReg); // We don't need to legalizeOperands here because for a single operand, src0 // will support any kind of input. // Move all users of this moved value. addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitBinaryOp( SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst, unsigned Opcode) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); DebugLoc DL = Inst.getDebugLoc(); MachineBasicBlock::iterator MII = Inst; const MCInstrDesc &InstDesc = get(Opcode); const TargetRegisterClass *Src0RC = Src0.isReg() ? MRI.getRegClass(Src0.getReg()) : &AMDGPU::SGPR_32RegClass; const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); const TargetRegisterClass *Src1RC = Src1.isReg() ? MRI.getRegClass(Src1.getReg()) : &AMDGPU::SGPR_32RegClass; const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) .addOperand(SrcReg0Sub0) .addOperand(SrcReg1Sub0); MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) .addOperand(SrcReg0Sub1) .addOperand(SrcReg1Sub1); unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), FullDestReg); // Try to legalize the operands in case we need to swap the order to keep it // valid. legalizeOperands(LoHalf); legalizeOperands(HiHalf); // Move all users of this moved vlaue. addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitBCNT( SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; DebugLoc DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src = Inst.getOperand(1); const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); const TargetRegisterClass *SrcRC = Src.isReg() ? MRI.getRegClass(Src.getReg()) : &AMDGPU::SGPR_32RegClass; unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0); MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub0, SrcSubRC); MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub1, SrcSubRC); BuildMI(MBB, MII, DL, InstDesc, MidReg) .addOperand(SrcRegSub0) .addImm(0); BuildMI(MBB, MII, DL, InstDesc, ResultReg) .addOperand(SrcRegSub1) .addReg(MidReg); MRI.replaceRegWith(Dest.getReg(), ResultReg); // We don't need to legalize operands here. src0 for etiher instruction can be // an SGPR, and the second input is unused or determined here. addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; DebugLoc DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); uint32_t Imm = Inst.getOperand(2).getImm(); uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. (void) Offset; // Only sext_inreg cases handled. assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && Offset == 0 && "Not implemented"); if (BitWidth < 32) { unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo) .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) .addImm(0) .addImm(BitWidth); BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) .addImm(31) .addReg(MidRegLo); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) .addReg(MidRegLo) .addImm(AMDGPU::sub0) .addReg(MidRegHi) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), ResultReg); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); return; } MachineOperand &Src = Inst.getOperand(1); unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) .addImm(31) .addReg(Src.getReg(), 0, AMDGPU::sub0); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) .addReg(Src.getReg(), 0, AMDGPU::sub0) .addImm(AMDGPU::sub0) .addReg(TmpReg) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), ResultReg); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); } void SIInstrInfo::addUsersToMoveToVALUWorklist( unsigned DstReg, MachineRegisterInfo &MRI, SmallVectorImpl<MachineInstr *> &Worklist) const { for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), E = MRI.use_end(); I != E; ++I) { MachineInstr &UseMI = *I->getParent(); if (!canReadVGPR(UseMI, I.getOperandNo())) { Worklist.push_back(&UseMI); } } } void SIInstrInfo::addSCCDefUsersToVALUWorklist( MachineInstr &SCCDefInst, SmallVectorImpl<MachineInstr *> &Worklist) const { // This assumes that all the users of SCC are in the same block // as the SCC def. for (MachineInstr &MI : llvm::make_range(MachineBasicBlock::iterator(SCCDefInst), SCCDefInst.getParent()->end())) { // Exit if we find another SCC def. if (MI.findRegisterDefOperandIdx(AMDGPU::SCC) != -1) return; if (MI.findRegisterUseOperandIdx(AMDGPU::SCC) != -1) Worklist.push_back(&MI); } } const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( const MachineInstr &Inst) const { const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); switch (Inst.getOpcode()) { // For target instructions, getOpRegClass just returns the virtual register // class associated with the operand, so we need to find an equivalent VGPR // register class in order to move the instruction to the VALU. case AMDGPU::COPY: case AMDGPU::PHI: case AMDGPU::REG_SEQUENCE: case AMDGPU::INSERT_SUBREG: if (RI.hasVGPRs(NewDstRC)) return nullptr; NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); if (!NewDstRC) return nullptr; return NewDstRC; default: return NewDstRC; } } // Find the one SGPR operand we are allowed to use. unsigned SIInstrInfo::findUsedSGPR(const MachineInstr &MI, int OpIndices[3]) const { const MCInstrDesc &Desc = MI.getDesc(); // Find the one SGPR operand we are allowed to use. // // First we need to consider the instruction's operand requirements before // legalizing. Some operands are required to be SGPRs, such as implicit uses // of VCC, but we are still bound by the constant bus requirement to only use // one. // // If the operand's class is an SGPR, we can never move it. unsigned SGPRReg = findImplicitSGPRRead(MI); if (SGPRReg != AMDGPU::NoRegister) return SGPRReg; unsigned UsedSGPRs[3] = { AMDGPU::NoRegister }; const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); for (unsigned i = 0; i < 3; ++i) { int Idx = OpIndices[i]; if (Idx == -1) break; const MachineOperand &MO = MI.getOperand(Idx); if (!MO.isReg()) continue; // Is this operand statically required to be an SGPR based on the operand // constraints? const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass); bool IsRequiredSGPR = RI.isSGPRClass(OpRC); if (IsRequiredSGPR) return MO.getReg(); // If this could be a VGPR or an SGPR, Check the dynamic register class. unsigned Reg = MO.getReg(); const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); if (RI.isSGPRClass(RegRC)) UsedSGPRs[i] = Reg; } // We don't have a required SGPR operand, so we have a bit more freedom in // selecting operands to move. // Try to select the most used SGPR. If an SGPR is equal to one of the // others, we choose that. // // e.g. // V_FMA_F32 v0, s0, s0, s0 -> No moves // V_FMA_F32 v0, s0, s1, s0 -> Move s1 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should // prefer those. if (UsedSGPRs[0] != AMDGPU::NoRegister) { if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) SGPRReg = UsedSGPRs[0]; } if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) { if (UsedSGPRs[1] == UsedSGPRs[2]) SGPRReg = UsedSGPRs[1]; } return SGPRReg; } MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, unsigned OperandName) const { int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); if (Idx == -1) return nullptr; return &MI.getOperand(Idx); } uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; if (ST.isAmdHsaOS()) { RsrcDataFormat |= (1ULL << 56); if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) // Set MTYPE = 2 RsrcDataFormat |= (2ULL << 59); } return RsrcDataFormat; } uint64_t SIInstrInfo::getScratchRsrcWords23() const { uint64_t Rsrc23 = getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE | 0xffffffff; // Size; uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1; Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT) | // IndexStride = 64 (UINT64_C(3) << AMDGPU::RSRC_INDEX_STRIDE_SHIFT); // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. // Clear them unless we want a huge stride. if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; return Rsrc23; } bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); return isSMRD(Opc); } bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc); } unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); unsigned DescSize = Desc.getSize(); // If we have a definitive size, we can use it. Otherwise we need to inspect // the operands to know the size. if (DescSize == 8 || DescSize == 4) return DescSize; assert(DescSize == 0); // 4-byte instructions may have a 32-bit literal encoded after them. Check // operands that coud ever be literals. if (isVALU(MI) || isSALU(MI)) { int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); if (Src0Idx == -1) return 4; // No operands. if (isLiteralConstant(MI.getOperand(Src0Idx), getOpSize(MI, Src0Idx))) return 8; int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); if (Src1Idx == -1) return 4; if (isLiteralConstant(MI.getOperand(Src1Idx), getOpSize(MI, Src1Idx))) return 8; return 4; } switch (Opc) { case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::DBG_VALUE: case TargetOpcode::BUNDLE: case TargetOpcode::EH_LABEL: return 0; case TargetOpcode::INLINEASM: { const MachineFunction *MF = MI.getParent()->getParent(); const char *AsmStr = MI.getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } default: llvm_unreachable("unable to find instruction size"); } } ArrayRef<std::pair<int, const char *>> SIInstrInfo::getSerializableTargetIndices() const { static const std::pair<int, const char *> TargetIndices[] = { {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; return makeArrayRef(TargetIndices); } /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The /// post-RA version of misched uses CreateTargetMIHazardRecognizer. ScheduleHazardRecognizer * SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { return new GCNHazardRecognizer(DAG->MF); } /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer /// pass. ScheduleHazardRecognizer * SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { return new GCNHazardRecognizer(MF); }