//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements hazard recognizers for scheduling on GCN processors. // //===----------------------------------------------------------------------===// #include "GCNHazardRecognizer.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/Support/Debug.h" using namespace llvm; //===----------------------------------------------------------------------===// // Hazard Recoginizer Implementation //===----------------------------------------------------------------------===// GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : CurrCycleInstr(nullptr), MF(MF), ST(MF.getSubtarget<SISubtarget>()) { MaxLookAhead = 5; } void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { EmitInstruction(SU->getInstr()); } void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { CurrCycleInstr = MI; } ScheduleHazardRecognizer::HazardType GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { MachineInstr *MI = SU->getInstr(); if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) return NoopHazard; if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0) return NoopHazard; if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) return NoopHazard; return NoHazard; } unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { return PreEmitNoops(SU->getInstr()); } unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { if (SIInstrInfo::isSMRD(*MI)) return std::max(0, checkSMRDHazards(MI)); if (SIInstrInfo::isVMEM(*MI)) return std::max(0, checkVMEMHazards(MI)); if (SIInstrInfo::isDPP(*MI)) return std::max(0, checkDPPHazards(MI)); return 0; } void GCNHazardRecognizer::EmitNoop() { EmittedInstrs.push_front(nullptr); } void GCNHazardRecognizer::AdvanceCycle() { // When the scheduler detects a stall, it will call AdvanceCycle() without // emitting any instructions. if (!CurrCycleInstr) return; const SIInstrInfo *TII = ST.getInstrInfo(); unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr); // Keep track of emitted instructions EmittedInstrs.push_front(CurrCycleInstr); // Add a nullptr for each additional wait state after the first. Make sure // not to add more than getMaxLookAhead() items to the list, since we // truncate the list to that size right after this loop. for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); i < e; ++i) { EmittedInstrs.push_front(nullptr); } // getMaxLookahead() is the largest number of wait states we will ever need // to insert, so there is no point in keeping track of more than that many // wait states. EmittedInstrs.resize(getMaxLookAhead()); CurrCycleInstr = nullptr; } void GCNHazardRecognizer::RecedeCycle() { llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); } //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// int GCNHazardRecognizer::getWaitStatesSinceDef( unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) { const SIRegisterInfo *TRI = ST.getRegisterInfo(); int WaitStates = -1; for (MachineInstr *MI : EmittedInstrs) { ++WaitStates; if (!MI || !IsHazardDef(MI)) continue; if (MI->modifiesRegister(Reg, TRI)) return WaitStates; } return std::numeric_limits<int>::max(); } //===----------------------------------------------------------------------===// // No-op Hazard Detection //===----------------------------------------------------------------------===// static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops, std::set<unsigned> &Set) { for (const MachineOperand &Op : Ops) { if (Op.isReg()) Set.insert(Op.getReg()); } } int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) { // SMEM soft clause are only present on VI+ if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) return 0; // A soft-clause is any group of consecutive SMEM instructions. The // instructions in this group may return out of order and/or may be // replayed (i.e. the same instruction issued more than once). // // In order to handle these situations correctly we need to make sure // that when a clause has more than one instruction, no instruction in the // clause writes to a register that is read another instruction in the clause // (including itself). If we encounter this situaion, we need to break the // clause by inserting a non SMEM instruction. std::set<unsigned> ClauseDefs; std::set<unsigned> ClauseUses; for (MachineInstr *MI : EmittedInstrs) { // When we hit a non-SMEM instruction then we have passed the start of the // clause and we can stop. if (!MI || !SIInstrInfo::isSMRD(*MI)) break; addRegsToSet(MI->defs(), ClauseDefs); addRegsToSet(MI->uses(), ClauseUses); } if (ClauseDefs.empty()) return 0; // FIXME: When we support stores, we need to make sure not to put loads and // stores in the same clause if they use the same address. For now, just // start a new clause whenever we see a store. if (SMEM->mayStore()) return 1; addRegsToSet(SMEM->defs(), ClauseDefs); addRegsToSet(SMEM->uses(), ClauseUses); std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size())); std::vector<unsigned>::iterator End; End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(), ClauseUses.begin(), ClauseUses.end(), Result.begin()); // If the set of defs and uses intersect then we cannot add this instruction // to the clause, so we have a hazard. if (End != Result.begin()) return 1; return 0; } int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); const SIInstrInfo *TII = ST.getInstrInfo(); int WaitStatesNeeded = 0; WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD); // This SMRD hazard only affects SI. if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS) return WaitStatesNeeded; // A read of an SGPR by SMRD instruction requires 4 wait states when the // SGPR was written by a VALU instruction. int SmrdSgprWaitStates = 4; auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; for (const MachineOperand &Use : SMRD->uses()) { if (!Use.isReg()) continue; int WaitStatesNeededForUse = SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); } return WaitStatesNeeded; } int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { const SIInstrInfo *TII = ST.getInstrInfo(); if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) return 0; const SIRegisterInfo &TRI = TII->getRegisterInfo(); // A read of an SGPR by a VMEM instruction requires 5 wait states when the // SGPR was written by a VALU Instruction. int VmemSgprWaitStates = 5; int WaitStatesNeeded = 0; auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; for (const MachineOperand &Use : VMEM->uses()) { if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) continue; int WaitStatesNeededForUse = VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); } return WaitStatesNeeded; } int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { const SIRegisterInfo *TRI = ST.getRegisterInfo(); // Check for DPP VGPR read after VALU VGPR write. int DppVgprWaitStates = 2; int WaitStatesNeeded = 0; for (const MachineOperand &Use : DPP->uses()) { if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) continue; int WaitStatesNeededForUse = DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); } return WaitStatesNeeded; }