//===-- llvm/CodeGen/MachineModuleInfo.cpp ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" using namespace llvm; using namespace llvm::dwarf; // Handle the Pass registration stuff necessary to use DataLayout's. INITIALIZE_PASS(MachineModuleInfo, "machinemoduleinfo", "Machine Module Information", false, false) char MachineModuleInfo::ID = 0; // Out of line virtual method. MachineModuleInfoImpl::~MachineModuleInfoImpl() {} namespace llvm { class MMIAddrLabelMapCallbackPtr final : CallbackVH { MMIAddrLabelMap *Map; public: MMIAddrLabelMapCallbackPtr() : Map(nullptr) {} MMIAddrLabelMapCallbackPtr(Value *V) : CallbackVH(V), Map(nullptr) {} void setPtr(BasicBlock *BB) { ValueHandleBase::operator=(BB); } void setMap(MMIAddrLabelMap *map) { Map = map; } void deleted() override; void allUsesReplacedWith(Value *V2) override; }; class MMIAddrLabelMap { MCContext &Context; struct AddrLabelSymEntry { /// Symbols - The symbols for the label. TinyPtrVector<MCSymbol *> Symbols; Function *Fn; // The containing function of the BasicBlock. unsigned Index; // The index in BBCallbacks for the BasicBlock. }; DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; /// BBCallbacks - Callbacks for the BasicBlock's that we have entries for. We /// use this so we get notified if a block is deleted or RAUWd. std::vector<MMIAddrLabelMapCallbackPtr> BBCallbacks; /// DeletedAddrLabelsNeedingEmission - This is a per-function list of symbols /// whose corresponding BasicBlock got deleted. These symbols need to be /// emitted at some point in the file, so AsmPrinter emits them after the /// function body. DenseMap<AssertingVH<Function>, std::vector<MCSymbol*> > DeletedAddrLabelsNeedingEmission; public: MMIAddrLabelMap(MCContext &context) : Context(context) {} ~MMIAddrLabelMap() { assert(DeletedAddrLabelsNeedingEmission.empty() && "Some labels for deleted blocks never got emitted"); } ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); void takeDeletedSymbolsForFunction(Function *F, std::vector<MCSymbol*> &Result); void UpdateForDeletedBlock(BasicBlock *BB); void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); }; } ArrayRef<MCSymbol *> MMIAddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { assert(BB->hasAddressTaken() && "Shouldn't get label for block without address taken"); AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; // If we already had an entry for this block, just return it. if (!Entry.Symbols.empty()) { assert(BB->getParent() == Entry.Fn && "Parent changed"); return Entry.Symbols; } // Otherwise, this is a new entry, create a new symbol for it and add an // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. BBCallbacks.emplace_back(BB); BBCallbacks.back().setMap(this); Entry.Index = BBCallbacks.size() - 1; Entry.Fn = BB->getParent(); Entry.Symbols.push_back(Context.createTempSymbol()); return Entry.Symbols; } /// takeDeletedSymbolsForFunction - If we have any deleted symbols for F, return /// them. void MMIAddrLabelMap:: takeDeletedSymbolsForFunction(Function *F, std::vector<MCSymbol*> &Result) { DenseMap<AssertingVH<Function>, std::vector<MCSymbol*> >::iterator I = DeletedAddrLabelsNeedingEmission.find(F); // If there are no entries for the function, just return. if (I == DeletedAddrLabelsNeedingEmission.end()) return; // Otherwise, take the list. std::swap(Result, I->second); DeletedAddrLabelsNeedingEmission.erase(I); } void MMIAddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { // If the block got deleted, there is no need for the symbol. If the symbol // was already emitted, we can just forget about it, otherwise we need to // queue it up for later emission when the function is output. AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); AddrLabelSymbols.erase(BB); assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); BBCallbacks[Entry.Index] = nullptr; // Clear the callback. assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && "Block/parent mismatch"); for (MCSymbol *Sym : Entry.Symbols) { if (Sym->isDefined()) return; // If the block is not yet defined, we need to emit it at the end of the // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list // for the containing Function. Since the block is being deleted, its // parent may already be removed, we have to get the function from 'Entry'. DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); } } void MMIAddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { // Get the entry for the RAUW'd block and remove it from our map. AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); AddrLabelSymbols.erase(Old); assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; // If New is not address taken, just move our symbol over to it. if (NewEntry.Symbols.empty()) { BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. NewEntry = std::move(OldEntry); // Set New's entry. return; } BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. // Otherwise, we need to add the old symbols to the new block's set. NewEntry.Symbols.insert(NewEntry.Symbols.end(), OldEntry.Symbols.begin(), OldEntry.Symbols.end()); } void MMIAddrLabelMapCallbackPtr::deleted() { Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); } void MMIAddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); } //===----------------------------------------------------------------------===// MachineModuleInfo::MachineModuleInfo(const MCAsmInfo &MAI, const MCRegisterInfo &MRI, const MCObjectFileInfo *MOFI) : ImmutablePass(ID), Context(&MAI, &MRI, MOFI, nullptr, false) { initializeMachineModuleInfoPass(*PassRegistry::getPassRegistry()); } MachineModuleInfo::MachineModuleInfo() : ImmutablePass(ID), Context(nullptr, nullptr, nullptr) { llvm_unreachable("This MachineModuleInfo constructor should never be called, " "MMI should always be explicitly constructed by " "LLVMTargetMachine"); } MachineModuleInfo::~MachineModuleInfo() { } bool MachineModuleInfo::doInitialization(Module &M) { ObjFileMMI = nullptr; CurCallSite = 0; CallsEHReturn = false; CallsUnwindInit = false; HasEHFunclets = false; DbgInfoAvailable = UsesVAFloatArgument = UsesMorestackAddr = false; PersonalityTypeCache = EHPersonality::Unknown; AddrLabelSymbols = nullptr; TheModule = nullptr; return false; } bool MachineModuleInfo::doFinalization(Module &M) { Personalities.clear(); delete AddrLabelSymbols; AddrLabelSymbols = nullptr; Context.reset(); delete ObjFileMMI; ObjFileMMI = nullptr; return false; } /// EndFunction - Discard function meta information. /// void MachineModuleInfo::EndFunction() { // Clean up frame info. FrameInstructions.clear(); // Clean up exception info. LandingPads.clear(); PersonalityTypeCache = EHPersonality::Unknown; CallSiteMap.clear(); TypeInfos.clear(); FilterIds.clear(); FilterEnds.clear(); CallsEHReturn = false; CallsUnwindInit = false; HasEHFunclets = false; VariableDbgInfos.clear(); } //===- Address of Block Management ----------------------------------------===// /// getAddrLabelSymbolToEmit - Return the symbol to be used for the specified /// basic block when its address is taken. If other blocks were RAUW'd to /// this one, we may have to emit them as well, return the whole set. ArrayRef<MCSymbol *> MachineModuleInfo::getAddrLabelSymbolToEmit(const BasicBlock *BB) { // Lazily create AddrLabelSymbols. if (!AddrLabelSymbols) AddrLabelSymbols = new MMIAddrLabelMap(Context); return AddrLabelSymbols->getAddrLabelSymbolToEmit(const_cast<BasicBlock*>(BB)); } /// takeDeletedSymbolsForFunction - If the specified function has had any /// references to address-taken blocks generated, but the block got deleted, /// return the symbol now so we can emit it. This prevents emitting a /// reference to a symbol that has no definition. void MachineModuleInfo:: takeDeletedSymbolsForFunction(const Function *F, std::vector<MCSymbol*> &Result) { // If no blocks have had their addresses taken, we're done. if (!AddrLabelSymbols) return; return AddrLabelSymbols-> takeDeletedSymbolsForFunction(const_cast<Function*>(F), Result); } //===- EH -----------------------------------------------------------------===// /// getOrCreateLandingPadInfo - Find or create an LandingPadInfo for the /// specified MachineBasicBlock. LandingPadInfo &MachineModuleInfo::getOrCreateLandingPadInfo (MachineBasicBlock *LandingPad) { unsigned N = LandingPads.size(); for (unsigned i = 0; i < N; ++i) { LandingPadInfo &LP = LandingPads[i]; if (LP.LandingPadBlock == LandingPad) return LP; } LandingPads.push_back(LandingPadInfo(LandingPad)); return LandingPads[N]; } /// addInvoke - Provide the begin and end labels of an invoke style call and /// associate it with a try landing pad block. void MachineModuleInfo::addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel) { LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); LP.BeginLabels.push_back(BeginLabel); LP.EndLabels.push_back(EndLabel); } /// addLandingPad - Provide the label of a try LandingPad block. /// MCSymbol *MachineModuleInfo::addLandingPad(MachineBasicBlock *LandingPad) { MCSymbol *LandingPadLabel = Context.createTempSymbol(); LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); LP.LandingPadLabel = LandingPadLabel; return LandingPadLabel; } void MachineModuleInfo::addPersonality(const Function *Personality) { for (unsigned i = 0; i < Personalities.size(); ++i) if (Personalities[i] == Personality) return; Personalities.push_back(Personality); } /// addCatchTypeInfo - Provide the catch typeinfo for a landing pad. /// void MachineModuleInfo:: addCatchTypeInfo(MachineBasicBlock *LandingPad, ArrayRef<const GlobalValue *> TyInfo) { LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); for (unsigned N = TyInfo.size(); N; --N) LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); } /// addFilterTypeInfo - Provide the filter typeinfo for a landing pad. /// void MachineModuleInfo:: addFilterTypeInfo(MachineBasicBlock *LandingPad, ArrayRef<const GlobalValue *> TyInfo) { LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); std::vector<unsigned> IdsInFilter(TyInfo.size()); for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) IdsInFilter[I] = getTypeIDFor(TyInfo[I]); LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); } /// addCleanup - Add a cleanup action for a landing pad. /// void MachineModuleInfo::addCleanup(MachineBasicBlock *LandingPad) { LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); LP.TypeIds.push_back(0); } void MachineModuleInfo::addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter, const BlockAddress *RecoverBA) { LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); SEHHandler Handler; Handler.FilterOrFinally = Filter; Handler.RecoverBA = RecoverBA; LP.SEHHandlers.push_back(Handler); } void MachineModuleInfo::addSEHCleanupHandler(MachineBasicBlock *LandingPad, const Function *Cleanup) { LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); SEHHandler Handler; Handler.FilterOrFinally = Cleanup; Handler.RecoverBA = nullptr; LP.SEHHandlers.push_back(Handler); } /// TidyLandingPads - Remap landing pad labels and remove any deleted landing /// pads. void MachineModuleInfo::TidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) { for (unsigned i = 0; i != LandingPads.size(); ) { LandingPadInfo &LandingPad = LandingPads[i]; if (LandingPad.LandingPadLabel && !LandingPad.LandingPadLabel->isDefined() && (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) LandingPad.LandingPadLabel = nullptr; // Special case: we *should* emit LPs with null LP MBB. This indicates // "nounwind" case. if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { LandingPads.erase(LandingPads.begin() + i); continue; } for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; MCSymbol *EndLabel = LandingPad.EndLabels[j]; if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) continue; LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); --j; --e; } // Remove landing pads with no try-ranges. if (LandingPads[i].BeginLabels.empty()) { LandingPads.erase(LandingPads.begin() + i); continue; } // If there is no landing pad, ensure that the list of typeids is empty. // If the only typeid is a cleanup, this is the same as having no typeids. if (!LandingPad.LandingPadBlock || (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) LandingPad.TypeIds.clear(); ++i; } } /// setCallSiteLandingPad - Map the landing pad's EH symbol to the call site /// indexes. void MachineModuleInfo::setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites) { LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); } /// getTypeIDFor - Return the type id for the specified typeinfo. This is /// function wide. unsigned MachineModuleInfo::getTypeIDFor(const GlobalValue *TI) { for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) if (TypeInfos[i] == TI) return i + 1; TypeInfos.push_back(TI); return TypeInfos.size(); } /// getFilterIDFor - Return the filter id for the specified typeinfos. This is /// function wide. int MachineModuleInfo::getFilterIDFor(std::vector<unsigned> &TyIds) { // If the new filter coincides with the tail of an existing filter, then // re-use the existing filter. Folding filters more than this requires // re-ordering filters and/or their elements - probably not worth it. for (std::vector<unsigned>::iterator I = FilterEnds.begin(), E = FilterEnds.end(); I != E; ++I) { unsigned i = *I, j = TyIds.size(); while (i && j) if (FilterIds[--i] != TyIds[--j]) goto try_next; if (!j) // The new filter coincides with range [i, end) of the existing filter. return -(1 + i); try_next:; } // Add the new filter. int FilterID = -(1 + FilterIds.size()); FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); FilterEnds.push_back(FilterIds.size()); FilterIds.push_back(0); // terminator return FilterID; }