//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAGInstrs class, which implements re-scheduling // of MachineInstrs. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/ADT/IntEqClasses.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterPressure.h" #include "llvm/CodeGen/ScheduleDFS.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "misched" static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Enable use of AA during MI DAG construction")); static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); // Note: the two options below might be used in tuning compile time vs // output quality. Setting HugeRegion so large that it will never be // reached means best-effort, but may be slow. // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) // together hold this many SUs, a reduction of maps will be done. static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, cl::init(1000), cl::desc("The limit to use while constructing the DAG " "prior to scheduling, at which point a trade-off " "is made to avoid excessive compile time.")); static cl::opt<unsigned> ReductionSize( "dag-maps-reduction-size", cl::Hidden, cl::desc("A huge scheduling region will have maps reduced by this many " "nodes at a time. Defaults to HugeRegion / 2.")); static unsigned getReductionSize() { // Always reduce a huge region with half of the elements, except // when user sets this number explicitly. if (ReductionSize.getNumOccurrences() == 0) return HugeRegion / 2; return ReductionSize; } static void dumpSUList(ScheduleDAGInstrs::SUList &L) { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) dbgs() << "{ "; for (auto *su : L) { dbgs() << "SU(" << su->NodeNum << ")"; if (su != L.back()) dbgs() << ", "; } dbgs() << "}\n"; #endif } ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo *mli, bool RemoveKillFlags) : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr), UnknownValue(UndefValue::get( Type::getVoidTy(mf.getFunction()->getContext()))), FirstDbgValue(nullptr) { DbgValues.clear(); const TargetSubtargetInfo &ST = mf.getSubtarget(); SchedModel.init(ST.getSchedModel(), &ST, TII); } /// getUnderlyingObjectFromInt - This is the function that does the work of /// looking through basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObjectFromInt(const Value *V) { do { if (const Operator *U = dyn_cast<Operator>(V)) { // If we find a ptrtoint, we can transfer control back to the // regular getUnderlyingObjectFromInt. if (U->getOpcode() == Instruction::PtrToInt) return U->getOperand(0); // If we find an add of a constant, a multiplied value, or a phi, it's // likely that the other operand will lead us to the base // object. We don't have to worry about the case where the // object address is somehow being computed by the multiply, // because our callers only care when the result is an // identifiable object. if (U->getOpcode() != Instruction::Add || (!isa<ConstantInt>(U->getOperand(1)) && Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && !isa<PHINode>(U->getOperand(1)))) return V; V = U->getOperand(0); } else { return V; } assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); } while (1); } /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. static void getUnderlyingObjects(const Value *V, SmallVectorImpl<Value *> &Objects, const DataLayout &DL) { SmallPtrSet<const Value *, 16> Visited; SmallVector<const Value *, 4> Working(1, V); do { V = Working.pop_back_val(); SmallVector<Value *, 4> Objs; GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); I != IE; ++I) { V = *I; if (!Visited.insert(V).second) continue; if (Operator::getOpcode(V) == Instruction::IntToPtr) { const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); if (O->getType()->isPointerTy()) { Working.push_back(O); continue; } } Objects.push_back(const_cast<Value *>(V)); } } while (!Working.empty()); } /// getUnderlyingObjectsForInstr - If this machine instr has memory reference /// information and it can be tracked to a normal reference to a known /// object, return the Value for that object. static void getUnderlyingObjectsForInstr(const MachineInstr *MI, const MachineFrameInfo *MFI, UnderlyingObjectsVector &Objects, const DataLayout &DL) { auto allMMOsOkay = [&]() { for (const MachineMemOperand *MMO : MI->memoperands()) { if (MMO->isVolatile()) return false; if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { // Function that contain tail calls don't have unique PseudoSourceValue // objects. Two PseudoSourceValues might refer to the same or // overlapping locations. The client code calling this function assumes // this is not the case. So return a conservative answer of no known // object. if (MFI->hasTailCall()) return false; // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. if (PSV->isAliased(MFI)) return false; bool MayAlias = PSV->mayAlias(MFI); Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); } else if (const Value *V = MMO->getValue()) { SmallVector<Value *, 4> Objs; getUnderlyingObjects(V, Objs, DL); for (Value *V : Objs) { if (!isIdentifiedObject(V)) return false; Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); } } else return false; } return true; }; if (!allMMOsOkay()) Objects.clear(); } void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { BB = bb; } void ScheduleDAGInstrs::finishBlock() { // Subclasses should no longer refer to the old block. BB = nullptr; } /// Initialize the DAG and common scheduler state for the current scheduling /// region. This does not actually create the DAG, only clears it. The /// scheduling driver may call BuildSchedGraph multiple times per scheduling /// region. void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) { assert(bb == BB && "startBlock should set BB"); RegionBegin = begin; RegionEnd = end; NumRegionInstrs = regioninstrs; } /// Close the current scheduling region. Don't clear any state in case the /// driver wants to refer to the previous scheduling region. void ScheduleDAGInstrs::exitRegion() { // Nothing to do. } /// addSchedBarrierDeps - Add dependencies from instructions in the current /// list of instructions being scheduled to scheduling barrier by adding /// the exit SU to the register defs and use list. This is because we want to /// make sure instructions which define registers that are either used by /// the terminator or are live-out are properly scheduled. This is /// especially important when the definition latency of the return value(s) /// are too high to be hidden by the branch or when the liveout registers /// used by instructions in the fallthrough block. void ScheduleDAGInstrs::addSchedBarrierDeps() { MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; ExitSU.setInstr(ExitMI); bool AllDepKnown = ExitMI && (ExitMI->isCall() || ExitMI->isBarrier()); if (ExitMI && AllDepKnown) { // If it's a call or a barrier, add dependencies on the defs and uses of // instruction. for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = ExitMI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); else if (MO.readsReg()) // ignore undef operands addVRegUseDeps(&ExitSU, i); } } else { // For others, e.g. fallthrough, conditional branch, assume the exit // uses all the registers that are livein to the successor blocks. assert(Uses.empty() && "Uses in set before adding deps?"); for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (const auto &LI : (*SI)->liveins()) { if (!Uses.contains(LI.PhysReg)) Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); } } } /// MO is an operand of SU's instruction that defines a physical register. Add /// data dependencies from SU to any uses of the physical register. void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); assert(MO.isDef() && "expect physreg def"); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = MF.getSubtarget(); for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Uses.contains(*Alias)) continue; for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { SUnit *UseSU = I->SU; if (UseSU == SU) continue; // Adjust the dependence latency using operand def/use information, // then allow the target to perform its own adjustments. int UseOp = I->OpIdx; MachineInstr *RegUse = nullptr; SDep Dep; if (UseOp < 0) Dep = SDep(SU, SDep::Artificial); else { // Set the hasPhysRegDefs only for physreg defs that have a use within // the scheduling region. SU->hasPhysRegDefs = true; Dep = SDep(SU, SDep::Data, *Alias); RegUse = UseSU->getInstr(); } Dep.setLatency( SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, UseOp)); ST.adjustSchedDependency(SU, UseSU, Dep); UseSU->addPred(Dep); } } } /// addPhysRegDeps - Add register dependencies (data, anti, and output) from /// this SUnit to following instructions in the same scheduling region that /// depend the physical register referenced at OperIdx. void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { MachineInstr *MI = SU->getInstr(); MachineOperand &MO = MI->getOperand(OperIdx); // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Defs.contains(*Alias)) continue; for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { SUnit *DefSU = I->SU; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) { if (Kind == SDep::Anti) DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); else { SDep Dep(SU, Kind, /*Reg=*/*Alias); Dep.setLatency( SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); DefSU->addPred(Dep); } } } } if (!MO.isDef()) { SU->hasPhysRegUses = true; // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's uses. // Push this SUnit on the use list. Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); if (RemoveKillFlags) MO.setIsKill(false); } else { addPhysRegDataDeps(SU, OperIdx); unsigned Reg = MO.getReg(); // clear this register's use list if (Uses.contains(Reg)) Uses.eraseAll(Reg); if (!MO.isDead()) { Defs.eraseAll(Reg); } else if (SU->isCall) { // Calls will not be reordered because of chain dependencies (see // below). Since call operands are dead, calls may continue to be added // to the DefList making dependence checking quadratic in the size of // the block. Instead, we leave only one call at the back of the // DefList. Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); Reg2SUnitsMap::iterator B = P.first; Reg2SUnitsMap::iterator I = P.second; for (bool isBegin = I == B; !isBegin; /* empty */) { isBegin = (--I) == B; if (!I->SU->isCall) break; I = Defs.erase(I); } } // Defs are pushed in the order they are visited and never reordered. Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); } } LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const { unsigned Reg = MO.getReg(); // No point in tracking lanemasks if we don't have interesting subregisters. const TargetRegisterClass &RC = *MRI.getRegClass(Reg); if (!RC.HasDisjunctSubRegs) return ~0u; unsigned SubReg = MO.getSubReg(); if (SubReg == 0) return RC.getLaneMask(); return TRI->getSubRegIndexLaneMask(SubReg); } /// addVRegDefDeps - Add register output and data dependencies from this SUnit /// to instructions that occur later in the same scheduling region if they read /// from or write to the virtual register defined at OperIdx. /// /// TODO: Hoist loop induction variable increments. This has to be /// reevaluated. Generally, IV scheduling should be done before coalescing. void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { MachineInstr *MI = SU->getInstr(); MachineOperand &MO = MI->getOperand(OperIdx); unsigned Reg = MO.getReg(); LaneBitmask DefLaneMask; LaneBitmask KillLaneMask; if (TrackLaneMasks) { bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); DefLaneMask = getLaneMaskForMO(MO); // If we have a <read-undef> flag, none of the lane values comes from an // earlier instruction. KillLaneMask = IsKill ? ~0u : DefLaneMask; // Clear undef flag, we'll re-add it later once we know which subregister // Def is first. MO.setIsUndef(false); } else { DefLaneMask = ~0u; KillLaneMask = ~0u; } if (MO.isDead()) { assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && "Dead defs should have no uses"); } else { // Add data dependence to all uses we found so far. const TargetSubtargetInfo &ST = MF.getSubtarget(); for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), E = CurrentVRegUses.end(); I != E; /*empty*/) { LaneBitmask LaneMask = I->LaneMask; // Ignore uses of other lanes. if ((LaneMask & KillLaneMask) == 0) { ++I; continue; } if ((LaneMask & DefLaneMask) != 0) { SUnit *UseSU = I->SU; MachineInstr *Use = UseSU->getInstr(); SDep Dep(SU, SDep::Data, Reg); Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, I->OperandIndex)); ST.adjustSchedDependency(SU, UseSU, Dep); UseSU->addPred(Dep); } LaneMask &= ~KillLaneMask; // If we found a Def for all lanes of this use, remove it from the list. if (LaneMask != 0) { I->LaneMask = LaneMask; ++I; } else I = CurrentVRegUses.erase(I); } } // Shortcut: Singly defined vregs do not have output/anti dependencies. if (MRI.hasOneDef(Reg)) return; // Add output dependence to the next nearest defs of this vreg. // // Unless this definition is dead, the output dependence should be // transitively redundant with antidependencies from this definition's // uses. We're conservative for now until we have a way to guarantee the uses // are not eliminated sometime during scheduling. The output dependence edge // is also useful if output latency exceeds def-use latency. LaneBitmask LaneMask = DefLaneMask; for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), CurrentVRegDefs.end())) { // Ignore defs for other lanes. if ((V2SU.LaneMask & LaneMask) == 0) continue; // Add an output dependence. SUnit *DefSU = V2SU.SU; // Ignore additional defs of the same lanes in one instruction. This can // happen because lanemasks are shared for targets with too many // subregisters. We also use some representration tricks/hacks where we // add super-register defs/uses, to imply that although we only access parts // of the reg we care about the full one. if (DefSU == SU) continue; SDep Dep(SU, SDep::Output, Reg); Dep.setLatency( SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); DefSU->addPred(Dep); // Update current definition. This can get tricky if the def was about a // bigger lanemask before. We then have to shrink it and create a new // VReg2SUnit for the non-overlapping part. LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; V2SU.SU = SU; V2SU.LaneMask = OverlapMask; if (NonOverlapMask != 0) CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); } // If there was no CurrentVRegDefs entry for some lanes yet, create one. if (LaneMask != 0) CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); } /// addVRegUseDeps - Add a register data dependency if the instruction that /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a /// register antidependency from this SUnit to instructions that occur later in /// the same scheduling region if they write the virtual register. /// /// TODO: Handle ExitSU "uses" properly. void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); const MachineOperand &MO = MI->getOperand(OperIdx); unsigned Reg = MO.getReg(); // Remember the use. Data dependencies will be added when we find the def. LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u; CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); // Add antidependences to the following defs of the vreg. for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), CurrentVRegDefs.end())) { // Ignore defs for unrelated lanes. LaneBitmask PrevDefLaneMask = V2SU.LaneMask; if ((PrevDefLaneMask & LaneMask) == 0) continue; if (V2SU.SU == SU) continue; V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); } } /// Return true if MI is an instruction we are unable to reason about /// (like a call or something with unmodeled side effects). static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { return MI->isCall() || MI->hasUnmodeledSideEffects() || (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA)); } /// This returns true if the two MIs need a chain edge between them. /// This is called on normal stores and loads. static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, const DataLayout &DL, MachineInstr *MIa, MachineInstr *MIb) { const MachineFunction *MF = MIa->getParent()->getParent(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); assert ((MIa->mayStore() || MIb->mayStore()) && "Dependency checked between two loads"); // Let the target decide if memory accesses cannot possibly overlap. if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA)) return false; // To this point analysis is generic. From here on we do need AA. if (!AA) return true; // FIXME: Need to handle multiple memory operands to support all targets. if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) return true; MachineMemOperand *MMOa = *MIa->memoperands_begin(); MachineMemOperand *MMOb = *MIb->memoperands_begin(); if (!MMOa->getValue() || !MMOb->getValue()) return true; // The following interface to AA is fashioned after DAGCombiner::isAlias // and operates with MachineMemOperand offset with some important // assumptions: // - LLVM fundamentally assumes flat address spaces. // - MachineOperand offset can *only* result from legalization and // cannot affect queries other than the trivial case of overlap // checking. // - These offsets never wrap and never step outside // of allocated objects. // - There should never be any negative offsets here. // // FIXME: Modify API to hide this math from "user" // FIXME: Even before we go to AA we can reason locally about some // memory objects. It can save compile time, and possibly catch some // corner cases not currently covered. assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; AliasResult AAResult = AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), MemoryLocation(MMOb->getValue(), Overlapb, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); return (AAResult != NoAlias); } /// Check whether two objects need a chain edge and add it if needed. void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, unsigned Latency) { if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(), SUb->getInstr())) { SDep Dep(SUa, SDep::MayAliasMem); Dep.setLatency(Latency); SUb->addPred(Dep); } } /// Create an SUnit for each real instruction, numbered in top-down topological /// order. The instruction order A < B, implies that no edge exists from B to A. /// /// Map each real instruction to its SUnit. /// /// After initSUnits, the SUnits vector cannot be resized and the scheduler may /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs /// instead of pointers. /// /// MachineScheduler relies on initSUnits numbering the nodes by their order in /// the original instruction list. void ScheduleDAGInstrs::initSUnits() { // We'll be allocating one SUnit for each real instruction in the region, // which is contained within a basic block. SUnits.reserve(NumRegionInstrs); for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) { if (MI.isDebugValue()) continue; SUnit *SU = newSUnit(&MI); MISUnitMap[&MI] = SU; SU->isCall = MI.isCall(); SU->isCommutable = MI.isCommutable(); // Assign the Latency field of SU using target-provided information. SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); // If this SUnit uses a reserved or unbuffered resource, mark it as such. // // Reserved resources block an instruction from issuing and stall the // entire pipeline. These are identified by BufferSize=0. // // Unbuffered resources prevent execution of subsequent instructions that // require the same resources. This is used for in-order execution pipelines // within an out-of-order core. These are identified by BufferSize=1. if (SchedModel.hasInstrSchedModel()) { const MCSchedClassDesc *SC = getSchedClass(SU); for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { case 0: SU->hasReservedResource = true; break; case 1: SU->isUnbuffered = true; break; default: break; } } } } } void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) { const MachineInstr *MI = SU->getInstr(); for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg()) continue; if (!MO.readsReg()) continue; if (TrackLaneMasks && !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; // Ignore re-defs. if (TrackLaneMasks) { bool FoundDef = false; for (const MachineOperand &MO2 : MI->operands()) { if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { FoundDef = true; break; } } if (FoundDef) continue; } // Record this local VReg use. VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); for (; UI != VRegUses.end(); ++UI) { if (UI->SU == SU) break; } if (UI == VRegUses.end()) VRegUses.insert(VReg2SUnit(Reg, 0, SU)); } } class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { /// Current total number of SUs in map. unsigned NumNodes; /// 1 for loads, 0 for stores. (see comment in SUList) unsigned TrueMemOrderLatency; public: Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {} /// To keep NumNodes up to date, insert() is used instead of /// this operator w/ push_back(). ValueType &operator[](const SUList &Key) { llvm_unreachable("Don't use. Use insert() instead."); }; /// Add SU to the SUList of V. If Map grows huge, reduce its size /// by calling reduce(). void inline insert(SUnit *SU, ValueType V) { MapVector::operator[](V).push_back(SU); NumNodes++; } /// Clears the list of SUs mapped to V. void inline clearList(ValueType V) { iterator Itr = find(V); if (Itr != end()) { assert (NumNodes >= Itr->second.size()); NumNodes -= Itr->second.size(); Itr->second.clear(); } } /// Clears map from all contents. void clear() { MapVector<ValueType, SUList>::clear(); NumNodes = 0; } unsigned inline size() const { return NumNodes; } /// Count the number of SUs in this map after a reduction. void reComputeSize(void) { NumNodes = 0; for (auto &I : *this) NumNodes += I.second.size(); } unsigned inline getTrueMemOrderLatency() const { return TrueMemOrderLatency; } void dump(); }; void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap) { for (auto &I : Val2SUsMap) addChainDependencies(SU, I.second, Val2SUsMap.getTrueMemOrderLatency()); } void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap, ValueType V) { Value2SUsMap::iterator Itr = Val2SUsMap.find(V); if (Itr != Val2SUsMap.end()) addChainDependencies(SU, Itr->second, Val2SUsMap.getTrueMemOrderLatency()); } void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { assert (BarrierChain != nullptr); for (auto &I : map) { SUList &sus = I.second; for (auto *SU : sus) SU->addPredBarrier(BarrierChain); } map.clear(); } void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { assert (BarrierChain != nullptr); // Go through all lists of SUs. for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { Value2SUsMap::iterator CurrItr = I++; SUList &sus = CurrItr->second; SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); for (; SUItr != SUEE; ++SUItr) { // Stop on BarrierChain or any instruction above it. if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) break; (*SUItr)->addPredBarrier(BarrierChain); } // Remove also the BarrierChain from list if present. if (SUItr != SUEE && *SUItr == BarrierChain) SUItr++; // Remove all SUs that are now successors of BarrierChain. if (SUItr != sus.begin()) sus.erase(sus.begin(), SUItr); } // Remove all entries with empty su lists. map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { return (mapEntry.second.empty()); }); // Recompute the size of the map (NumNodes). map.reComputeSize(); } /// If RegPressure is non-null, compute register pressure as a side effect. The /// DAG builder is an efficient place to do it because it already visits /// operands. void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, RegPressureTracker *RPTracker, PressureDiffs *PDiffs, LiveIntervals *LIS, bool TrackLaneMasks) { const TargetSubtargetInfo &ST = MF.getSubtarget(); bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI : ST.useAA(); AAForDep = UseAA ? AA : nullptr; BarrierChain = nullptr; this->TrackLaneMasks = TrackLaneMasks; MISUnitMap.clear(); ScheduleDAG::clearDAG(); // Create an SUnit for each real instruction. initSUnits(); if (PDiffs) PDiffs->init(SUnits.size()); // We build scheduling units by walking a block's instruction list // from bottom to top. // Each MIs' memory operand(s) is analyzed to a list of underlying // objects. The SU is then inserted in the SUList(s) mapped from the // Value(s). Each Value thus gets mapped to lists of SUs depending // on it, stores and loads kept separately. Two SUs are trivially // non-aliasing if they both depend on only identified Values and do // not share any common Value. Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); // Certain memory accesses are known to not alias any SU in Stores // or Loads, and have therefore their own 'NonAlias' // domain. E.g. spill / reload instructions never alias LLVM I/R // Values. It would be nice to assume that this type of memory // accesses always have a proper memory operand modelling, and are // therefore never unanalyzable, but this is conservatively not // done. Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); // Remove any stale debug info; sometimes BuildSchedGraph is called again // without emitting the info from the previous call. DbgValues.clear(); FirstDbgValue = nullptr; assert(Defs.empty() && Uses.empty() && "Only BuildGraph should update Defs/Uses"); Defs.setUniverse(TRI->getNumRegs()); Uses.setUniverse(TRI->getNumRegs()); assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); unsigned NumVirtRegs = MRI.getNumVirtRegs(); CurrentVRegDefs.setUniverse(NumVirtRegs); CurrentVRegUses.setUniverse(NumVirtRegs); VRegUses.clear(); VRegUses.setUniverse(NumVirtRegs); // Model data dependencies between instructions being scheduled and the // ExitSU. addSchedBarrierDeps(); // Walk the list of instructions, from bottom moving up. MachineInstr *DbgMI = nullptr; for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; MII != MIE; --MII) { MachineInstr &MI = *std::prev(MII); if (DbgMI) { DbgValues.push_back(std::make_pair(DbgMI, &MI)); DbgMI = nullptr; } if (MI.isDebugValue()) { DbgMI = &MI; continue; } SUnit *SU = MISUnitMap[&MI]; assert(SU && "No SUnit mapped to this MI"); if (RPTracker) { collectVRegUses(SU); RegisterOperands RegOpers; RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); if (TrackLaneMasks) { SlotIndex SlotIdx = LIS->getInstructionIndex(MI); RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); } if (PDiffs != nullptr) PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); RPTracker->recedeSkipDebugValues(); assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); RPTracker->recede(RegOpers); } assert( (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && "Cannot schedule terminators or labels!"); // Add register-based dependencies (data, anti, and output). // For some instructions (calls, returns, inline-asm, etc.) there can // be explicit uses and implicit defs, in which case the use will appear // on the operand list before the def. Do two passes over the operand // list to make sure that defs are processed before any uses. bool HasVRegDef = false; for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI.getOperand(j); if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) addPhysRegDeps(SU, j); else { HasVRegDef = true; addVRegDefDeps(SU, j); } } // Now process all uses. for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI.getOperand(j); // Only look at use operands. // We do not need to check for MO.readsReg() here because subsequent // subregister defs will get output dependence edges and need no // additional use dependencies. if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) addPhysRegDeps(SU, j); else if (MO.readsReg()) // ignore undef operands addVRegUseDeps(SU, j); } // If we haven't seen any uses in this scheduling region, create a // dependence edge to ExitSU to model the live-out latency. This is required // for vreg defs with no in-region use, and prefetches with no vreg def. // // FIXME: NumDataSuccs would be more precise than NumSuccs here. This // check currently relies on being called before adding chain deps. if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { SDep Dep(SU, SDep::Artificial); Dep.setLatency(SU->Latency - 1); ExitSU.addPred(Dep); } // Add memory dependencies (Note: isStoreToStackSlot and // isLoadFromStackSLot are not usable after stack slots are lowered to // actual addresses). // This is a barrier event that acts as a pivotal node in the DAG. if (isGlobalMemoryObject(AA, &MI)) { // Become the barrier chain. if (BarrierChain) BarrierChain->addPredBarrier(SU); BarrierChain = SU; DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" << BarrierChain->NodeNum << ").\n";); // Add dependencies against everything below it and clear maps. addBarrierChain(Stores); addBarrierChain(Loads); addBarrierChain(NonAliasStores); addBarrierChain(NonAliasLoads); continue; } // If it's not a store or a variant load, we're done. if (!MI.mayStore() && !(MI.mayLoad() && !MI.isInvariantLoad(AA))) continue; // Always add dependecy edge to BarrierChain if present. if (BarrierChain) BarrierChain->addPredBarrier(SU); // Find the underlying objects for MI. The Objs vector is either // empty, or filled with the Values of memory locations which this // SU depends on. An empty vector means the memory location is // unknown, and may alias anything. UnderlyingObjectsVector Objs; getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout()); if (MI.mayStore()) { if (Objs.empty()) { // An unknown store depends on all stores and loads. addChainDependencies(SU, Stores); addChainDependencies(SU, NonAliasStores); addChainDependencies(SU, Loads); addChainDependencies(SU, NonAliasLoads); // Map this store to 'UnknownValue'. Stores.insert(SU, UnknownValue); } else { // Add precise dependencies against all previously seen memory // accesses mapped to the same Value(s). for (const UnderlyingObject &UnderlObj : Objs) { ValueType V = UnderlObj.getValue(); bool ThisMayAlias = UnderlObj.mayAlias(); // Add dependencies to previous stores and loads mapped to V. addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); } // Update the store map after all chains have been added to avoid adding // self-loop edge if multiple underlying objects are present. for (const UnderlyingObject &UnderlObj : Objs) { ValueType V = UnderlObj.getValue(); bool ThisMayAlias = UnderlObj.mayAlias(); // Map this store to V. (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); } // The store may have dependencies to unanalyzable loads and // stores. addChainDependencies(SU, Loads, UnknownValue); addChainDependencies(SU, Stores, UnknownValue); } } else { // SU is a load. if (Objs.empty()) { // An unknown load depends on all stores. addChainDependencies(SU, Stores); addChainDependencies(SU, NonAliasStores); Loads.insert(SU, UnknownValue); } else { for (const UnderlyingObject &UnderlObj : Objs) { ValueType V = UnderlObj.getValue(); bool ThisMayAlias = UnderlObj.mayAlias(); // Add precise dependencies against all previously seen stores // mapping to the same Value(s). addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); // Map this load to V. (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); } // The load may have dependencies to unanalyzable stores. addChainDependencies(SU, Stores, UnknownValue); } } // Reduce maps if they grow huge. if (Stores.size() + Loads.size() >= HugeRegion) { DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); } if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); } } if (DbgMI) FirstDbgValue = DbgMI; Defs.clear(); Uses.clear(); CurrentVRegDefs.clear(); CurrentVRegUses.clear(); } raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { PSV->printCustom(OS); return OS; } void ScheduleDAGInstrs::Value2SUsMap::dump() { for (auto &Itr : *this) { if (Itr.first.is<const Value*>()) { const Value *V = Itr.first.get<const Value*>(); if (isa<UndefValue>(V)) dbgs() << "Unknown"; else V->printAsOperand(dbgs()); } else if (Itr.first.is<const PseudoSourceValue*>()) dbgs() << Itr.first.get<const PseudoSourceValue*>(); else llvm_unreachable("Unknown Value type."); dbgs() << " : "; dumpSUList(Itr.second); } } /// Reduce maps in FIFO order, by N SUs. This is better than turning /// every Nth memory SU into BarrierChain in buildSchedGraph(), since /// it avoids unnecessary edges between seen SUs above the new /// BarrierChain, and those below it. void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, Value2SUsMap &loads, unsigned N) { DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); dbgs() << "Loading SUnits:\n"; loads.dump()); // Insert all SU's NodeNums into a vector and sort it. std::vector<unsigned> NodeNums; NodeNums.reserve(stores.size() + loads.size()); for (auto &I : stores) for (auto *SU : I.second) NodeNums.push_back(SU->NodeNum); for (auto &I : loads) for (auto *SU : I.second) NodeNums.push_back(SU->NodeNum); std::sort(NodeNums.begin(), NodeNums.end()); // The N last elements in NodeNums will be removed, and the SU with // the lowest NodeNum of them will become the new BarrierChain to // let the not yet seen SUs have a dependency to the removed SUs. assert (N <= NodeNums.size()); SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; if (BarrierChain) { // The aliasing and non-aliasing maps reduce independently of each // other, but share a common BarrierChain. Check if the // newBarrierChain is above the former one. If it is not, it may // introduce a loop to use newBarrierChain, so keep the old one. if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { BarrierChain->addPredBarrier(newBarrierChain); BarrierChain = newBarrierChain; DEBUG(dbgs() << "Inserting new barrier chain: SU(" << BarrierChain->NodeNum << ").\n";); } else DEBUG(dbgs() << "Keeping old barrier chain: SU(" << BarrierChain->NodeNum << ").\n";); } else BarrierChain = newBarrierChain; insertBarrierChain(stores); insertBarrierChain(loads); DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); dbgs() << "Loading SUnits:\n"; loads.dump()); } /// \brief Initialize register live-range state for updating kills. void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { // Start with no live registers. LiveRegs.reset(); // Examine the live-in regs of all successors. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) { for (const auto &LI : (*SI)->liveins()) { // Repeat, for reg and all subregs. for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) LiveRegs.set(*SubRegs); } } } /// \brief If we change a kill flag on the bundle instruction implicit register /// operands, then we also need to propagate that to any instructions inside /// the bundle which had the same kill state. static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, bool NewKillState, const TargetRegisterInfo *TRI) { if (MI->getOpcode() != TargetOpcode::BUNDLE) return; // Walk backwards from the last instruction in the bundle to the first. // Once we set a kill flag on an instruction, we bail out, as otherwise we // might set it on too many operands. We will clear as many flags as we // can though. MachineBasicBlock::instr_iterator Begin = MI->getIterator(); MachineBasicBlock::instr_iterator End = getBundleEnd(*MI); while (Begin != End) { if (NewKillState) { if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) return; } else (--End)->clearRegisterKills(Reg, TRI); } } bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { // Setting kill flag... if (!MO.isKill()) { MO.setIsKill(true); toggleBundleKillFlag(MI, MO.getReg(), true, TRI); return false; } // If MO itself is live, clear the kill flag... if (LiveRegs.test(MO.getReg())) { MO.setIsKill(false); toggleBundleKillFlag(MI, MO.getReg(), false, TRI); return false; } // If any subreg of MO is live, then create an imp-def for that // subreg and keep MO marked as killed. MO.setIsKill(false); toggleBundleKillFlag(MI, MO.getReg(), false, TRI); bool AllDead = true; const unsigned SuperReg = MO.getReg(); MachineInstrBuilder MIB(MF, MI); for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { if (LiveRegs.test(*SubRegs)) { MIB.addReg(*SubRegs, RegState::ImplicitDefine); AllDead = false; } } if(AllDead) { MO.setIsKill(true); toggleBundleKillFlag(MI, MO.getReg(), true, TRI); } return false; } // FIXME: Reuse the LivePhysRegs utility for this. void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); LiveRegs.resize(TRI->getNumRegs()); BitVector killedRegs(TRI->getNumRegs()); startBlockForKills(MBB); // Examine block from end to start... unsigned Count = MBB->size(); for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); I != E; --Count) { MachineInstr &MI = *--I; if (MI.isDebugValue()) continue; // Update liveness. Registers that are defed but not used in this // instruction are now dead. Mark register and all subregs as they // are completely defined. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (MO.isRegMask()) LiveRegs.clearBitsNotInMask(MO.getRegMask()); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!MO.isDef()) continue; // Ignore two-addr defs. if (MI.isRegTiedToUseOperand(i)) continue; // Repeat for reg and all subregs. for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) LiveRegs.reset(*SubRegs); } // Examine all used registers and set/clear kill flag. When a // register is used multiple times we only set the kill flag on // the first use. Don't set kill flags on undef operands. killedRegs.reset(); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; unsigned Reg = MO.getReg(); if ((Reg == 0) || MRI.isReserved(Reg)) continue; bool kill = false; if (!killedRegs.test(Reg)) { kill = true; // A register is not killed if any subregs are live... for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { if (LiveRegs.test(*SubRegs)) { kill = false; break; } } // If subreg is not live, then register is killed if it became // live in this instruction if (kill) kill = !LiveRegs.test(Reg); } if (MO.isKill() != kill) { DEBUG(dbgs() << "Fixing " << MO << " in "); // Warning: toggleKillFlag may invalidate MO. toggleKillFlag(&MI, MO); DEBUG(MI.dump()); DEBUG({ if (MI.getOpcode() == TargetOpcode::BUNDLE) { MachineBasicBlock::instr_iterator Begin = MI.getIterator(); MachineBasicBlock::instr_iterator End = getBundleEnd(MI); while (++Begin != End) DEBUG(Begin->dump()); } }); } killedRegs.set(Reg); } // Mark any used register (that is not using undef) and subregs as // now live... for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; unsigned Reg = MO.getReg(); if ((Reg == 0) || MRI.isReserved(Reg)) continue; for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) LiveRegs.set(*SubRegs); } } } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) SU->getInstr()->dump(); #endif } std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); if (SU == &EntrySU) oss << "<entry>"; else if (SU == &ExitSU) oss << "<exit>"; else SU->getInstr()->print(oss, /*SkipOpers=*/true); return oss.str(); } /// Return the basic block label. It is not necessarilly unique because a block /// contains multiple scheduling regions. But it is fine for visualization. std::string ScheduleDAGInstrs::getDAGName() const { return "dag." + BB->getFullName(); } //===----------------------------------------------------------------------===// // SchedDFSResult Implementation //===----------------------------------------------------------------------===// namespace llvm { /// \brief Internal state used to compute SchedDFSResult. class SchedDFSImpl { SchedDFSResult &R; /// Join DAG nodes into equivalence classes by their subtree. IntEqClasses SubtreeClasses; /// List PredSU, SuccSU pairs that represent data edges between subtrees. std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; struct RootData { unsigned NodeID; unsigned ParentNodeID; // Parent node (member of the parent subtree). unsigned SubInstrCount; // Instr count in this tree only, not children. RootData(unsigned id): NodeID(id), ParentNodeID(SchedDFSResult::InvalidSubtreeID), SubInstrCount(0) {} unsigned getSparseSetIndex() const { return NodeID; } }; SparseSet<RootData> RootSet; public: SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { RootSet.setUniverse(R.DFSNodeData.size()); } /// Return true if this node been visited by the DFS traversal. /// /// During visitPostorderNode the Node's SubtreeID is assigned to the Node /// ID. Later, SubtreeID is updated but remains valid. bool isVisited(const SUnit *SU) const { return R.DFSNodeData[SU->NodeNum].SubtreeID != SchedDFSResult::InvalidSubtreeID; } /// Initialize this node's instruction count. We don't need to flag the node /// visited until visitPostorder because the DAG cannot have cycles. void visitPreorder(const SUnit *SU) { R.DFSNodeData[SU->NodeNum].InstrCount = SU->getInstr()->isTransient() ? 0 : 1; } /// Called once for each node after all predecessors are visited. Revisit this /// node's predecessors and potentially join them now that we know the ILP of /// the other predecessors. void visitPostorderNode(const SUnit *SU) { // Mark this node as the root of a subtree. It may be joined with its // successors later. R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; RootData RData(SU->NodeNum); RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; // If any predecessors are still in their own subtree, they either cannot be // joined or are large enough to remain separate. If this parent node's // total instruction count is not greater than a child subtree by at least // the subtree limit, then try to join it now since splitting subtrees is // only useful if multiple high-pressure paths are possible. unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; for (SUnit::const_pred_iterator PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { if (PI->getKind() != SDep::Data) continue; unsigned PredNum = PI->getSUnit()->NodeNum; if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) joinPredSubtree(*PI, SU, /*CheckLimit=*/false); // Either link or merge the TreeData entry from the child to the parent. if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { // If the predecessor's parent is invalid, this is a tree edge and the // current node is the parent. if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) RootSet[PredNum].ParentNodeID = SU->NodeNum; } else if (RootSet.count(PredNum)) { // The predecessor is not a root, but is still in the root set. This // must be the new parent that it was just joined to. Note that // RootSet[PredNum].ParentNodeID may either be invalid or may still be // set to the original parent. RData.SubInstrCount += RootSet[PredNum].SubInstrCount; RootSet.erase(PredNum); } } RootSet[SU->NodeNum] = RData; } /// Called once for each tree edge after calling visitPostOrderNode on the /// predecessor. Increment the parent node's instruction count and /// preemptively join this subtree to its parent's if it is small enough. void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { R.DFSNodeData[Succ->NodeNum].InstrCount += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; joinPredSubtree(PredDep, Succ); } /// Add a connection for cross edges. void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); } /// Set each node's subtree ID to the representative ID and record connections /// between trees. void finalize() { SubtreeClasses.compress(); R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); assert(SubtreeClasses.getNumClasses() == RootSet.size() && "number of roots should match trees"); for (SparseSet<RootData>::const_iterator RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { unsigned TreeID = SubtreeClasses[RI->NodeID]; if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; // Note that SubInstrCount may be greater than InstrCount if we joined // subtrees across a cross edge. InstrCount will be attributed to the // original parent, while SubInstrCount will be attributed to the joined // parent. } R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; DEBUG(dbgs() << " SU(" << Idx << ") in tree " << R.DFSNodeData[Idx].SubtreeID << '\n'); } for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator I = ConnectionPairs.begin(), E = ConnectionPairs.end(); I != E; ++I) { unsigned PredTree = SubtreeClasses[I->first->NodeNum]; unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; if (PredTree == SuccTree) continue; unsigned Depth = I->first->getDepth(); addConnection(PredTree, SuccTree, Depth); addConnection(SuccTree, PredTree, Depth); } } protected: /// Join the predecessor subtree with the successor that is its DFS /// parent. Apply some heuristics before joining. bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, bool CheckLimit = true) { assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); // Check if the predecessor is already joined. const SUnit *PredSU = PredDep.getSUnit(); unsigned PredNum = PredSU->NodeNum; if (R.DFSNodeData[PredNum].SubtreeID != PredNum) return false; // Four is the magic number of successors before a node is considered a // pinch point. unsigned NumDataSucs = 0; for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), SE = PredSU->Succs.end(); SI != SE; ++SI) { if (SI->getKind() == SDep::Data) { if (++NumDataSucs >= 4) return false; } } if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) return false; R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; SubtreeClasses.join(Succ->NodeNum, PredNum); return true; } /// Called by finalize() to record a connection between trees. void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { if (!Depth) return; do { SmallVectorImpl<SchedDFSResult::Connection> &Connections = R.SubtreeConnections[FromTree]; for (SmallVectorImpl<SchedDFSResult::Connection>::iterator I = Connections.begin(), E = Connections.end(); I != E; ++I) { if (I->TreeID == ToTree) { I->Level = std::max(I->Level, Depth); return; } } Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); FromTree = R.DFSTreeData[FromTree].ParentTreeID; } while (FromTree != SchedDFSResult::InvalidSubtreeID); } }; } // namespace llvm namespace { /// \brief Manage the stack used by a reverse depth-first search over the DAG. class SchedDAGReverseDFS { std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; public: bool isComplete() const { return DFSStack.empty(); } void follow(const SUnit *SU) { DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); } void advance() { ++DFSStack.back().second; } const SDep *backtrack() { DFSStack.pop_back(); return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); } const SUnit *getCurr() const { return DFSStack.back().first; } SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } SUnit::const_pred_iterator getPredEnd() const { return getCurr()->Preds.end(); } }; } // anonymous static bool hasDataSucc(const SUnit *SU) { for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) return true; } return false; } /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first /// search from this root. void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { if (!IsBottomUp) llvm_unreachable("Top-down ILP metric is unimplemnted"); SchedDFSImpl Impl(*this); for (ArrayRef<SUnit>::const_iterator SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { const SUnit *SU = &*SI; if (Impl.isVisited(SU) || hasDataSucc(SU)) continue; SchedDAGReverseDFS DFS; Impl.visitPreorder(SU); DFS.follow(SU); for (;;) { // Traverse the leftmost path as far as possible. while (DFS.getPred() != DFS.getPredEnd()) { const SDep &PredDep = *DFS.getPred(); DFS.advance(); // Ignore non-data edges. if (PredDep.getKind() != SDep::Data || PredDep.getSUnit()->isBoundaryNode()) { continue; } // An already visited edge is a cross edge, assuming an acyclic DAG. if (Impl.isVisited(PredDep.getSUnit())) { Impl.visitCrossEdge(PredDep, DFS.getCurr()); continue; } Impl.visitPreorder(PredDep.getSUnit()); DFS.follow(PredDep.getSUnit()); } // Visit the top of the stack in postorder and backtrack. const SUnit *Child = DFS.getCurr(); const SDep *PredDep = DFS.backtrack(); Impl.visitPostorderNode(Child); if (PredDep) Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); if (DFS.isComplete()) break; } } Impl.finalize(); } /// The root of the given SubtreeID was just scheduled. For all subtrees /// connected to this tree, record the depth of the connection so that the /// nearest connected subtrees can be prioritized. void SchedDFSResult::scheduleTree(unsigned SubtreeID) { for (SmallVectorImpl<Connection>::const_iterator I = SubtreeConnections[SubtreeID].begin(), E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { SubtreeConnectLevels[I->TreeID] = std::max(SubtreeConnectLevels[I->TreeID], I->Level); DEBUG(dbgs() << " Tree: " << I->TreeID << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); } } LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { OS << InstrCount << " / " << Length << " = "; if (!Length) OS << "BADILP"; else OS << format("%g", ((double)InstrCount / Length)); } LLVM_DUMP_METHOD void ILPValue::dump() const { dbgs() << *this << '\n'; } namespace llvm { LLVM_DUMP_METHOD raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { Val.print(OS); return OS; } } // namespace llvm