//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Implements the AMDGPU specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "AMDGPUSubtarget.h" #include "R600ISelLowering.h" #include "R600InstrInfo.h" #include "SIFrameLowering.h" #include "SIISelLowering.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/MachineScheduler.h" using namespace llvm; #define DEBUG_TYPE "amdgpu-subtarget" #define GET_SUBTARGETINFO_ENUM #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "AMDGPUGenSubtargetInfo.inc" AMDGPUSubtarget::~AMDGPUSubtarget() {} AMDGPUSubtarget & AMDGPUSubtarget::initializeSubtargetDependencies(const Triple &TT, StringRef GPU, StringRef FS) { // Determine default and user-specified characteristics // On SI+, we want FP64 denormals to be on by default. FP32 denormals can be // enabled, but some instructions do not respect them and they run at the // double precision rate, so don't enable by default. // // We want to be able to turn these off, but making this a subtarget feature // for SI has the unhelpful behavior that it unsets everything else if you // disable it. SmallString<256> FullFS("+promote-alloca,+fp64-denormals,+load-store-opt,"); if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA. FullFS += "+flat-for-global,+unaligned-buffer-access,"; FullFS += FS; ParseSubtargetFeatures(GPU, FullFS); // FIXME: I don't think think Evergreen has any useful support for // denormals, but should be checked. Should we issue a warning somewhere // if someone tries to enable these? if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { FP32Denormals = false; FP64Denormals = false; } // Set defaults if needed. if (MaxPrivateElementSize == 0) MaxPrivateElementSize = 4; return *this; } AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUGenSubtargetInfo(TT, GPU, FS), TargetTriple(TT), Gen(TT.getArch() == Triple::amdgcn ? SOUTHERN_ISLANDS : R600), IsaVersion(ISAVersion0_0_0), WavefrontSize(64), LocalMemorySize(0), LDSBankCount(0), MaxPrivateElementSize(0), FastFMAF32(false), HalfRate64Ops(false), FP32Denormals(false), FP64Denormals(false), FPExceptions(false), FlatForGlobal(false), UnalignedBufferAccess(false), EnableXNACK(false), DebuggerInsertNops(false), DebuggerReserveRegs(false), DebuggerEmitPrologue(false), EnableVGPRSpilling(false), EnablePromoteAlloca(false), EnableLoadStoreOpt(false), EnableUnsafeDSOffsetFolding(false), EnableSIScheduler(false), DumpCode(false), FP64(false), IsGCN(false), GCN1Encoding(false), GCN3Encoding(false), CIInsts(false), SGPRInitBug(false), HasSMemRealTime(false), Has16BitInsts(false), FlatAddressSpace(false), R600ALUInst(false), CaymanISA(false), CFALUBug(false), HasVertexCache(false), TexVTXClauseSize(0), FeatureDisable(false), InstrItins(getInstrItineraryForCPU(GPU)) { initializeSubtargetDependencies(TT, GPU, FS); } // FIXME: These limits are for SI. Did they change with the larger maximum LDS // size? unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves) const { switch (NWaves) { case 10: return 1638; case 9: return 1820; case 8: return 2048; case 7: return 2340; case 6: return 2730; case 5: return 3276; case 4: return 4096; case 3: return 5461; case 2: return 8192; default: return getLocalMemorySize(); } } unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes) const { if (Bytes <= 1638) return 10; if (Bytes <= 1820) return 9; if (Bytes <= 2048) return 8; if (Bytes <= 2340) return 7; if (Bytes <= 2730) return 6; if (Bytes <= 3276) return 5; if (Bytes <= 4096) return 4; if (Bytes <= 5461) return 3; if (Bytes <= 8192) return 2; return 1; } R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), TLInfo(TM, *this) {} SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), TLInfo(TM, *this), GISel() {} unsigned R600Subtarget::getStackEntrySize() const { switch (getWavefrontSize()) { case 16: return 8; case 32: return hasCaymanISA() ? 4 : 8; case 64: return 4; default: llvm_unreachable("Illegal wavefront size."); } } void SISubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const { // Track register pressure so the scheduler can try to decrease // pressure once register usage is above the threshold defined by // SIRegisterInfo::getRegPressureSetLimit() Policy.ShouldTrackPressure = true; // Enabling both top down and bottom up scheduling seems to give us less // register spills than just using one of these approaches on its own. Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. if (!enableSIScheduler()) Policy.ShouldTrackLaneMasks = true; } bool SISubtarget::isVGPRSpillingEnabled(const Function& F) const { return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv()); } unsigned SISubtarget::getAmdKernelCodeChipID() const { switch (getGeneration()) { case SEA_ISLANDS: return 12; default: llvm_unreachable("ChipID unknown"); } } AMDGPU::IsaVersion SISubtarget::getIsaVersion() const { return AMDGPU::getIsaVersion(getFeatureBits()); }