//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass eliminates allocas by either converting them into vectors or // by migrating them to local address space. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "amdgpu-promote-alloca" using namespace llvm; namespace { // FIXME: This can create globals so should be a module pass. class AMDGPUPromoteAlloca : public FunctionPass { private: const TargetMachine *TM; Module *Mod; const DataLayout *DL; MDNode *MaxWorkGroupSizeRange; // FIXME: This should be per-kernel. uint32_t LocalMemLimit; uint32_t CurrentLocalMemUsage; bool IsAMDGCN; bool IsAMDHSA; std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); /// BaseAlloca is the alloca root the search started from. /// Val may be that alloca or a recursive user of it. bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val, std::vector<Value*> &WorkList) const; /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). /// Returns true if both operands are derived from the same alloca. Val should /// be the same value as one of the input operands of UseInst. bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, Instruction *UseInst, int OpIdx0, int OpIdx1) const; public: static char ID; AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : FunctionPass(ID), TM(TM_), Mod(nullptr), DL(nullptr), MaxWorkGroupSizeRange(nullptr), LocalMemLimit(0), CurrentLocalMemUsage(0), IsAMDGCN(false), IsAMDHSA(false) { } bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; const char *getPassName() const override { return "AMDGPU Promote Alloca"; } void handleAlloca(AllocaInst &I); void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace char AMDGPUPromoteAlloca::ID = 0; INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, "AMDGPU promote alloca to vector or LDS", false, false) char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; bool AMDGPUPromoteAlloca::doInitialization(Module &M) { if (!TM) return false; Mod = &M; DL = &Mod->getDataLayout(); // The maximum workitem id. // // FIXME: Should get as subtarget property. Usually runtime enforced max is // 256. MDBuilder MDB(Mod->getContext()); MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); const Triple &TT = TM->getTargetTriple(); IsAMDGCN = TT.getArch() == Triple::amdgcn; IsAMDHSA = TT.getOS() == Triple::AMDHSA; return false; } bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { if (!TM || skipFunction(F)) return false; const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); if (!ST.isPromoteAllocaEnabled()) return false; FunctionType *FTy = F.getFunctionType(); // If the function has any arguments in the local address space, then it's // possible these arguments require the entire local memory space, so // we cannot use local memory in the pass. for (Type *ParamTy : FTy->params()) { PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { LocalMemLimit = 0; DEBUG(dbgs() << "Function has local memory argument. Promoting to " "local memory disabled.\n"); return false; } } LocalMemLimit = ST.getLocalMemorySize(); if (LocalMemLimit == 0) return false; const DataLayout &DL = Mod->getDataLayout(); // Check how much local memory is being used by global objects CurrentLocalMemUsage = 0; for (GlobalVariable &GV : Mod->globals()) { if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) continue; for (const User *U : GV.users()) { const Instruction *Use = dyn_cast<Instruction>(U); if (!Use) continue; if (Use->getParent()->getParent() == &F) { unsigned Align = GV.getAlignment(); if (Align == 0) Align = DL.getABITypeAlignment(GV.getValueType()); // FIXME: Try to account for padding here. The padding is currently // determined from the inverse order of uses in the function. I'm not // sure if the use list order is in any way connected to this, so the // total reported size is likely incorrect. uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); CurrentLocalMemUsage += AllocSize; break; } } } unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage); // Restrict local memory usage so that we don't drastically reduce occupancy, // unless it is already significantly reduced. // TODO: Have some sort of hint or other heuristics to guess occupancy based // on other factors.. unsigned OccupancyHint = AMDGPU::getIntegerAttribute(F, "amdgpu-max-waves-per-eu", 0); if (OccupancyHint == 0) OccupancyHint = 7; // Clamp to max value. OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerCU()); // Check the hint but ignore it if it's obviously wrong from the existing LDS // usage. MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); // Round up to the next tier of usage. unsigned MaxSizeWithWaveCount = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy); // Program is possibly broken by using more local mem than available. if (CurrentLocalMemUsage > MaxSizeWithWaveCount) return false; LocalMemLimit = MaxSizeWithWaveCount; DEBUG( dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage) << " available for promotion\n" ); BasicBlock &EntryBB = *F.begin(); for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { AllocaInst *AI = dyn_cast<AllocaInst>(I); ++I; if (AI) handleAlloca(*AI); } return true; } std::pair<Value *, Value *> AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { if (!IsAMDHSA) { Function *LocalSizeYFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); Function *LocalSizeZFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); return std::make_pair(LocalSizeY, LocalSizeZ); } // We must read the size out of the dispatch pointer. assert(IsAMDGCN); // We are indexing into this struct, and want to extract the workgroup_size_* // fields. // // typedef struct hsa_kernel_dispatch_packet_s { // uint16_t header; // uint16_t setup; // uint16_t workgroup_size_x ; // uint16_t workgroup_size_y; // uint16_t workgroup_size_z; // uint16_t reserved0; // uint32_t grid_size_x ; // uint32_t grid_size_y ; // uint32_t grid_size_z; // // uint32_t private_segment_size; // uint32_t group_segment_size; // uint64_t kernel_object; // // #ifdef HSA_LARGE_MODEL // void *kernarg_address; // #elif defined HSA_LITTLE_ENDIAN // void *kernarg_address; // uint32_t reserved1; // #else // uint32_t reserved1; // void *kernarg_address; // #endif // uint64_t reserved2; // hsa_signal_t completion_signal; // uint64_t wrapper // } hsa_kernel_dispatch_packet_t // Function *DispatchPtrFn = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); // Size of the dispatch packet struct. DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); Type *I32Ty = Type::getInt32Ty(Mod->getContext()); Value *CastDispatchPtr = Builder.CreateBitCast( DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); // We could do a single 64-bit load here, but it's likely that the basic // 32-bit and extract sequence is already present, and it is probably easier // to CSE this. The loads should be mergable later anyway. Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); // Extract y component. Upper half of LoadZU should be zero already. Value *Y = Builder.CreateLShr(LoadXY, 16); return std::make_pair(Y, LoadZU); } Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; switch (N) { case 0: IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x : Intrinsic::r600_read_tidig_x; break; case 1: IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y : Intrinsic::r600_read_tidig_y; break; case 2: IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z : Intrinsic::r600_read_tidig_z; break; default: llvm_unreachable("invalid dimension"); } Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); CallInst *CI = Builder.CreateCall(WorkitemIdFn); CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); return CI; } static VectorType *arrayTypeToVecType(Type *ArrayTy) { return VectorType::get(ArrayTy->getArrayElementType(), ArrayTy->getArrayNumElements()); } static Value * calculateVectorIndex(Value *Ptr, const std::map<GetElementPtrInst *, Value *> &GEPIdx) { if (isa<AllocaInst>(Ptr)) return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext())); GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); auto I = GEPIdx.find(GEP); return I == GEPIdx.end() ? nullptr : I->second; } static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { // FIXME we only support simple cases if (GEP->getNumOperands() != 3) return NULL; ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); if (!I0 || !I0->isZero()) return NULL; return GEP->getOperand(2); } // Not an instruction handled below to turn into a vector. // // TODO: Check isTriviallyVectorizable for calls and handle other // instructions. static bool canVectorizeInst(Instruction *Inst, User *User) { switch (Inst->getOpcode()) { case Instruction::Load: case Instruction::BitCast: case Instruction::AddrSpaceCast: return true; case Instruction::Store: { // Must be the stored pointer operand, not a stored value. StoreInst *SI = cast<StoreInst>(Inst); return SI->getPointerOperand() == User; } default: return false; } } static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); DEBUG(dbgs() << "Alloca candidate for vectorization\n"); // FIXME: There is no reason why we can't support larger arrays, we // are just being conservative for now. if (!AllocaTy || AllocaTy->getElementType()->isVectorTy() || AllocaTy->getNumElements() > 4) { DEBUG(dbgs() << " Cannot convert type to vector\n"); return false; } std::map<GetElementPtrInst*, Value*> GEPVectorIdx; std::vector<Value*> WorkList; for (User *AllocaUser : Alloca->users()) { GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); if (!GEP) { if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) return false; WorkList.push_back(AllocaUser); continue; } Value *Index = GEPToVectorIndex(GEP); // If we can't compute a vector index from this GEP, then we can't // promote this alloca to vector. if (!Index) { DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); return false; } GEPVectorIdx[GEP] = Index; for (User *GEPUser : AllocaUser->users()) { if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) return false; WorkList.push_back(GEPUser); } } VectorType *VectorTy = arrayTypeToVecType(AllocaTy); DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " << *VectorTy << '\n'); for (Value *V : WorkList) { Instruction *Inst = cast<Instruction>(V); IRBuilder<> Builder(Inst); switch (Inst->getOpcode()) { case Instruction::Load: { Value *Ptr = Inst->getOperand(0); Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); Value *VecValue = Builder.CreateLoad(BitCast); Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); Inst->replaceAllUsesWith(ExtractElement); Inst->eraseFromParent(); break; } case Instruction::Store: { Value *Ptr = Inst->getOperand(1); Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); Value *VecValue = Builder.CreateLoad(BitCast); Value *NewVecValue = Builder.CreateInsertElement(VecValue, Inst->getOperand(0), Index); Builder.CreateStore(NewVecValue, BitCast); Inst->eraseFromParent(); break; } case Instruction::BitCast: case Instruction::AddrSpaceCast: break; default: Inst->dump(); llvm_unreachable("Inconsistency in instructions promotable to vector"); } } return true; } static bool isCallPromotable(CallInst *CI) { // TODO: We might be able to handle some cases where the callee is a // constantexpr bitcast of a function. if (!CI->getCalledFunction()) return false; IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); if (!II) return false; switch (II->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::invariant_group_barrier: case Intrinsic::objectsize: return true; default: return false; } } bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, int OpIdx1) const { // Figure out which operand is the one we might not be promoting. Value *OtherOp = Inst->getOperand(OpIdx0); if (Val == OtherOp) OtherOp = Inst->getOperand(OpIdx1); if (isa<ConstantPointerNull>(OtherOp)) return true; Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); if (!isa<AllocaInst>(OtherObj)) return false; // TODO: We should be able to replace undefs with the right pointer type. // TODO: If we know the other base object is another promotable // alloca, not necessarily this alloca, we can do this. The // important part is both must have the same address space at // the end. if (OtherObj != BaseAlloca) { DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); return false; } return true; } bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( Value *BaseAlloca, Value *Val, std::vector<Value*> &WorkList) const { for (User *User : Val->users()) { if (std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end()) continue; if (CallInst *CI = dyn_cast<CallInst>(User)) { if (!isCallPromotable(CI)) return false; WorkList.push_back(User); continue; } Instruction *UseInst = cast<Instruction>(User); if (UseInst->getOpcode() == Instruction::PtrToInt) return false; if (LoadInst *LI = dyn_cast_or_null<LoadInst>(UseInst)) { if (LI->isVolatile()) return false; continue; } if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { if (SI->isVolatile()) return false; // Reject if the stored value is not the pointer operand. if (SI->getPointerOperand() != Val) return false; } else if (AtomicRMWInst *RMW = dyn_cast_or_null<AtomicRMWInst>(UseInst)) { if (RMW->isVolatile()) return false; } else if (AtomicCmpXchgInst *CAS = dyn_cast_or_null<AtomicCmpXchgInst>(UseInst)) { if (CAS->isVolatile()) return false; } // Only promote a select if we know that the other select operand // is from another pointer that will also be promoted. if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) return false; // May need to rewrite constant operands. WorkList.push_back(ICmp); } if (!User->getType()->isPointerTy()) continue; if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { // Be conservative if an address could be computed outside the bounds of // the alloca. if (!GEP->isInBounds()) return false; } // Only promote a select if we know that the other select operand is from // another pointer that will also be promoted. if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) return false; } // Repeat for phis. if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { // TODO: Handle more complex cases. We should be able to replace loops // over arrays. switch (Phi->getNumIncomingValues()) { case 1: break; case 2: if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) return false; break; default: return false; } } WorkList.push_back(User); if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) return false; } return true; } // FIXME: Should try to pick the most likely to be profitable allocas first. void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { // Array allocations are probably not worth handling, since an allocation of // the array type is the canonical form. if (!I.isStaticAlloca() || I.isArrayAllocation()) return; IRBuilder<> Builder(&I); // First try to replace the alloca with a vector Type *AllocaTy = I.getAllocatedType(); DEBUG(dbgs() << "Trying to promote " << I << '\n'); if (tryPromoteAllocaToVector(&I)) { DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); return; } const Function &ContainingFunction = *I.getParent()->getParent(); // FIXME: We should also try to get this value from the reqd_work_group_size // function attribute if it is available. unsigned WorkGroupSize = AMDGPU::getMaximumWorkGroupSize(ContainingFunction); const DataLayout &DL = Mod->getDataLayout(); unsigned Align = I.getAlignment(); if (Align == 0) Align = DL.getABITypeAlignment(I.getAllocatedType()); // FIXME: This computed padding is likely wrong since it depends on inverse // usage order. // // FIXME: It is also possible that if we're allowed to use all of the memory // could could end up using more than the maximum due to alignment padding. uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); NewSize += AllocSize; if (NewSize > LocalMemLimit) { DEBUG(dbgs() << " " << AllocSize << " bytes of local memory not available to promote\n"); return; } CurrentLocalMemUsage = NewSize; std::vector<Value*> WorkList; if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { DEBUG(dbgs() << " Do not know how to convert all uses\n"); return; } DEBUG(dbgs() << "Promoting alloca to local memory\n"); Function *F = I.getParent()->getParent(); Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); GlobalVariable *GV = new GlobalVariable( *Mod, GVTy, false, GlobalValue::InternalLinkage, UndefValue::get(GVTy), Twine(F->getName()) + Twine('.') + I.getName(), nullptr, GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); GV->setAlignment(I.getAlignment()); Value *TCntY, *TCntZ; std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); Value *TIdX = getWorkitemID(Builder, 0); Value *TIdY = getWorkitemID(Builder, 1); Value *TIdZ = getWorkitemID(Builder, 2); Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); Tmp0 = Builder.CreateMul(Tmp0, TIdX); Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); Value *TID = Builder.CreateAdd(Tmp0, Tmp1); TID = Builder.CreateAdd(TID, TIdZ); Value *Indices[] = { Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), TID }; Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); I.mutateType(Offset->getType()); I.replaceAllUsesWith(Offset); I.eraseFromParent(); for (Value *V : WorkList) { CallInst *Call = dyn_cast<CallInst>(V); if (!Call) { if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { Value *Src0 = CI->getOperand(0); Type *EltTy = Src0->getType()->getPointerElementType(); PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); if (isa<ConstantPointerNull>(CI->getOperand(0))) CI->setOperand(0, ConstantPointerNull::get(NewTy)); if (isa<ConstantPointerNull>(CI->getOperand(1))) CI->setOperand(1, ConstantPointerNull::get(NewTy)); continue; } // The operand's value should be corrected on its own. if (isa<AddrSpaceCastInst>(V)) continue; Type *EltTy = V->getType()->getPointerElementType(); PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); // FIXME: It doesn't really make sense to try to do this for all // instructions. V->mutateType(NewTy); // Adjust the types of any constant operands. if (SelectInst *SI = dyn_cast<SelectInst>(V)) { if (isa<ConstantPointerNull>(SI->getOperand(1))) SI->setOperand(1, ConstantPointerNull::get(NewTy)); if (isa<ConstantPointerNull>(SI->getOperand(2))) SI->setOperand(2, ConstantPointerNull::get(NewTy)); } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); } } continue; } IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call); if (!Intr) { // FIXME: What is this for? It doesn't make sense to promote arbitrary // function calls. If the call is to a defined function that can also be // promoted, we should be able to do this once that function is also // rewritten. std::vector<Type*> ArgTypes; for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands(); ArgIdx != ArgEnd; ++ArgIdx) { ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType()); } Function *F = Call->getCalledFunction(); FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes, F->isVarArg()); Constant *C = Mod->getOrInsertFunction((F->getName() + ".local").str(), NewType, F->getAttributes()); Function *NewF = cast<Function>(C); Call->setCalledFunction(NewF); continue; } Builder.SetInsertPoint(Intr); switch (Intr->getIntrinsicID()) { case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: // These intrinsics are for address space 0 only Intr->eraseFromParent(); continue; case Intrinsic::memcpy: { MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), MemCpy->getLength(), MemCpy->getAlignment(), MemCpy->isVolatile()); Intr->eraseFromParent(); continue; } case Intrinsic::memmove: { MemMoveInst *MemMove = cast<MemMoveInst>(Intr); Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), MemMove->getLength(), MemMove->getAlignment(), MemMove->isVolatile()); Intr->eraseFromParent(); continue; } case Intrinsic::memset: { MemSetInst *MemSet = cast<MemSetInst>(Intr); Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), MemSet->getAlignment(), MemSet->isVolatile()); Intr->eraseFromParent(); continue; } case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::invariant_group_barrier: Intr->eraseFromParent(); // FIXME: I think the invariant marker should still theoretically apply, // but the intrinsics need to be changed to accept pointers with any // address space. continue; case Intrinsic::objectsize: { Value *Src = Intr->getOperand(0); Type *SrcTy = Src->getType()->getPointerElementType(); Function *ObjectSize = Intrinsic::getDeclaration(Mod, Intrinsic::objectsize, { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } ); CallInst *NewCall = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); Intr->replaceAllUsesWith(NewCall); Intr->eraseFromParent(); continue; } default: Intr->dump(); llvm_unreachable("Don't know how to promote alloca intrinsic use."); } } } FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { return new AMDGPUPromoteAlloca(TM); }