//===-- R600InstrInfo.h - R600 Instruction Info Interface -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Interface definition for R600InstrInfo // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AMDGPU_R600INSTRINFO_H #define LLVM_LIB_TARGET_AMDGPU_R600INSTRINFO_H #include "AMDGPUInstrInfo.h" #include "R600RegisterInfo.h" namespace llvm { class AMDGPUTargetMachine; class DFAPacketizer; class MachineFunction; class MachineInstr; class MachineInstrBuilder; class R600Subtarget; class R600InstrInfo final : public AMDGPUInstrInfo { private: const R600RegisterInfo RI; const R600Subtarget &ST; std::vector<std::pair<int, unsigned>> ExtractSrcs(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PV, unsigned &ConstCount) const; MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg, unsigned AddrChan) const; MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg, unsigned AddrChan) const; public: enum BankSwizzle { ALU_VEC_012_SCL_210 = 0, ALU_VEC_021_SCL_122, ALU_VEC_120_SCL_212, ALU_VEC_102_SCL_221, ALU_VEC_201, ALU_VEC_210 }; explicit R600InstrInfo(const R600Subtarget &); const R600RegisterInfo &getRegisterInfo() const { return RI; } void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const override; bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const override; bool isTrig(const MachineInstr &MI) const; bool isPlaceHolderOpcode(unsigned opcode) const; bool isReductionOp(unsigned opcode) const; bool isCubeOp(unsigned opcode) const; /// \returns true if this \p Opcode represents an ALU instruction. bool isALUInstr(unsigned Opcode) const; bool hasInstrModifiers(unsigned Opcode) const; bool isLDSInstr(unsigned Opcode) const; bool isLDSNoRetInstr(unsigned Opcode) const; bool isLDSRetInstr(unsigned Opcode) const; /// \returns true if this \p Opcode represents an ALU instruction or an /// instruction that will be lowered in ExpandSpecialInstrs Pass. bool canBeConsideredALU(const MachineInstr &MI) const; bool isTransOnly(unsigned Opcode) const; bool isTransOnly(const MachineInstr &MI) const; bool isVectorOnly(unsigned Opcode) const; bool isVectorOnly(const MachineInstr &MI) const; bool isExport(unsigned Opcode) const; bool usesVertexCache(unsigned Opcode) const; bool usesVertexCache(const MachineInstr &MI) const; bool usesTextureCache(unsigned Opcode) const; bool usesTextureCache(const MachineInstr &MI) const; bool mustBeLastInClause(unsigned Opcode) const; bool usesAddressRegister(MachineInstr &MI) const; bool definesAddressRegister(MachineInstr &MI) const; bool readsLDSSrcReg(const MachineInstr &MI) const; /// \returns The operand index for the given source number. Legal values /// for SrcNum are 0, 1, and 2. int getSrcIdx(unsigned Opcode, unsigned SrcNum) const; /// \returns The operand Index for the Sel operand given an index to one /// of the instruction's src operands. int getSelIdx(unsigned Opcode, unsigned SrcIdx) const; /// \returns a pair for each src of an ALU instructions. /// The first member of a pair is the register id. /// If register is ALU_CONST, second member is SEL. /// If register is ALU_LITERAL, second member is IMM. /// Otherwise, second member value is undefined. SmallVector<std::pair<MachineOperand *, int64_t>, 3> getSrcs(MachineInstr &MI) const; unsigned isLegalUpTo( const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs, const std::vector<R600InstrInfo::BankSwizzle> &Swz, const std::vector<std::pair<int, unsigned> > &TransSrcs, R600InstrInfo::BankSwizzle TransSwz) const; bool FindSwizzleForVectorSlot( const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs, std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate, const std::vector<std::pair<int, unsigned> > &TransSrcs, R600InstrInfo::BankSwizzle TransSwz) const; /// Given the order VEC_012 < VEC_021 < VEC_120 < VEC_102 < VEC_201 < VEC_210 /// returns true and the first (in lexical order) BankSwizzle affectation /// starting from the one already provided in the Instruction Group MIs that /// fits Read Port limitations in BS if available. Otherwise returns false /// and undefined content in BS. /// isLastAluTrans should be set if the last Alu of MIs will be executed on /// Trans ALU. In this case, ValidTSwizzle returns the BankSwizzle value to /// apply to the last instruction. /// PV holds GPR to PV registers in the Instruction Group MIs. bool fitsReadPortLimitations(const std::vector<MachineInstr *> &MIs, const DenseMap<unsigned, unsigned> &PV, std::vector<BankSwizzle> &BS, bool isLastAluTrans) const; /// An instruction group can only access 2 channel pair (either [XY] or [ZW]) /// from KCache bank on R700+. This function check if MI set in input meet /// this limitations bool fitsConstReadLimitations(const std::vector<MachineInstr *> &) const; /// Same but using const index set instead of MI set. bool fitsConstReadLimitations(const std::vector<unsigned>&) const; /// \brief Vector instructions are instructions that must fill all /// instruction slots within an instruction group. bool isVector(const MachineInstr &MI) const; bool isMov(unsigned Opcode) const; DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &) const override; bool ReverseBranchCondition( SmallVectorImpl<MachineOperand> &Cond) const override; bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const override; unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, const DebugLoc &DL) const override; unsigned RemoveBranch(MachineBasicBlock &MBB) const override; bool isPredicated(const MachineInstr &MI) const override; bool isPredicable(MachineInstr &MI) const override; bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, BranchProbability Probability) const override; bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, unsigned ExtraPredCycles, BranchProbability Probability) const override ; bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const override; bool DefinesPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred) const override; bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, ArrayRef<MachineOperand> Pred2) const override; bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const override; bool PredicateInstruction(MachineInstr &MI, ArrayRef<MachineOperand> Pred) const override; unsigned int getPredicationCost(const MachineInstr &) const override; unsigned int getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost = nullptr) const override; int getInstrLatency(const InstrItineraryData *ItinData, SDNode *Node) const override { return 1;} bool expandPostRAPseudo(MachineInstr &MI) const override; /// \brief Reserve the registers that may be accesed using indirect addressing. void reserveIndirectRegisters(BitVector &Reserved, const MachineFunction &MF) const; /// Calculate the "Indirect Address" for the given \p RegIndex and /// \p Channel /// /// We model indirect addressing using a virtual address space that can be /// accesed with loads and stores. The "Indirect Address" is the memory /// address in this virtual address space that maps to the given \p RegIndex /// and \p Channel. unsigned calculateIndirectAddress(unsigned RegIndex, unsigned Channel) const; /// \returns The register class to be used for loading and storing values /// from an "Indirect Address" . const TargetRegisterClass *getIndirectAddrRegClass() const; /// \returns the smallest register index that will be accessed by an indirect /// read or write or -1 if indirect addressing is not used by this program. int getIndirectIndexBegin(const MachineFunction &MF) const; /// \returns the largest register index that will be accessed by an indirect /// read or write or -1 if indirect addressing is not used by this program. int getIndirectIndexEnd(const MachineFunction &MF) const; /// \brief Build instruction(s) for an indirect register write. /// /// \returns The instruction that performs the indirect register write MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const; /// \brief Build instruction(s) for an indirect register read. /// /// \returns The instruction that performs the indirect register read MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const; unsigned getMaxAlusPerClause() const; /// buildDefaultInstruction - This function returns a MachineInstr with all /// the instruction modifiers initialized to their default values. You can /// use this function to avoid manually specifying each instruction modifier /// operand when building a new instruction. /// /// \returns a MachineInstr with all the instruction modifiers initialized /// to their default values. MachineInstrBuilder buildDefaultInstruction(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned Opcode, unsigned DstReg, unsigned Src0Reg, unsigned Src1Reg = 0) const; MachineInstr *buildSlotOfVectorInstruction(MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg) const; MachineInstr *buildMovImm(MachineBasicBlock &BB, MachineBasicBlock::iterator I, unsigned DstReg, uint64_t Imm) const; MachineInstr *buildMovInstr(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned DstReg, unsigned SrcReg) const; /// \brief Get the index of Op in the MachineInstr. /// /// \returns -1 if the Instruction does not contain the specified \p Op. int getOperandIdx(const MachineInstr &MI, unsigned Op) const; /// \brief Get the index of \p Op for the given Opcode. /// /// \returns -1 if the Instruction does not contain the specified \p Op. int getOperandIdx(unsigned Opcode, unsigned Op) const; /// \brief Helper function for setting instruction flag values. void setImmOperand(MachineInstr &MI, unsigned Op, int64_t Imm) const; /// \returns true if this instruction has an operand for storing target flags. bool hasFlagOperand(const MachineInstr &MI) const; ///\brief Add one of the MO_FLAG* flags to the specified \p Operand. void addFlag(MachineInstr &MI, unsigned Operand, unsigned Flag) const; ///\brief Determine if the specified \p Flag is set on this \p Operand. bool isFlagSet(const MachineInstr &MI, unsigned Operand, unsigned Flag) const; /// \param SrcIdx The register source to set the flag on (e.g src0, src1, src2) /// \param Flag The flag being set. /// /// \returns the operand containing the flags for this instruction. MachineOperand &getFlagOp(MachineInstr &MI, unsigned SrcIdx = 0, unsigned Flag = 0) const; /// \brief Clear the specified flag on the instruction. void clearFlag(MachineInstr &MI, unsigned Operand, unsigned Flag) const; // Helper functions that check the opcode for status information bool isRegisterStore(const MachineInstr &MI) const; bool isRegisterLoad(const MachineInstr &MI) const; }; namespace AMDGPU { int getLDSNoRetOp(uint16_t Opcode); } //End namespace AMDGPU } // End llvm namespace #endif