//===-- CallingConvLower.cpp - Calling Conventions ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CCState class, used for lowering and implementing // calling conventions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) : CallingConv(CC), IsVarArg(isVarArg), MF(mf), TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C), CallOrPrologue(Unknown) { // No stack is used. StackOffset = 0; MaxStackArgAlign = 1; clearByValRegsInfo(); UsedRegs.resize((TRI.getNumRegs()+31)/32); } /// Allocate space on the stack large enough to pass an argument by value. /// The size and alignment information of the argument is encoded in /// its parameter attribute. void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags) { unsigned Align = ArgFlags.getByValAlign(); unsigned Size = ArgFlags.getByValSize(); if (MinSize > (int)Size) Size = MinSize; if (MinAlign > (int)Align) Align = MinAlign; ensureMaxAlignment(Align); MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align); Size = unsigned(alignTo(Size, MinAlign)); unsigned Offset = AllocateStack(Size, Align); addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); } /// Mark a register and all of its aliases as allocated. void CCState::MarkAllocated(unsigned Reg) { for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) UsedRegs[*AI/32] |= 1 << (*AI&31); } /// Analyze an array of argument values, /// incorporating info about the formals into this state. void CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, CCAssignFn Fn) { unsigned NumArgs = Ins.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Ins[i].VT; ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { #ifndef NDEBUG dbgs() << "Formal argument #" << i << " has unhandled type " << EVT(ArgVT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Analyze the return values of a function, returning true if the return can /// be performed without sret-demotion and false otherwise. bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, CCAssignFn Fn) { // Determine which register each value should be copied into. for (unsigned i = 0, e = Outs.size(); i != e; ++i) { MVT VT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) return false; } return true; } /// Analyze the returned values of a return, /// incorporating info about the result values into this state. void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, CCAssignFn Fn) { // Determine which register each value should be copied into. for (unsigned i = 0, e = Outs.size(); i != e; ++i) { MVT VT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) { #ifndef NDEBUG dbgs() << "Return operand #" << i << " has unhandled type " << EVT(VT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Analyze the outgoing arguments to a call, /// incorporating info about the passed values into this state. void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, CCAssignFn Fn) { unsigned NumOps = Outs.size(); for (unsigned i = 0; i != NumOps; ++i) { MVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { #ifndef NDEBUG dbgs() << "Call operand #" << i << " has unhandled type " << EVT(ArgVT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Same as above except it takes vectors of types and argument flags. void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &Flags, CCAssignFn Fn) { unsigned NumOps = ArgVTs.size(); for (unsigned i = 0; i != NumOps; ++i) { MVT ArgVT = ArgVTs[i]; ISD::ArgFlagsTy ArgFlags = Flags[i]; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { #ifndef NDEBUG dbgs() << "Call operand #" << i << " has unhandled type " << EVT(ArgVT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Analyze the return values of a call, incorporating info about the passed /// values into this state. void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, CCAssignFn Fn) { for (unsigned i = 0, e = Ins.size(); i != e; ++i) { MVT VT = Ins[i].VT; ISD::ArgFlagsTy Flags = Ins[i].Flags; if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { #ifndef NDEBUG dbgs() << "Call result #" << i << " has unhandled type " << EVT(VT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Same as above except it's specialized for calls that produce a single value. void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { #ifndef NDEBUG dbgs() << "Call result has unhandled type " << EVT(VT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { if (VT.isVector()) return true; // Assume -msse-regparm might be in effect. if (!VT.isInteger()) return false; if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall) return true; return false; } void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT, CCAssignFn Fn) { unsigned SavedStackOffset = StackOffset; unsigned SavedMaxStackArgAlign = MaxStackArgAlign; unsigned NumLocs = Locs.size(); // Set the 'inreg' flag if it is used for this calling convention. ISD::ArgFlagsTy Flags; if (isValueTypeInRegForCC(CallingConv, VT)) Flags.setInReg(); // Allocate something of this value type repeatedly until we get assigned a // location in memory. bool HaveRegParm = true; while (HaveRegParm) { if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { #ifndef NDEBUG dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() << " while computing remaining regparms\n"; #endif llvm_unreachable(nullptr); } HaveRegParm = Locs.back().isRegLoc(); } // Copy all the registers from the value locations we added. assert(NumLocs < Locs.size() && "CC assignment failed to add location"); for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) if (Locs[I].isRegLoc()) Regs.push_back(MCPhysReg(Locs[I].getLocReg())); // Clear the assigned values and stack memory. We leave the registers marked // as allocated so that future queries don't return the same registers, i.e. // when i64 and f64 are both passed in GPRs. StackOffset = SavedStackOffset; MaxStackArgAlign = SavedMaxStackArgAlign; Locs.resize(NumLocs); } void CCState::analyzeMustTailForwardedRegisters( SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, CCAssignFn Fn) { // Oftentimes calling conventions will not user register parameters for // variadic functions, so we need to assume we're not variadic so that we get // all the registers that might be used in a non-variadic call. SaveAndRestore<bool> SavedVarArg(IsVarArg, false); SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true); for (MVT RegVT : RegParmTypes) { SmallVector<MCPhysReg, 8> RemainingRegs; getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); for (MCPhysReg PReg : RemainingRegs) { unsigned VReg = MF.addLiveIn(PReg, RC); Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); } } } bool CCState::resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl<ISD::InputArg> &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn) { if (CalleeCC == CallerCC) return true; SmallVector<CCValAssign, 4> RVLocs1; CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); CCInfo1.AnalyzeCallResult(Ins, CalleeFn); SmallVector<CCValAssign, 4> RVLocs2; CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); CCInfo2.AnalyzeCallResult(Ins, CallerFn); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) { const CCValAssign &Loc1 = RVLocs1[I]; const CCValAssign &Loc2 = RVLocs2[I]; if (Loc1.getLocInfo() != Loc2.getLocInfo()) return false; bool RegLoc1 = Loc1.isRegLoc(); if (RegLoc1 != Loc2.isRegLoc()) return false; if (RegLoc1) { if (Loc1.getLocReg() != Loc2.getLocReg()) return false; } else { if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) return false; } } return true; }