//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Bitcode writer implementation. // //===----------------------------------------------------------------------===// #include "ValueEnumerator.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/BitstreamWriter.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/UseListOrder.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Program.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/raw_ostream.h" #include <cctype> #include <map> using namespace llvm; namespace { /// These are manifest constants used by the bitcode writer. They do not need to /// be kept in sync with the reader, but need to be consistent within this file. enum { // VALUE_SYMTAB_BLOCK abbrev id's. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, VST_ENTRY_7_ABBREV, VST_ENTRY_6_ABBREV, VST_BBENTRY_6_ABBREV, // CONSTANTS_BLOCK abbrev id's. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, CONSTANTS_INTEGER_ABBREV, CONSTANTS_CE_CAST_Abbrev, CONSTANTS_NULL_Abbrev, // FUNCTION_BLOCK abbrev id's. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, FUNCTION_INST_BINOP_ABBREV, FUNCTION_INST_BINOP_FLAGS_ABBREV, FUNCTION_INST_CAST_ABBREV, FUNCTION_INST_RET_VOID_ABBREV, FUNCTION_INST_RET_VAL_ABBREV, FUNCTION_INST_UNREACHABLE_ABBREV, FUNCTION_INST_GEP_ABBREV, }; /// Abstract class to manage the bitcode writing, subclassed for each bitcode /// file type. Owns the BitstreamWriter, and includes the main entry point for /// writing. class BitcodeWriter { protected: /// Pointer to the buffer allocated by caller for bitcode writing. const SmallVectorImpl<char> &Buffer; /// The stream created and owned by the BitodeWriter. BitstreamWriter Stream; /// Saves the offset of the VSTOffset record that must eventually be /// backpatched with the offset of the actual VST. uint64_t VSTOffsetPlaceholder = 0; public: /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord, /// writing to the provided \p Buffer. BitcodeWriter(SmallVectorImpl<char> &Buffer) : Buffer(Buffer), Stream(Buffer) {} virtual ~BitcodeWriter() = default; /// Main entry point to write the bitcode file, which writes the bitcode /// header and will then invoke the virtual writeBlocks() method. void write(); private: /// Derived classes must implement this to write the corresponding blocks for /// that bitcode file type. virtual void writeBlocks() = 0; protected: bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } void writeValueSymbolTableForwardDecl(); void writeBitcodeHeader(); }; /// Class to manage the bitcode writing for a module. class ModuleBitcodeWriter : public BitcodeWriter { /// The Module to write to bitcode. const Module &M; /// Enumerates ids for all values in the module. ValueEnumerator VE; /// Optional per-module index to write for ThinLTO. const ModuleSummaryIndex *Index; /// True if a module hash record should be written. bool GenerateHash; /// The start bit of the module block, for use in generating a module hash uint64_t BitcodeStartBit = 0; public: /// Constructs a ModuleBitcodeWriter object for the given Module, /// writing to the provided \p Buffer. ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, bool ShouldPreserveUseListOrder, const ModuleSummaryIndex *Index, bool GenerateHash) : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), GenerateHash(GenerateHash) { // Save the start bit of the actual bitcode, in case there is space // saved at the start for the darwin header above. The reader stream // will start at the bitcode, and we need the offset of the VST // to line up. BitcodeStartBit = Stream.GetCurrentBitNo(); } private: /// Main entry point for writing a module to bitcode, invoked by /// BitcodeWriter::write() after it writes the header. void writeBlocks() override; /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the /// current llvm version, and a record for the epoch number. void writeIdentificationBlock(); /// Emit the current module to the bitstream. void writeModule(); uint64_t bitcodeStartBit() { return BitcodeStartBit; } void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse); void writeAttributeGroupTable(); void writeAttributeTable(); void writeTypeTable(); void writeComdats(); void writeModuleInfo(); void writeValueAsMetadata(const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record); void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); unsigned createDILocationAbbrev(); void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); unsigned createGenericDINodeAbbrev(); void writeGenericDINode(const GenericDINode *N, SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIEnumerator(const DIEnumerator *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIDerivedType(const DIDerivedType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDICompositeType(const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDISubroutineType(const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDICompileUnit(const DICompileUnit *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDISubprogram(const DISubprogram *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDILexicalBlock(const DILexicalBlock *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDILexicalBlockFile(const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDITemplateValueParameter(const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIGlobalVariable(const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDILocalVariable(const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIExpression(const DIExpression *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIObjCProperty(const DIObjCProperty *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); void writeDIImportedEntity(const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); unsigned createNamedMetadataAbbrev(); void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); unsigned createMetadataStringsAbbrev(); void writeMetadataStrings(ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record); void writeMetadataRecords(ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record); void writeModuleMetadata(); void writeFunctionMetadata(const Function &F); void writeFunctionMetadataAttachment(const Function &F); void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO); void writeModuleMetadataKinds(); void writeOperandBundleTags(); void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); void writeModuleConstants(); bool pushValueAndType(const Value *V, unsigned InstID, SmallVectorImpl<unsigned> &Vals); void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); void pushValue(const Value *V, unsigned InstID, SmallVectorImpl<unsigned> &Vals); void pushValueSigned(const Value *V, unsigned InstID, SmallVectorImpl<uint64_t> &Vals); void writeInstruction(const Instruction &I, unsigned InstID, SmallVectorImpl<unsigned> &Vals); void writeValueSymbolTable( const ValueSymbolTable &VST, bool IsModuleLevel = false, DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); void writeUseList(UseListOrder &&Order); void writeUseListBlock(const Function *F); void writeFunction(const Function &F, DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); void writeBlockInfo(); void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, const Function &F); void writeModuleLevelReferences(const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, unsigned FSModRefsAbbrev); void writePerModuleGlobalValueSummary(); void writeModuleHash(size_t BlockStartPos); }; /// Class to manage the bitcode writing for a combined index. class IndexBitcodeWriter : public BitcodeWriter { /// The combined index to write to bitcode. const ModuleSummaryIndex &Index; /// When writing a subset of the index for distributed backends, client /// provides a map of modules to the corresponding GUIDs/summaries to write. std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; /// Map that holds the correspondence between the GUID used in the combined /// index and a value id generated by this class to use in references. std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; /// Tracks the last value id recorded in the GUIDToValueMap. unsigned GlobalValueId = 0; public: /// Constructs a IndexBitcodeWriter object for the given combined index, /// writing to the provided \p Buffer. When writing a subset of the index /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. IndexBitcodeWriter(SmallVectorImpl<char> &Buffer, const ModuleSummaryIndex &Index, std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex = nullptr) : BitcodeWriter(Buffer), Index(Index), ModuleToSummariesForIndex(ModuleToSummariesForIndex) { // Assign unique value ids to all summaries to be written, for use // in writing out the call graph edges. Save the mapping from GUID // to the new global value id to use when writing those edges, which // are currently saved in the index in terms of GUID. for (const auto &I : *this) GUIDToValueIdMap[I.first] = ++GlobalValueId; } /// The below iterator returns the GUID and associated summary. typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; /// Iterator over the value GUID and summaries to be written to bitcode, /// hides the details of whether they are being pulled from the entire /// index or just those in a provided ModuleToSummariesForIndex map. class iterator : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, GVInfo> { /// Enables access to parent class. const IndexBitcodeWriter &Writer; // Iterators used when writing only those summaries in a provided // ModuleToSummariesForIndex map: /// Points to the last element in outer ModuleToSummariesForIndex map. std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack; /// Iterator on outer ModuleToSummariesForIndex map. std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter; /// Iterator on an inner global variable summary map. GVSummaryMapTy::iterator ModuleGVSummariesIter; // Iterators used when writing all summaries in the index: /// Points to the last element in the Index outer GlobalValueMap. const_gvsummary_iterator IndexSummariesBack; /// Iterator on outer GlobalValueMap. const_gvsummary_iterator IndexSummariesIter; /// Iterator on an inner GlobalValueSummaryList. GlobalValueSummaryList::const_iterator IndexGVSummariesIter; public: /// Construct iterator from parent \p Writer and indicate if we are /// constructing the end iterator. iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { // Set up the appropriate set of iterators given whether we are writing // the full index or just a subset. // Can't setup the Back or inner iterators if the corresponding map // is empty. This will be handled specially in operator== as well. if (Writer.ModuleToSummariesForIndex && !Writer.ModuleToSummariesForIndex->empty()) { for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); std::next(ModuleSummariesBack) != Writer.ModuleToSummariesForIndex->end(); ModuleSummariesBack++) ; ModuleSummariesIter = !IsAtEnd ? Writer.ModuleToSummariesForIndex->begin() : ModuleSummariesBack; ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() : ModuleSummariesBack->second.end(); } else if (!Writer.ModuleToSummariesForIndex && Writer.Index.begin() != Writer.Index.end()) { for (IndexSummariesBack = Writer.Index.begin(); std::next(IndexSummariesBack) != Writer.Index.end(); IndexSummariesBack++) ; IndexSummariesIter = !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() : IndexSummariesBack->second.end(); } } /// Increment the appropriate set of iterators. iterator &operator++() { // First the inner iterator is incremented, then if it is at the end // and there are more outer iterations to go, the inner is reset to // the start of the next inner list. if (Writer.ModuleToSummariesForIndex) { ++ModuleGVSummariesIter; if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && ModuleSummariesIter != ModuleSummariesBack) { ++ModuleSummariesIter; ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); } } else { ++IndexGVSummariesIter; if (IndexGVSummariesIter == IndexSummariesIter->second.end() && IndexSummariesIter != IndexSummariesBack) { ++IndexSummariesIter; IndexGVSummariesIter = IndexSummariesIter->second.begin(); } } return *this; } /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current /// outer and inner iterator positions. GVInfo operator*() { if (Writer.ModuleToSummariesForIndex) return std::make_pair(ModuleGVSummariesIter->first, ModuleGVSummariesIter->second); return std::make_pair(IndexSummariesIter->first, IndexGVSummariesIter->get()); } /// Checks if the iterators are equal, with special handling for empty /// indexes. bool operator==(const iterator &RHS) const { if (Writer.ModuleToSummariesForIndex) { // First ensure that both are writing the same subset. if (Writer.ModuleToSummariesForIndex != RHS.Writer.ModuleToSummariesForIndex) return false; // Already determined above that maps are the same, so if one is // empty, they both are. if (Writer.ModuleToSummariesForIndex->empty()) return true; // Ensure the ModuleGVSummariesIter are iterating over the same // container before checking them below. if (ModuleSummariesIter != RHS.ModuleSummariesIter) return false; return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; } // First ensure RHS also writing the full index, and that both are // writing the same full index. if (RHS.Writer.ModuleToSummariesForIndex || &Writer.Index != &RHS.Writer.Index) return false; // Already determined above that maps are the same, so if one is // empty, they both are. if (Writer.Index.begin() == Writer.Index.end()) return true; // Ensure the IndexGVSummariesIter are iterating over the same // container before checking them below. if (IndexSummariesIter != RHS.IndexSummariesIter) return false; return IndexGVSummariesIter == RHS.IndexGVSummariesIter; } }; /// Obtain the start iterator over the summaries to be written. iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } /// Obtain the end iterator over the summaries to be written. iterator end() { return iterator(*this, /*IsAtEnd=*/true); } private: /// Main entry point for writing a combined index to bitcode, invoked by /// BitcodeWriter::write() after it writes the header. void writeBlocks() override; void writeIndex(); void writeModStrings(); void writeCombinedValueSymbolTable(); void writeCombinedGlobalValueSummary(); /// Indicates whether the provided \p ModulePath should be written into /// the module string table, e.g. if full index written or if it is in /// the provided subset. bool doIncludeModule(StringRef ModulePath) { return !ModuleToSummariesForIndex || ModuleToSummariesForIndex->count(ModulePath); } bool hasValueId(GlobalValue::GUID ValGUID) { const auto &VMI = GUIDToValueIdMap.find(ValGUID); return VMI != GUIDToValueIdMap.end(); } unsigned getValueId(GlobalValue::GUID ValGUID) { const auto &VMI = GUIDToValueIdMap.find(ValGUID); // If this GUID doesn't have an entry, assign one. if (VMI == GUIDToValueIdMap.end()) { GUIDToValueIdMap[ValGUID] = ++GlobalValueId; return GlobalValueId; } else { return VMI->second; } } std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } }; } // end anonymous namespace static unsigned getEncodedCastOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unknown cast instruction!"); case Instruction::Trunc : return bitc::CAST_TRUNC; case Instruction::ZExt : return bitc::CAST_ZEXT; case Instruction::SExt : return bitc::CAST_SEXT; case Instruction::FPToUI : return bitc::CAST_FPTOUI; case Instruction::FPToSI : return bitc::CAST_FPTOSI; case Instruction::UIToFP : return bitc::CAST_UITOFP; case Instruction::SIToFP : return bitc::CAST_SITOFP; case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; case Instruction::FPExt : return bitc::CAST_FPEXT; case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; case Instruction::BitCast : return bitc::CAST_BITCAST; case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; } } static unsigned getEncodedBinaryOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unknown binary instruction!"); case Instruction::Add: case Instruction::FAdd: return bitc::BINOP_ADD; case Instruction::Sub: case Instruction::FSub: return bitc::BINOP_SUB; case Instruction::Mul: case Instruction::FMul: return bitc::BINOP_MUL; case Instruction::UDiv: return bitc::BINOP_UDIV; case Instruction::FDiv: case Instruction::SDiv: return bitc::BINOP_SDIV; case Instruction::URem: return bitc::BINOP_UREM; case Instruction::FRem: case Instruction::SRem: return bitc::BINOP_SREM; case Instruction::Shl: return bitc::BINOP_SHL; case Instruction::LShr: return bitc::BINOP_LSHR; case Instruction::AShr: return bitc::BINOP_ASHR; case Instruction::And: return bitc::BINOP_AND; case Instruction::Or: return bitc::BINOP_OR; case Instruction::Xor: return bitc::BINOP_XOR; } } static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { switch (Op) { default: llvm_unreachable("Unknown RMW operation!"); case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; case AtomicRMWInst::Add: return bitc::RMW_ADD; case AtomicRMWInst::Sub: return bitc::RMW_SUB; case AtomicRMWInst::And: return bitc::RMW_AND; case AtomicRMWInst::Nand: return bitc::RMW_NAND; case AtomicRMWInst::Or: return bitc::RMW_OR; case AtomicRMWInst::Xor: return bitc::RMW_XOR; case AtomicRMWInst::Max: return bitc::RMW_MAX; case AtomicRMWInst::Min: return bitc::RMW_MIN; case AtomicRMWInst::UMax: return bitc::RMW_UMAX; case AtomicRMWInst::UMin: return bitc::RMW_UMIN; } } static unsigned getEncodedOrdering(AtomicOrdering Ordering) { switch (Ordering) { case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; } llvm_unreachable("Invalid ordering"); } static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { switch (SynchScope) { case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; } llvm_unreachable("Invalid synch scope"); } void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse) { SmallVector<unsigned, 64> Vals; // Code: [strchar x N] for (unsigned i = 0, e = Str.size(); i != e; ++i) { if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) AbbrevToUse = 0; Vals.push_back(Str[i]); } // Emit the finished record. Stream.EmitRecord(Code, Vals, AbbrevToUse); } static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { switch (Kind) { case Attribute::Alignment: return bitc::ATTR_KIND_ALIGNMENT; case Attribute::AllocSize: return bitc::ATTR_KIND_ALLOC_SIZE; case Attribute::AlwaysInline: return bitc::ATTR_KIND_ALWAYS_INLINE; case Attribute::ArgMemOnly: return bitc::ATTR_KIND_ARGMEMONLY; case Attribute::Builtin: return bitc::ATTR_KIND_BUILTIN; case Attribute::ByVal: return bitc::ATTR_KIND_BY_VAL; case Attribute::Convergent: return bitc::ATTR_KIND_CONVERGENT; case Attribute::InAlloca: return bitc::ATTR_KIND_IN_ALLOCA; case Attribute::Cold: return bitc::ATTR_KIND_COLD; case Attribute::InaccessibleMemOnly: return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; case Attribute::InaccessibleMemOrArgMemOnly: return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; case Attribute::InlineHint: return bitc::ATTR_KIND_INLINE_HINT; case Attribute::InReg: return bitc::ATTR_KIND_IN_REG; case Attribute::JumpTable: return bitc::ATTR_KIND_JUMP_TABLE; case Attribute::MinSize: return bitc::ATTR_KIND_MIN_SIZE; case Attribute::Naked: return bitc::ATTR_KIND_NAKED; case Attribute::Nest: return bitc::ATTR_KIND_NEST; case Attribute::NoAlias: return bitc::ATTR_KIND_NO_ALIAS; case Attribute::NoBuiltin: return bitc::ATTR_KIND_NO_BUILTIN; case Attribute::NoCapture: return bitc::ATTR_KIND_NO_CAPTURE; case Attribute::NoDuplicate: return bitc::ATTR_KIND_NO_DUPLICATE; case Attribute::NoImplicitFloat: return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; case Attribute::NoInline: return bitc::ATTR_KIND_NO_INLINE; case Attribute::NoRecurse: return bitc::ATTR_KIND_NO_RECURSE; case Attribute::NonLazyBind: return bitc::ATTR_KIND_NON_LAZY_BIND; case Attribute::NonNull: return bitc::ATTR_KIND_NON_NULL; case Attribute::Dereferenceable: return bitc::ATTR_KIND_DEREFERENCEABLE; case Attribute::DereferenceableOrNull: return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; case Attribute::NoRedZone: return bitc::ATTR_KIND_NO_RED_ZONE; case Attribute::NoReturn: return bitc::ATTR_KIND_NO_RETURN; case Attribute::NoUnwind: return bitc::ATTR_KIND_NO_UNWIND; case Attribute::OptimizeForSize: return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; case Attribute::OptimizeNone: return bitc::ATTR_KIND_OPTIMIZE_NONE; case Attribute::ReadNone: return bitc::ATTR_KIND_READ_NONE; case Attribute::ReadOnly: return bitc::ATTR_KIND_READ_ONLY; case Attribute::Returned: return bitc::ATTR_KIND_RETURNED; case Attribute::ReturnsTwice: return bitc::ATTR_KIND_RETURNS_TWICE; case Attribute::SExt: return bitc::ATTR_KIND_S_EXT; case Attribute::StackAlignment: return bitc::ATTR_KIND_STACK_ALIGNMENT; case Attribute::StackProtect: return bitc::ATTR_KIND_STACK_PROTECT; case Attribute::StackProtectReq: return bitc::ATTR_KIND_STACK_PROTECT_REQ; case Attribute::StackProtectStrong: return bitc::ATTR_KIND_STACK_PROTECT_STRONG; case Attribute::SafeStack: return bitc::ATTR_KIND_SAFESTACK; case Attribute::StructRet: return bitc::ATTR_KIND_STRUCT_RET; case Attribute::SanitizeAddress: return bitc::ATTR_KIND_SANITIZE_ADDRESS; case Attribute::SanitizeThread: return bitc::ATTR_KIND_SANITIZE_THREAD; case Attribute::SanitizeMemory: return bitc::ATTR_KIND_SANITIZE_MEMORY; case Attribute::SwiftError: return bitc::ATTR_KIND_SWIFT_ERROR; case Attribute::SwiftSelf: return bitc::ATTR_KIND_SWIFT_SELF; case Attribute::UWTable: return bitc::ATTR_KIND_UW_TABLE; case Attribute::WriteOnly: return bitc::ATTR_KIND_WRITEONLY; case Attribute::ZExt: return bitc::ATTR_KIND_Z_EXT; case Attribute::EndAttrKinds: llvm_unreachable("Can not encode end-attribute kinds marker."); case Attribute::None: llvm_unreachable("Can not encode none-attribute."); } llvm_unreachable("Trying to encode unknown attribute"); } void ModuleBitcodeWriter::writeAttributeGroupTable() { const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); if (AttrGrps.empty()) return; Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); SmallVector<uint64_t, 64> Record; for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { AttributeSet AS = AttrGrps[i]; for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { AttributeSet A = AS.getSlotAttributes(i); Record.push_back(VE.getAttributeGroupID(A)); Record.push_back(AS.getSlotIndex(i)); for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); I != E; ++I) { Attribute Attr = *I; if (Attr.isEnumAttribute()) { Record.push_back(0); Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); } else if (Attr.isIntAttribute()) { Record.push_back(1); Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); Record.push_back(Attr.getValueAsInt()); } else { StringRef Kind = Attr.getKindAsString(); StringRef Val = Attr.getValueAsString(); Record.push_back(Val.empty() ? 3 : 4); Record.append(Kind.begin(), Kind.end()); Record.push_back(0); if (!Val.empty()) { Record.append(Val.begin(), Val.end()); Record.push_back(0); } } } Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); Record.clear(); } } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeAttributeTable() { const std::vector<AttributeSet> &Attrs = VE.getAttributes(); if (Attrs.empty()) return; Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); SmallVector<uint64_t, 64> Record; for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { const AttributeSet &A = Attrs[i]; for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); Record.clear(); } Stream.ExitBlock(); } /// WriteTypeTable - Write out the type table for a module. void ModuleBitcodeWriter::writeTypeTable() { const ValueEnumerator::TypeList &TypeList = VE.getTypes(); Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); SmallVector<uint64_t, 64> TypeVals; uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); // Abbrev for TYPE_CODE_POINTER. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_FUNCTION. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_STRUCT_ANON. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_STRUCT_NAME. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_STRUCT_NAMED. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_ARRAY. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); // Emit an entry count so the reader can reserve space. TypeVals.push_back(TypeList.size()); Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); TypeVals.clear(); // Loop over all of the types, emitting each in turn. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Type *T = TypeList[i]; int AbbrevToUse = 0; unsigned Code = 0; switch (T->getTypeID()) { case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; case Type::IntegerTyID: // INTEGER: [width] Code = bitc::TYPE_CODE_INTEGER; TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); break; case Type::PointerTyID: { PointerType *PTy = cast<PointerType>(T); // POINTER: [pointee type, address space] Code = bitc::TYPE_CODE_POINTER; TypeVals.push_back(VE.getTypeID(PTy->getElementType())); unsigned AddressSpace = PTy->getAddressSpace(); TypeVals.push_back(AddressSpace); if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; break; } case Type::FunctionTyID: { FunctionType *FT = cast<FunctionType>(T); // FUNCTION: [isvararg, retty, paramty x N] Code = bitc::TYPE_CODE_FUNCTION; TypeVals.push_back(FT->isVarArg()); TypeVals.push_back(VE.getTypeID(FT->getReturnType())); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); AbbrevToUse = FunctionAbbrev; break; } case Type::StructTyID: { StructType *ST = cast<StructType>(T); // STRUCT: [ispacked, eltty x N] TypeVals.push_back(ST->isPacked()); // Output all of the element types. for (StructType::element_iterator I = ST->element_begin(), E = ST->element_end(); I != E; ++I) TypeVals.push_back(VE.getTypeID(*I)); if (ST->isLiteral()) { Code = bitc::TYPE_CODE_STRUCT_ANON; AbbrevToUse = StructAnonAbbrev; } else { if (ST->isOpaque()) { Code = bitc::TYPE_CODE_OPAQUE; } else { Code = bitc::TYPE_CODE_STRUCT_NAMED; AbbrevToUse = StructNamedAbbrev; } // Emit the name if it is present. if (!ST->getName().empty()) writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), StructNameAbbrev); } break; } case Type::ArrayTyID: { ArrayType *AT = cast<ArrayType>(T); // ARRAY: [numelts, eltty] Code = bitc::TYPE_CODE_ARRAY; TypeVals.push_back(AT->getNumElements()); TypeVals.push_back(VE.getTypeID(AT->getElementType())); AbbrevToUse = ArrayAbbrev; break; } case Type::VectorTyID: { VectorType *VT = cast<VectorType>(T); // VECTOR [numelts, eltty] Code = bitc::TYPE_CODE_VECTOR; TypeVals.push_back(VT->getNumElements()); TypeVals.push_back(VE.getTypeID(VT->getElementType())); break; } } // Emit the finished record. Stream.EmitRecord(Code, TypeVals, AbbrevToUse); TypeVals.clear(); } Stream.ExitBlock(); } static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { switch (Linkage) { case GlobalValue::ExternalLinkage: return 0; case GlobalValue::WeakAnyLinkage: return 16; case GlobalValue::AppendingLinkage: return 2; case GlobalValue::InternalLinkage: return 3; case GlobalValue::LinkOnceAnyLinkage: return 18; case GlobalValue::ExternalWeakLinkage: return 7; case GlobalValue::CommonLinkage: return 8; case GlobalValue::PrivateLinkage: return 9; case GlobalValue::WeakODRLinkage: return 17; case GlobalValue::LinkOnceODRLinkage: return 19; case GlobalValue::AvailableExternallyLinkage: return 12; } llvm_unreachable("Invalid linkage"); } static unsigned getEncodedLinkage(const GlobalValue &GV) { return getEncodedLinkage(GV.getLinkage()); } // Decode the flags for GlobalValue in the summary static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { uint64_t RawFlags = 0; RawFlags |= Flags.HasSection; // bool // Linkage don't need to be remapped at that time for the summary. Any future // change to the getEncodedLinkage() function will need to be taken into // account here as well. RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits return RawFlags; } static unsigned getEncodedVisibility(const GlobalValue &GV) { switch (GV.getVisibility()) { case GlobalValue::DefaultVisibility: return 0; case GlobalValue::HiddenVisibility: return 1; case GlobalValue::ProtectedVisibility: return 2; } llvm_unreachable("Invalid visibility"); } static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { switch (GV.getDLLStorageClass()) { case GlobalValue::DefaultStorageClass: return 0; case GlobalValue::DLLImportStorageClass: return 1; case GlobalValue::DLLExportStorageClass: return 2; } llvm_unreachable("Invalid DLL storage class"); } static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { switch (GV.getThreadLocalMode()) { case GlobalVariable::NotThreadLocal: return 0; case GlobalVariable::GeneralDynamicTLSModel: return 1; case GlobalVariable::LocalDynamicTLSModel: return 2; case GlobalVariable::InitialExecTLSModel: return 3; case GlobalVariable::LocalExecTLSModel: return 4; } llvm_unreachable("Invalid TLS model"); } static unsigned getEncodedComdatSelectionKind(const Comdat &C) { switch (C.getSelectionKind()) { case Comdat::Any: return bitc::COMDAT_SELECTION_KIND_ANY; case Comdat::ExactMatch: return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; case Comdat::Largest: return bitc::COMDAT_SELECTION_KIND_LARGEST; case Comdat::NoDuplicates: return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; case Comdat::SameSize: return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; } llvm_unreachable("Invalid selection kind"); } static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { switch (GV.getUnnamedAddr()) { case GlobalValue::UnnamedAddr::None: return 0; case GlobalValue::UnnamedAddr::Local: return 2; case GlobalValue::UnnamedAddr::Global: return 1; } llvm_unreachable("Invalid unnamed_addr"); } void ModuleBitcodeWriter::writeComdats() { SmallVector<unsigned, 64> Vals; for (const Comdat *C : VE.getComdats()) { // COMDAT: [selection_kind, name] Vals.push_back(getEncodedComdatSelectionKind(*C)); size_t Size = C->getName().size(); assert(isUInt<32>(Size)); Vals.push_back(Size); for (char Chr : C->getName()) Vals.push_back((unsigned char)Chr); Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); Vals.clear(); } } /// Write a record that will eventually hold the word offset of the /// module-level VST. For now the offset is 0, which will be backpatched /// after the real VST is written. Saves the bit offset to backpatch. void BitcodeWriter::writeValueSymbolTableForwardDecl() { // Write a placeholder value in for the offset of the real VST, // which is written after the function blocks so that it can include // the offset of each function. The placeholder offset will be // updated when the real VST is written. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); // Blocks are 32-bit aligned, so we can use a 32-bit word offset to // hold the real VST offset. Must use fixed instead of VBR as we don't // know how many VBR chunks to reserve ahead of time. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); // Emit the placeholder uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); // Compute and save the bit offset to the placeholder, which will be // patched when the real VST is written. We can simply subtract the 32-bit // fixed size from the current bit number to get the location to backpatch. VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; } enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; /// Determine the encoding to use for the given string name and length. static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { bool isChar6 = true; for (const char *C = Str, *E = C + StrLen; C != E; ++C) { if (isChar6) isChar6 = BitCodeAbbrevOp::isChar6(*C); if ((unsigned char)*C & 128) // don't bother scanning the rest. return SE_Fixed8; } if (isChar6) return SE_Char6; else return SE_Fixed7; } /// Emit top-level description of module, including target triple, inline asm, /// descriptors for global variables, and function prototype info. /// Returns the bit offset to backpatch with the location of the real VST. void ModuleBitcodeWriter::writeModuleInfo() { // Emit various pieces of data attached to a module. if (!M.getTargetTriple().empty()) writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 0 /*TODO*/); const std::string &DL = M.getDataLayoutStr(); if (!DL.empty()) writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); if (!M.getModuleInlineAsm().empty()) writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 0 /*TODO*/); // Emit information about sections and GC, computing how many there are. Also // compute the maximum alignment value. std::map<std::string, unsigned> SectionMap; std::map<std::string, unsigned> GCMap; unsigned MaxAlignment = 0; unsigned MaxGlobalType = 0; for (const GlobalValue &GV : M.globals()) { MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); if (GV.hasSection()) { // Give section names unique ID's. unsigned &Entry = SectionMap[GV.getSection()]; if (!Entry) { writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 0 /*TODO*/); Entry = SectionMap.size(); } } } for (const Function &F : M) { MaxAlignment = std::max(MaxAlignment, F.getAlignment()); if (F.hasSection()) { // Give section names unique ID's. unsigned &Entry = SectionMap[F.getSection()]; if (!Entry) { writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 0 /*TODO*/); Entry = SectionMap.size(); } } if (F.hasGC()) { // Same for GC names. unsigned &Entry = GCMap[F.getGC()]; if (!Entry) { writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/); Entry = GCMap.size(); } } } // Emit abbrev for globals, now that we know # sections and max alignment. unsigned SimpleGVarAbbrev = 0; if (!M.global_empty()) { // Add an abbrev for common globals with no visibility or thread localness. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(MaxGlobalType+1))); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 //| explicitType << 1 //| constant Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. if (MaxAlignment == 0) // Alignment. Abbv->Add(BitCodeAbbrevOp(0)); else { unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(MaxEncAlignment+1))); } if (SectionMap.empty()) // Section. Abbv->Add(BitCodeAbbrevOp(0)); else Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(SectionMap.size()+1))); // Don't bother emitting vis + thread local. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); } // Emit the global variable information. SmallVector<unsigned, 64> Vals; for (const GlobalVariable &GV : M.globals()) { unsigned AbbrevToUse = 0; // GLOBALVAR: [type, isconst, initid, // linkage, alignment, section, visibility, threadlocal, // unnamed_addr, externally_initialized, dllstorageclass, // comdat] Vals.push_back(VE.getTypeID(GV.getValueType())); Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); Vals.push_back(GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); Vals.push_back(getEncodedLinkage(GV)); Vals.push_back(Log2_32(GV.getAlignment())+1); Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); if (GV.isThreadLocal() || GV.getVisibility() != GlobalValue::DefaultVisibility || GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || GV.isExternallyInitialized() || GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || GV.hasComdat()) { Vals.push_back(getEncodedVisibility(GV)); Vals.push_back(getEncodedThreadLocalMode(GV)); Vals.push_back(getEncodedUnnamedAddr(GV)); Vals.push_back(GV.isExternallyInitialized()); Vals.push_back(getEncodedDLLStorageClass(GV)); Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); } else { AbbrevToUse = SimpleGVarAbbrev; } Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); Vals.clear(); } // Emit the function proto information. for (const Function &F : M) { // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, // section, visibility, gc, unnamed_addr, prologuedata, // dllstorageclass, comdat, prefixdata, personalityfn] Vals.push_back(VE.getTypeID(F.getFunctionType())); Vals.push_back(F.getCallingConv()); Vals.push_back(F.isDeclaration()); Vals.push_back(getEncodedLinkage(F)); Vals.push_back(VE.getAttributeID(F.getAttributes())); Vals.push_back(Log2_32(F.getAlignment())+1); Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); Vals.push_back(getEncodedVisibility(F)); Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); Vals.push_back(getEncodedUnnamedAddr(F)); Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); Vals.push_back(getEncodedDLLStorageClass(F)); Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) : 0); Vals.push_back( F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); unsigned AbbrevToUse = 0; Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); Vals.clear(); } // Emit the alias information. for (const GlobalAlias &A : M.aliases()) { // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, // threadlocal, unnamed_addr] Vals.push_back(VE.getTypeID(A.getValueType())); Vals.push_back(A.getType()->getAddressSpace()); Vals.push_back(VE.getValueID(A.getAliasee())); Vals.push_back(getEncodedLinkage(A)); Vals.push_back(getEncodedVisibility(A)); Vals.push_back(getEncodedDLLStorageClass(A)); Vals.push_back(getEncodedThreadLocalMode(A)); Vals.push_back(getEncodedUnnamedAddr(A)); unsigned AbbrevToUse = 0; Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); Vals.clear(); } // Emit the ifunc information. for (const GlobalIFunc &I : M.ifuncs()) { // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] Vals.push_back(VE.getTypeID(I.getValueType())); Vals.push_back(I.getType()->getAddressSpace()); Vals.push_back(VE.getValueID(I.getResolver())); Vals.push_back(getEncodedLinkage(I)); Vals.push_back(getEncodedVisibility(I)); Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); Vals.clear(); } // Emit the module's source file name. { StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), M.getSourceFileName().size()); BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); if (Bits == SE_Char6) AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); else if (Bits == SE_Fixed7) AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); // MODULE_CODE_SOURCE_FILENAME: [namechar x N] BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(AbbrevOpToUse); unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); for (const auto P : M.getSourceFileName()) Vals.push_back((unsigned char)P); // Emit the finished record. Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); Vals.clear(); } // If we have a VST, write the VSTOFFSET record placeholder. if (M.getValueSymbolTable().empty()) return; writeValueSymbolTableForwardDecl(); } static uint64_t getOptimizationFlags(const Value *V) { uint64_t Flags = 0; if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { if (OBO->hasNoSignedWrap()) Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; if (OBO->hasNoUnsignedWrap()) Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { if (PEO->isExact()) Flags |= 1 << bitc::PEO_EXACT; } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { if (FPMO->hasUnsafeAlgebra()) Flags |= FastMathFlags::UnsafeAlgebra; if (FPMO->hasNoNaNs()) Flags |= FastMathFlags::NoNaNs; if (FPMO->hasNoInfs()) Flags |= FastMathFlags::NoInfs; if (FPMO->hasNoSignedZeros()) Flags |= FastMathFlags::NoSignedZeros; if (FPMO->hasAllowReciprocal()) Flags |= FastMathFlags::AllowReciprocal; } return Flags; } void ModuleBitcodeWriter::writeValueAsMetadata( const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { // Mimic an MDNode with a value as one operand. Value *V = MD->getValue(); Record.push_back(VE.getTypeID(V->getType())); Record.push_back(VE.getValueID(V)); Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); Record.clear(); } void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { Metadata *MD = N->getOperand(i); assert(!(MD && isa<LocalAsMetadata>(MD)) && "Unexpected function-local metadata"); Record.push_back(VE.getMetadataOrNullID(MD)); } Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE : bitc::METADATA_NODE, Record, Abbrev); Record.clear(); } unsigned ModuleBitcodeWriter::createDILocationAbbrev() { // Assume the column is usually under 128, and always output the inlined-at // location (it's never more expensive than building an array size 1). BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); return Stream.EmitAbbrev(Abbv); } void ModuleBitcodeWriter::writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { if (!Abbrev) Abbrev = createDILocationAbbrev(); Record.push_back(N->isDistinct()); Record.push_back(N->getLine()); Record.push_back(N->getColumn()); Record.push_back(VE.getMetadataID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); Record.clear(); } unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { // Assume the column is usually under 128, and always output the inlined-at // location (it's never more expensive than building an array size 1). BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); return Stream.EmitAbbrev(Abbv); } void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { if (!Abbrev) Abbrev = createGenericDINodeAbbrev(); Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(0); // Per-tag version field; unused for now. for (auto &I : N->operands()) Record.push_back(VE.getMetadataOrNullID(I)); Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); Record.clear(); } static uint64_t rotateSign(int64_t I) { uint64_t U = I; return I < 0 ? ~(U << 1) : U << 1; } void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getCount()); Record.push_back(rotateSign(N->getLowerBound())); Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(rotateSign(N->getValue())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(N->getSizeInBits()); Record.push_back(N->getAlignInBits()); Record.push_back(N->getEncoding()); Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); Record.push_back(N->getSizeInBits()); Record.push_back(N->getAlignInBits()); Record.push_back(N->getOffsetInBits()); Record.push_back(N->getFlags()); Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDICompositeType( const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { const unsigned IsNotUsedInOldTypeRef = 0x2; Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); Record.push_back(N->getSizeInBits()); Record.push_back(N->getAlignInBits()); Record.push_back(N->getOffsetInBits()); Record.push_back(N->getFlags()); Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); Record.push_back(N->getRuntimeLang()); Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDISubroutineType( const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { const unsigned HasNoOldTypeRefs = 0x2; Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); Record.push_back(N->getFlags()); Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); Record.push_back(N->getCC()); Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { assert(N->isDistinct() && "Expected distinct compile units"); Record.push_back(/* IsDistinct */ true); Record.push_back(N->getSourceLanguage()); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); Record.push_back(N->isOptimized()); Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); Record.push_back(N->getRuntimeVersion()); Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); Record.push_back(N->getEmissionKind()); Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); Record.push_back(/* subprograms */ 0); Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); Record.push_back(N->getDWOId()); Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { uint64_t HasUnitFlag = 1 << 1; Record.push_back(N->isDistinct() | HasUnitFlag); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->isLocalToUnit()); Record.push_back(N->isDefinition()); Record.push_back(N->getScopeLine()); Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); Record.push_back(N->getVirtuality()); Record.push_back(N->getVirtualIndex()); Record.push_back(N->getFlags()); Record.push_back(N->isOptimized()); Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); Record.push_back(N->getThisAdjustment()); Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(N->getColumn()); Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDILexicalBlockFile( const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getDiscriminator()); Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(N->getLine()); Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getMacinfoType()); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getMacinfoType()); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); for (auto &I : N->operands()) Record.push_back(VE.getMetadataOrNullID(I)); Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDITemplateTypeParameter( const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getType())); Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDITemplateValueParameter( const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(VE.getMetadataOrNullID(N->getValue())); Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIGlobalVariable( const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->isLocalToUnit()); Record.push_back(N->isDefinition()); Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDILocalVariable( const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Record.push_back(N->getArg()); Record.push_back(N->getFlags()); Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.reserve(N->getElements().size() + 1); Record.push_back(N->isDistinct()); Record.append(N->elements_begin(), N->elements_end()); Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Record.push_back(VE.getMetadataOrNullID(N->getFile())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); Record.push_back(N->getAttributes()); Record.push_back(VE.getMetadataOrNullID(N->getType())); Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); Record.clear(); } void ModuleBitcodeWriter::writeDIImportedEntity( const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { Record.push_back(N->isDistinct()); Record.push_back(N->getTag()); Record.push_back(VE.getMetadataOrNullID(N->getScope())); Record.push_back(VE.getMetadataOrNullID(N->getEntity())); Record.push_back(N->getLine()); Record.push_back(VE.getMetadataOrNullID(N->getRawName())); Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); Record.clear(); } unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); return Stream.EmitAbbrev(Abbv); } void ModuleBitcodeWriter::writeNamedMetadata( SmallVectorImpl<uint64_t> &Record) { if (M.named_metadata_empty()) return; unsigned Abbrev = createNamedMetadataAbbrev(); for (const NamedMDNode &NMD : M.named_metadata()) { // Write name. StringRef Str = NMD.getName(); Record.append(Str.bytes_begin(), Str.bytes_end()); Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); Record.clear(); // Write named metadata operands. for (const MDNode *N : NMD.operands()) Record.push_back(VE.getMetadataID(N)); Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); Record.clear(); } } unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); return Stream.EmitAbbrev(Abbv); } /// Write out a record for MDString. /// /// All the metadata strings in a metadata block are emitted in a single /// record. The sizes and strings themselves are shoved into a blob. void ModuleBitcodeWriter::writeMetadataStrings( ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { if (Strings.empty()) return; // Start the record with the number of strings. Record.push_back(bitc::METADATA_STRINGS); Record.push_back(Strings.size()); // Emit the sizes of the strings in the blob. SmallString<256> Blob; { BitstreamWriter W(Blob); for (const Metadata *MD : Strings) W.EmitVBR(cast<MDString>(MD)->getLength(), 6); W.FlushToWord(); } // Add the offset to the strings to the record. Record.push_back(Blob.size()); // Add the strings to the blob. for (const Metadata *MD : Strings) Blob.append(cast<MDString>(MD)->getString()); // Emit the final record. Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); Record.clear(); } void ModuleBitcodeWriter::writeMetadataRecords( ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) { if (MDs.empty()) return; // Initialize MDNode abbreviations. #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; #include "llvm/IR/Metadata.def" for (const Metadata *MD : MDs) { if (const MDNode *N = dyn_cast<MDNode>(MD)) { assert(N->isResolved() && "Expected forward references to be resolved"); switch (N->getMetadataID()) { default: llvm_unreachable("Invalid MDNode subclass"); #define HANDLE_MDNODE_LEAF(CLASS) \ case Metadata::CLASS##Kind: \ write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ continue; #include "llvm/IR/Metadata.def" } } writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); } } void ModuleBitcodeWriter::writeModuleMetadata() { if (!VE.hasMDs() && M.named_metadata_empty()) return; Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); SmallVector<uint64_t, 64> Record; writeMetadataStrings(VE.getMDStrings(), Record); writeMetadataRecords(VE.getNonMDStrings(), Record); writeNamedMetadata(Record); auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { SmallVector<uint64_t, 4> Record; Record.push_back(VE.getValueID(&GO)); pushGlobalMetadataAttachment(Record, GO); Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); }; for (const Function &F : M) if (F.isDeclaration() && F.hasMetadata()) AddDeclAttachedMetadata(F); // FIXME: Only store metadata for declarations here, and move data for global // variable definitions to a separate block (PR28134). for (const GlobalVariable &GV : M.globals()) if (GV.hasMetadata()) AddDeclAttachedMetadata(GV); Stream.ExitBlock(); } void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { if (!VE.hasMDs()) return; Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); SmallVector<uint64_t, 64> Record; writeMetadataStrings(VE.getMDStrings(), Record); writeMetadataRecords(VE.getNonMDStrings(), Record); Stream.ExitBlock(); } void ModuleBitcodeWriter::pushGlobalMetadataAttachment( SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { // [n x [id, mdnode]] SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; GO.getAllMetadata(MDs); for (const auto &I : MDs) { Record.push_back(I.first); Record.push_back(VE.getMetadataID(I.second)); } } void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); SmallVector<uint64_t, 64> Record; if (F.hasMetadata()) { pushGlobalMetadataAttachment(Record, F); Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); Record.clear(); } // Write metadata attachments // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; for (const BasicBlock &BB : F) for (const Instruction &I : BB) { MDs.clear(); I.getAllMetadataOtherThanDebugLoc(MDs); // If no metadata, ignore instruction. if (MDs.empty()) continue; Record.push_back(VE.getInstructionID(&I)); for (unsigned i = 0, e = MDs.size(); i != e; ++i) { Record.push_back(MDs[i].first); Record.push_back(VE.getMetadataID(MDs[i].second)); } Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeModuleMetadataKinds() { SmallVector<uint64_t, 64> Record; // Write metadata kinds // METADATA_KIND - [n x [id, name]] SmallVector<StringRef, 8> Names; M.getMDKindNames(Names); if (Names.empty()) return; Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { Record.push_back(MDKindID); StringRef KName = Names[MDKindID]; Record.append(KName.begin(), KName.end()); Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeOperandBundleTags() { // Write metadata kinds // // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG // // OPERAND_BUNDLE_TAG - [strchr x N] SmallVector<StringRef, 8> Tags; M.getOperandBundleTags(Tags); if (Tags.empty()) return; Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); SmallVector<uint64_t, 64> Record; for (auto Tag : Tags) { Record.append(Tag.begin(), Tag.end()); Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); Record.clear(); } Stream.ExitBlock(); } static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { if ((int64_t)V >= 0) Vals.push_back(V << 1); else Vals.push_back((-V << 1) | 1); } void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal) { if (FirstVal == LastVal) return; Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); unsigned AggregateAbbrev = 0; unsigned String8Abbrev = 0; unsigned CString7Abbrev = 0; unsigned CString6Abbrev = 0; // If this is a constant pool for the module, emit module-specific abbrevs. if (isGlobal) { // Abbrev for CST_CODE_AGGREGATE. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); AggregateAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for CST_CODE_STRING. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); String8Abbrev = Stream.EmitAbbrev(Abbv); // Abbrev for CST_CODE_CSTRING. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); CString7Abbrev = Stream.EmitAbbrev(Abbv); // Abbrev for CST_CODE_CSTRING. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); CString6Abbrev = Stream.EmitAbbrev(Abbv); } SmallVector<uint64_t, 64> Record; const ValueEnumerator::ValueList &Vals = VE.getValues(); Type *LastTy = nullptr; for (unsigned i = FirstVal; i != LastVal; ++i) { const Value *V = Vals[i].first; // If we need to switch types, do so now. if (V->getType() != LastTy) { LastTy = V->getType(); Record.push_back(VE.getTypeID(LastTy)); Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, CONSTANTS_SETTYPE_ABBREV); Record.clear(); } if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { Record.push_back(unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | unsigned(IA->getDialect()&1) << 2); // Add the asm string. const std::string &AsmStr = IA->getAsmString(); Record.push_back(AsmStr.size()); Record.append(AsmStr.begin(), AsmStr.end()); // Add the constraint string. const std::string &ConstraintStr = IA->getConstraintString(); Record.push_back(ConstraintStr.size()); Record.append(ConstraintStr.begin(), ConstraintStr.end()); Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); Record.clear(); continue; } const Constant *C = cast<Constant>(V); unsigned Code = -1U; unsigned AbbrevToUse = 0; if (C->isNullValue()) { Code = bitc::CST_CODE_NULL; } else if (isa<UndefValue>(C)) { Code = bitc::CST_CODE_UNDEF; } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { if (IV->getBitWidth() <= 64) { uint64_t V = IV->getSExtValue(); emitSignedInt64(Record, V); Code = bitc::CST_CODE_INTEGER; AbbrevToUse = CONSTANTS_INTEGER_ABBREV; } else { // Wide integers, > 64 bits in size. // We have an arbitrary precision integer value to write whose // bit width is > 64. However, in canonical unsigned integer // format it is likely that the high bits are going to be zero. // So, we only write the number of active words. unsigned NWords = IV->getValue().getActiveWords(); const uint64_t *RawWords = IV->getValue().getRawData(); for (unsigned i = 0; i != NWords; ++i) { emitSignedInt64(Record, RawWords[i]); } Code = bitc::CST_CODE_WIDE_INTEGER; } } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { Code = bitc::CST_CODE_FLOAT; Type *Ty = CFP->getType(); if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); } else if (Ty->isX86_FP80Ty()) { // api needed to prevent premature destruction // bits are not in the same order as a normal i80 APInt, compensate. APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Record.push_back((p[1] << 48) | (p[0] >> 16)); Record.push_back(p[0] & 0xffffLL); } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Record.push_back(p[0]); Record.push_back(p[1]); } else { assert (0 && "Unknown FP type!"); } } else if (isa<ConstantDataSequential>(C) && cast<ConstantDataSequential>(C)->isString()) { const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); // Emit constant strings specially. unsigned NumElts = Str->getNumElements(); // If this is a null-terminated string, use the denser CSTRING encoding. if (Str->isCString()) { Code = bitc::CST_CODE_CSTRING; --NumElts; // Don't encode the null, which isn't allowed by char6. } else { Code = bitc::CST_CODE_STRING; AbbrevToUse = String8Abbrev; } bool isCStr7 = Code == bitc::CST_CODE_CSTRING; bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; for (unsigned i = 0; i != NumElts; ++i) { unsigned char V = Str->getElementAsInteger(i); Record.push_back(V); isCStr7 &= (V & 128) == 0; if (isCStrChar6) isCStrChar6 = BitCodeAbbrevOp::isChar6(V); } if (isCStrChar6) AbbrevToUse = CString6Abbrev; else if (isCStr7) AbbrevToUse = CString7Abbrev; } else if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(C)) { Code = bitc::CST_CODE_DATA; Type *EltTy = CDS->getType()->getElementType(); if (isa<IntegerType>(EltTy)) { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) Record.push_back(CDS->getElementAsInteger(i)); } else { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) Record.push_back( CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); } } else if (isa<ConstantAggregate>(C)) { Code = bitc::CST_CODE_AGGREGATE; for (const Value *Op : C->operands()) Record.push_back(VE.getValueID(Op)); AbbrevToUse = AggregateAbbrev; } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { switch (CE->getOpcode()) { default: if (Instruction::isCast(CE->getOpcode())) { Code = bitc::CST_CODE_CE_CAST; Record.push_back(getEncodedCastOpcode(CE->getOpcode())); Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; } else { assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); Code = bitc::CST_CODE_CE_BINOP; Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); uint64_t Flags = getOptimizationFlags(CE); if (Flags != 0) Record.push_back(Flags); } break; case Instruction::GetElementPtr: { Code = bitc::CST_CODE_CE_GEP; const auto *GO = cast<GEPOperator>(C); if (GO->isInBounds()) Code = bitc::CST_CODE_CE_INBOUNDS_GEP; Record.push_back(VE.getTypeID(GO->getSourceElementType())); for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); Record.push_back(VE.getValueID(C->getOperand(i))); } break; } case Instruction::Select: Code = bitc::CST_CODE_CE_SELECT; Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getValueID(C->getOperand(2))); break; case Instruction::ExtractElement: Code = bitc::CST_CODE_CE_EXTRACTELT; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); Record.push_back(VE.getValueID(C->getOperand(1))); break; case Instruction::InsertElement: Code = bitc::CST_CODE_CE_INSERTELT; Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); Record.push_back(VE.getValueID(C->getOperand(2))); break; case Instruction::ShuffleVector: // If the return type and argument types are the same, this is a // standard shufflevector instruction. If the types are different, // then the shuffle is widening or truncating the input vectors, and // the argument type must also be encoded. if (C->getType() == C->getOperand(0)->getType()) { Code = bitc::CST_CODE_CE_SHUFFLEVEC; } else { Code = bitc::CST_CODE_CE_SHUFVEC_EX; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); } Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getValueID(C->getOperand(2))); break; case Instruction::ICmp: case Instruction::FCmp: Code = bitc::CST_CODE_CE_CMP; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(CE->getPredicate()); break; } } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { Code = bitc::CST_CODE_BLOCKADDRESS; Record.push_back(VE.getTypeID(BA->getFunction()->getType())); Record.push_back(VE.getValueID(BA->getFunction())); Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); } else { #ifndef NDEBUG C->dump(); #endif llvm_unreachable("Unknown constant!"); } Stream.EmitRecord(Code, Record, AbbrevToUse); Record.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeModuleConstants() { const ValueEnumerator::ValueList &Vals = VE.getValues(); // Find the first constant to emit, which is the first non-globalvalue value. // We know globalvalues have been emitted by WriteModuleInfo. for (unsigned i = 0, e = Vals.size(); i != e; ++i) { if (!isa<GlobalValue>(Vals[i].first)) { writeConstants(i, Vals.size(), true); return; } } } /// pushValueAndType - The file has to encode both the value and type id for /// many values, because we need to know what type to create for forward /// references. However, most operands are not forward references, so this type /// field is not needed. /// /// This function adds V's value ID to Vals. If the value ID is higher than the /// instruction ID, then it is a forward reference, and it also includes the /// type ID. The value ID that is written is encoded relative to the InstID. bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, SmallVectorImpl<unsigned> &Vals) { unsigned ValID = VE.getValueID(V); // Make encoding relative to the InstID. Vals.push_back(InstID - ValID); if (ValID >= InstID) { Vals.push_back(VE.getTypeID(V->getType())); return true; } return false; } void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, unsigned InstID) { SmallVector<unsigned, 64> Record; LLVMContext &C = CS.getInstruction()->getContext(); for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { const auto &Bundle = CS.getOperandBundleAt(i); Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); for (auto &Input : Bundle.Inputs) pushValueAndType(Input, InstID, Record); Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); Record.clear(); } } /// pushValue - Like pushValueAndType, but where the type of the value is /// omitted (perhaps it was already encoded in an earlier operand). void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, SmallVectorImpl<unsigned> &Vals) { unsigned ValID = VE.getValueID(V); Vals.push_back(InstID - ValID); } void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, SmallVectorImpl<uint64_t> &Vals) { unsigned ValID = VE.getValueID(V); int64_t diff = ((int32_t)InstID - (int32_t)ValID); emitSignedInt64(Vals, diff); } /// WriteInstruction - Emit an instruction to the specified stream. void ModuleBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, SmallVectorImpl<unsigned> &Vals) { unsigned Code = 0; unsigned AbbrevToUse = 0; VE.setInstructionID(&I); switch (I.getOpcode()) { default: if (Instruction::isCast(I.getOpcode())) { Code = bitc::FUNC_CODE_INST_CAST; if (!pushValueAndType(I.getOperand(0), InstID, Vals)) AbbrevToUse = FUNCTION_INST_CAST_ABBREV; Vals.push_back(VE.getTypeID(I.getType())); Vals.push_back(getEncodedCastOpcode(I.getOpcode())); } else { assert(isa<BinaryOperator>(I) && "Unknown instruction!"); Code = bitc::FUNC_CODE_INST_BINOP; if (!pushValueAndType(I.getOperand(0), InstID, Vals)) AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; pushValue(I.getOperand(1), InstID, Vals); Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) { if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; Vals.push_back(Flags); } } break; case Instruction::GetElementPtr: { Code = bitc::FUNC_CODE_INST_GEP; AbbrevToUse = FUNCTION_INST_GEP_ABBREV; auto &GEPInst = cast<GetElementPtrInst>(I); Vals.push_back(GEPInst.isInBounds()); Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) pushValueAndType(I.getOperand(i), InstID, Vals); break; } case Instruction::ExtractValue: { Code = bitc::FUNC_CODE_INST_EXTRACTVAL; pushValueAndType(I.getOperand(0), InstID, Vals); const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); Vals.append(EVI->idx_begin(), EVI->idx_end()); break; } case Instruction::InsertValue: { Code = bitc::FUNC_CODE_INST_INSERTVAL; pushValueAndType(I.getOperand(0), InstID, Vals); pushValueAndType(I.getOperand(1), InstID, Vals); const InsertValueInst *IVI = cast<InsertValueInst>(&I); Vals.append(IVI->idx_begin(), IVI->idx_end()); break; } case Instruction::Select: Code = bitc::FUNC_CODE_INST_VSELECT; pushValueAndType(I.getOperand(1), InstID, Vals); pushValue(I.getOperand(2), InstID, Vals); pushValueAndType(I.getOperand(0), InstID, Vals); break; case Instruction::ExtractElement: Code = bitc::FUNC_CODE_INST_EXTRACTELT; pushValueAndType(I.getOperand(0), InstID, Vals); pushValueAndType(I.getOperand(1), InstID, Vals); break; case Instruction::InsertElement: Code = bitc::FUNC_CODE_INST_INSERTELT; pushValueAndType(I.getOperand(0), InstID, Vals); pushValue(I.getOperand(1), InstID, Vals); pushValueAndType(I.getOperand(2), InstID, Vals); break; case Instruction::ShuffleVector: Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; pushValueAndType(I.getOperand(0), InstID, Vals); pushValue(I.getOperand(1), InstID, Vals); pushValue(I.getOperand(2), InstID, Vals); break; case Instruction::ICmp: case Instruction::FCmp: { // compare returning Int1Ty or vector of Int1Ty Code = bitc::FUNC_CODE_INST_CMP2; pushValueAndType(I.getOperand(0), InstID, Vals); pushValue(I.getOperand(1), InstID, Vals); Vals.push_back(cast<CmpInst>(I).getPredicate()); uint64_t Flags = getOptimizationFlags(&I); if (Flags != 0) Vals.push_back(Flags); break; } case Instruction::Ret: { Code = bitc::FUNC_CODE_INST_RET; unsigned NumOperands = I.getNumOperands(); if (NumOperands == 0) AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; else if (NumOperands == 1) { if (!pushValueAndType(I.getOperand(0), InstID, Vals)) AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; } else { for (unsigned i = 0, e = NumOperands; i != e; ++i) pushValueAndType(I.getOperand(i), InstID, Vals); } } break; case Instruction::Br: { Code = bitc::FUNC_CODE_INST_BR; const BranchInst &II = cast<BranchInst>(I); Vals.push_back(VE.getValueID(II.getSuccessor(0))); if (II.isConditional()) { Vals.push_back(VE.getValueID(II.getSuccessor(1))); pushValue(II.getCondition(), InstID, Vals); } } break; case Instruction::Switch: { Code = bitc::FUNC_CODE_INST_SWITCH; const SwitchInst &SI = cast<SwitchInst>(I); Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); pushValue(SI.getCondition(), InstID, Vals); Vals.push_back(VE.getValueID(SI.getDefaultDest())); for (SwitchInst::ConstCaseIt Case : SI.cases()) { Vals.push_back(VE.getValueID(Case.getCaseValue())); Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); } } break; case Instruction::IndirectBr: Code = bitc::FUNC_CODE_INST_INDIRECTBR; Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // Encode the address operand as relative, but not the basic blocks. pushValue(I.getOperand(0), InstID, Vals); for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) Vals.push_back(VE.getValueID(I.getOperand(i))); break; case Instruction::Invoke: { const InvokeInst *II = cast<InvokeInst>(&I); const Value *Callee = II->getCalledValue(); FunctionType *FTy = II->getFunctionType(); if (II->hasOperandBundles()) writeOperandBundles(II, InstID); Code = bitc::FUNC_CODE_INST_INVOKE; Vals.push_back(VE.getAttributeID(II->getAttributes())); Vals.push_back(II->getCallingConv() | 1 << 13); Vals.push_back(VE.getValueID(II->getNormalDest())); Vals.push_back(VE.getValueID(II->getUnwindDest())); Vals.push_back(VE.getTypeID(FTy)); pushValueAndType(Callee, InstID, Vals); // Emit value #'s for the fixed parameters. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) pushValue(I.getOperand(i), InstID, Vals); // fixed param. // Emit type/value pairs for varargs params. if (FTy->isVarArg()) { for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; i != e; ++i) pushValueAndType(I.getOperand(i), InstID, Vals); // vararg } break; } case Instruction::Resume: Code = bitc::FUNC_CODE_INST_RESUME; pushValueAndType(I.getOperand(0), InstID, Vals); break; case Instruction::CleanupRet: { Code = bitc::FUNC_CODE_INST_CLEANUPRET; const auto &CRI = cast<CleanupReturnInst>(I); pushValue(CRI.getCleanupPad(), InstID, Vals); if (CRI.hasUnwindDest()) Vals.push_back(VE.getValueID(CRI.getUnwindDest())); break; } case Instruction::CatchRet: { Code = bitc::FUNC_CODE_INST_CATCHRET; const auto &CRI = cast<CatchReturnInst>(I); pushValue(CRI.getCatchPad(), InstID, Vals); Vals.push_back(VE.getValueID(CRI.getSuccessor())); break; } case Instruction::CleanupPad: case Instruction::CatchPad: { const auto &FuncletPad = cast<FuncletPadInst>(I); Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD : bitc::FUNC_CODE_INST_CLEANUPPAD; pushValue(FuncletPad.getParentPad(), InstID, Vals); unsigned NumArgOperands = FuncletPad.getNumArgOperands(); Vals.push_back(NumArgOperands); for (unsigned Op = 0; Op != NumArgOperands; ++Op) pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); break; } case Instruction::CatchSwitch: { Code = bitc::FUNC_CODE_INST_CATCHSWITCH; const auto &CatchSwitch = cast<CatchSwitchInst>(I); pushValue(CatchSwitch.getParentPad(), InstID, Vals); unsigned NumHandlers = CatchSwitch.getNumHandlers(); Vals.push_back(NumHandlers); for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) Vals.push_back(VE.getValueID(CatchPadBB)); if (CatchSwitch.hasUnwindDest()) Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); break; } case Instruction::Unreachable: Code = bitc::FUNC_CODE_INST_UNREACHABLE; AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; break; case Instruction::PHI: { const PHINode &PN = cast<PHINode>(I); Code = bitc::FUNC_CODE_INST_PHI; // With the newer instruction encoding, forward references could give // negative valued IDs. This is most common for PHIs, so we use // signed VBRs. SmallVector<uint64_t, 128> Vals64; Vals64.push_back(VE.getTypeID(PN.getType())); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); } // Emit a Vals64 vector and exit. Stream.EmitRecord(Code, Vals64, AbbrevToUse); Vals64.clear(); return; } case Instruction::LandingPad: { const LandingPadInst &LP = cast<LandingPadInst>(I); Code = bitc::FUNC_CODE_INST_LANDINGPAD; Vals.push_back(VE.getTypeID(LP.getType())); Vals.push_back(LP.isCleanup()); Vals.push_back(LP.getNumClauses()); for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { if (LP.isCatch(I)) Vals.push_back(LandingPadInst::Catch); else Vals.push_back(LandingPadInst::Filter); pushValueAndType(LP.getClause(I), InstID, Vals); } break; } case Instruction::Alloca: { Code = bitc::FUNC_CODE_INST_ALLOCA; const AllocaInst &AI = cast<AllocaInst>(I); Vals.push_back(VE.getTypeID(AI.getAllocatedType())); Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); Vals.push_back(VE.getValueID(I.getOperand(0))); // size. unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && "not enough bits for maximum alignment"); assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); AlignRecord |= AI.isUsedWithInAlloca() << 5; AlignRecord |= 1 << 6; AlignRecord |= AI.isSwiftError() << 7; Vals.push_back(AlignRecord); break; } case Instruction::Load: if (cast<LoadInst>(I).isAtomic()) { Code = bitc::FUNC_CODE_INST_LOADATOMIC; pushValueAndType(I.getOperand(0), InstID, Vals); } else { Code = bitc::FUNC_CODE_INST_LOAD; if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; } Vals.push_back(VE.getTypeID(I.getType())); Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); Vals.push_back(cast<LoadInst>(I).isVolatile()); if (cast<LoadInst>(I).isAtomic()) { Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); } break; case Instruction::Store: if (cast<StoreInst>(I).isAtomic()) Code = bitc::FUNC_CODE_INST_STOREATOMIC; else Code = bitc::FUNC_CODE_INST_STORE; pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); Vals.push_back(cast<StoreInst>(I).isVolatile()); if (cast<StoreInst>(I).isAtomic()) { Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); } break; case Instruction::AtomicCmpXchg: Code = bitc::FUNC_CODE_INST_CMPXCHG; pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. pushValue(I.getOperand(2), InstID, Vals); // newval. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); Vals.push_back( getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); Vals.push_back( getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); Vals.push_back( getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); break; case Instruction::AtomicRMW: Code = bitc::FUNC_CODE_INST_ATOMICRMW; pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr pushValue(I.getOperand(1), InstID, Vals); // val. Vals.push_back( getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); Vals.push_back( getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); break; case Instruction::Fence: Code = bitc::FUNC_CODE_INST_FENCE; Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); break; case Instruction::Call: { const CallInst &CI = cast<CallInst>(I); FunctionType *FTy = CI.getFunctionType(); if (CI.hasOperandBundles()) writeOperandBundles(&CI, InstID); Code = bitc::FUNC_CODE_INST_CALL; Vals.push_back(VE.getAttributeID(CI.getAttributes())); unsigned Flags = getOptimizationFlags(&I); Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | unsigned(CI.isTailCall()) << bitc::CALL_TAIL | unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 1 << bitc::CALL_EXPLICIT_TYPE | unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | unsigned(Flags != 0) << bitc::CALL_FMF); if (Flags != 0) Vals.push_back(Flags); Vals.push_back(VE.getTypeID(FTy)); pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee // Emit value #'s for the fixed parameters. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { // Check for labels (can happen with asm labels). if (FTy->getParamType(i)->isLabelTy()) Vals.push_back(VE.getValueID(CI.getArgOperand(i))); else pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. } // Emit type/value pairs for varargs params. if (FTy->isVarArg()) { for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); i != e; ++i) pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs } break; } case Instruction::VAArg: Code = bitc::FUNC_CODE_INST_VAARG; Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty pushValue(I.getOperand(0), InstID, Vals); // valist. Vals.push_back(VE.getTypeID(I.getType())); // restype. break; } Stream.EmitRecord(Code, Vals, AbbrevToUse); Vals.clear(); } /// Emit names for globals/functions etc. \p IsModuleLevel is true when /// we are writing the module-level VST, where we are including a function /// bitcode index and need to backpatch the VST forward declaration record. void ModuleBitcodeWriter::writeValueSymbolTable( const ValueSymbolTable &VST, bool IsModuleLevel, DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { if (VST.empty()) { // writeValueSymbolTableForwardDecl should have returned early as // well. Ensure this handling remains in sync by asserting that // the placeholder offset is not set. assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); return; } if (IsModuleLevel && hasVSTOffsetPlaceholder()) { // Get the offset of the VST we are writing, and backpatch it into // the VST forward declaration record. uint64_t VSTOffset = Stream.GetCurrentBitNo(); // The BitcodeStartBit was the stream offset of the actual bitcode // (e.g. excluding any initial darwin header). VSTOffset -= bitcodeStartBit(); assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); } Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY // records, which are not used in the per-function VSTs. unsigned FnEntry8BitAbbrev; unsigned FnEntry7BitAbbrev; unsigned FnEntry6BitAbbrev; if (IsModuleLevel && hasVSTOffsetPlaceholder()) { // 8-bit fixed-width VST_CODE_FNENTRY function strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); // 7-bit fixed width VST_CODE_FNENTRY function strings. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); // 6-bit char6 VST_CODE_FNENTRY function strings. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); } // FIXME: Set up the abbrev, we know how many values there are! // FIXME: We know if the type names can use 7-bit ascii. SmallVector<unsigned, 64> NameVals; for (const ValueName &Name : VST) { // Figure out the encoding to use for the name. StringEncoding Bits = getStringEncoding(Name.getKeyData(), Name.getKeyLength()); unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; NameVals.push_back(VE.getValueID(Name.getValue())); Function *F = dyn_cast<Function>(Name.getValue()); if (!F) { // If value is an alias, need to get the aliased base object to // see if it is a function. auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); if (GA && GA->getBaseObject()) F = dyn_cast<Function>(GA->getBaseObject()); } // VST_CODE_ENTRY: [valueid, namechar x N] // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] // VST_CODE_BBENTRY: [bbid, namechar x N] unsigned Code; if (isa<BasicBlock>(Name.getValue())) { Code = bitc::VST_CODE_BBENTRY; if (Bits == SE_Char6) AbbrevToUse = VST_BBENTRY_6_ABBREV; } else if (F && !F->isDeclaration()) { // Must be the module-level VST, where we pass in the Index and // have a VSTOffsetPlaceholder. The function-level VST should not // contain any Function symbols. assert(FunctionToBitcodeIndex); assert(hasVSTOffsetPlaceholder()); // Save the word offset of the function (from the start of the // actual bitcode written to the stream). uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); NameVals.push_back(BitcodeIndex / 32); Code = bitc::VST_CODE_FNENTRY; AbbrevToUse = FnEntry8BitAbbrev; if (Bits == SE_Char6) AbbrevToUse = FnEntry6BitAbbrev; else if (Bits == SE_Fixed7) AbbrevToUse = FnEntry7BitAbbrev; } else { Code = bitc::VST_CODE_ENTRY; if (Bits == SE_Char6) AbbrevToUse = VST_ENTRY_6_ABBREV; else if (Bits == SE_Fixed7) AbbrevToUse = VST_ENTRY_7_ABBREV; } for (const auto P : Name.getKey()) NameVals.push_back((unsigned char)P); // Emit the finished record. Stream.EmitRecord(Code, NameVals, AbbrevToUse); NameVals.clear(); } Stream.ExitBlock(); } /// Emit function names and summary offsets for the combined index /// used by ThinLTO. void IndexBitcodeWriter::writeCombinedValueSymbolTable() { assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); // Get the offset of the VST we are writing, and backpatch it into // the VST forward declaration record. uint64_t VSTOffset = Stream.GetCurrentBitNo(); assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); SmallVector<uint64_t, 64> NameVals; for (const auto &GVI : valueIds()) { // VST_CODE_COMBINED_ENTRY: [valueid, refguid] NameVals.push_back(GVI.second); NameVals.push_back(GVI.first); // Emit the finished record. Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); NameVals.clear(); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); unsigned Code; if (isa<BasicBlock>(Order.V)) Code = bitc::USELIST_CODE_BB; else Code = bitc::USELIST_CODE_DEFAULT; SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); Record.push_back(VE.getValueID(Order.V)); Stream.EmitRecord(Code, Record); } void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { assert(VE.shouldPreserveUseListOrder() && "Expected to be preserving use-list order"); auto hasMore = [&]() { return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; }; if (!hasMore()) // Nothing to do. return; Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); while (hasMore()) { writeUseList(std::move(VE.UseListOrders.back())); VE.UseListOrders.pop_back(); } Stream.ExitBlock(); } /// Emit a function body to the module stream. void ModuleBitcodeWriter::writeFunction( const Function &F, DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { // Save the bitcode index of the start of this function block for recording // in the VST. FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); VE.incorporateFunction(F); SmallVector<unsigned, 64> Vals; // Emit the number of basic blocks, so the reader can create them ahead of // time. Vals.push_back(VE.getBasicBlocks().size()); Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); Vals.clear(); // If there are function-local constants, emit them now. unsigned CstStart, CstEnd; VE.getFunctionConstantRange(CstStart, CstEnd); writeConstants(CstStart, CstEnd, false); // If there is function-local metadata, emit it now. writeFunctionMetadata(F); // Keep a running idea of what the instruction ID is. unsigned InstID = CstEnd; bool NeedsMetadataAttachment = F.hasMetadata(); DILocation *LastDL = nullptr; // Finally, emit all the instructions, in order. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { writeInstruction(*I, InstID, Vals); if (!I->getType()->isVoidTy()) ++InstID; // If the instruction has metadata, write a metadata attachment later. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); // If the instruction has a debug location, emit it. DILocation *DL = I->getDebugLoc(); if (!DL) continue; if (DL == LastDL) { // Just repeat the same debug loc as last time. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); continue; } Vals.push_back(DL->getLine()); Vals.push_back(DL->getColumn()); Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); Vals.clear(); LastDL = DL; } // Emit names for all the instructions etc. writeValueSymbolTable(F.getValueSymbolTable()); if (NeedsMetadataAttachment) writeFunctionMetadataAttachment(F); if (VE.shouldPreserveUseListOrder()) writeUseListBlock(&F); VE.purgeFunction(); Stream.ExitBlock(); } // Emit blockinfo, which defines the standard abbreviations etc. void ModuleBitcodeWriter::writeBlockInfo() { // We only want to emit block info records for blocks that have multiple // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. // Other blocks can define their abbrevs inline. Stream.EnterBlockInfoBlock(2); { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_8_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 7-bit fixed width VST_CODE_ENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_7_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 6-bit char6 VST_CODE_ENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_6_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 6-bit char6 VST_CODE_BBENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_BBENTRY_6_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // SETTYPE abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, VE.computeBitsRequiredForTypeIndicies())); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_SETTYPE_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INTEGER abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_INTEGER_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // CE_CAST abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid VE.computeBitsRequiredForTypeIndicies())); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_CE_CAST_Abbrev) llvm_unreachable("Unexpected abbrev ordering!"); } { // NULL abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_NULL_Abbrev) llvm_unreachable("Unexpected abbrev ordering!"); } // FIXME: This should only use space for first class types! { // INST_LOAD abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty VE.computeBitsRequiredForTypeIndicies())); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_LOAD_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_BINOP abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_BINOP_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_CAST abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty VE.computeBitsRequiredForTypeIndicies())); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_CAST_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_RET abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_RET_VOID_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_RET abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_RET_VAL_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty Log2_32_Ceil(VE.getTypes().size() + 1))); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_GEP_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } Stream.ExitBlock(); } /// Write the module path strings, currently only used when generating /// a combined index file. void IndexBitcodeWriter::writeModStrings() { Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); // TODO: See which abbrev sizes we actually need to emit // 8-bit fixed-width MST_ENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); // 7-bit fixed width MST_ENTRY strings. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); // 6-bit char6 MST_ENTRY strings. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); SmallVector<unsigned, 64> Vals; for (const auto &MPSE : Index.modulePaths()) { if (!doIncludeModule(MPSE.getKey())) continue; StringEncoding Bits = getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); unsigned AbbrevToUse = Abbrev8Bit; if (Bits == SE_Char6) AbbrevToUse = Abbrev6Bit; else if (Bits == SE_Fixed7) AbbrevToUse = Abbrev7Bit; Vals.push_back(MPSE.getValue().first); for (const auto P : MPSE.getKey()) Vals.push_back((unsigned char)P); // Emit the finished record. Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); Vals.clear(); // Emit an optional hash for the module now auto &Hash = MPSE.getValue().second; bool AllZero = true; // Detect if the hash is empty, and do not generate it for (auto Val : Hash) { if (Val) AllZero = false; Vals.push_back(Val); } if (!AllZero) { // Emit the hash record. Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); } Vals.clear(); } Stream.ExitBlock(); } // Helper to emit a single function summary record. void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, const Function &F) { NameVals.push_back(ValueID); FunctionSummary *FS = cast<FunctionSummary>(Summary); NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); NameVals.push_back(FS->instCount()); NameVals.push_back(FS->refs().size()); unsigned SizeBeforeRefs = NameVals.size(); for (auto &RI : FS->refs()) NameVals.push_back(VE.getValueID(RI.getValue())); // Sort the refs for determinism output, the vector returned by FS->refs() has // been initialized from a DenseSet. std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); std::vector<FunctionSummary::EdgeTy> Calls = FS->calls(); std::sort(Calls.begin(), Calls.end(), [this](const FunctionSummary::EdgeTy &L, const FunctionSummary::EdgeTy &R) { return VE.getValueID(L.first.getValue()) < VE.getValueID(R.first.getValue()); }); bool HasProfileData = F.getEntryCount().hasValue(); for (auto &ECI : Calls) { NameVals.push_back(VE.getValueID(ECI.first.getValue())); assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); NameVals.push_back(ECI.second.CallsiteCount); if (HasProfileData) NameVals.push_back(ECI.second.ProfileCount); } unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); unsigned Code = (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); // Emit the finished record. Stream.EmitRecord(Code, NameVals, FSAbbrev); NameVals.clear(); } // Collect the global value references in the given variable's initializer, // and emit them in a summary record. void ModuleBitcodeWriter::writeModuleLevelReferences( const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, unsigned FSModRefsAbbrev) { // Only interested in recording variable defs in the summary. if (V.isDeclaration()) return; NameVals.push_back(VE.getValueID(&V)); NameVals.push_back(getEncodedGVSummaryFlags(V)); auto *Summary = Index->getGlobalValueSummary(V); GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); unsigned SizeBeforeRefs = NameVals.size(); for (auto &RI : VS->refs()) NameVals.push_back(VE.getValueID(RI.getValue())); // Sort the refs for determinism output, the vector returned by FS->refs() has // been initialized from a DenseSet. std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, FSModRefsAbbrev); NameVals.clear(); } // Current version for the summary. // This is bumped whenever we introduce changes in the way some record are // interpreted, like flags for instance. static const uint64_t INDEX_VERSION = 1; /// Emit the per-module summary section alongside the rest of /// the module's bitcode. void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { if (Index->begin() == Index->end()) return; Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); // Abbrev for FS_PERMODULE. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs // numrefs x valueid, n x (valueid, callsitecount) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for FS_PERMODULE_PROFILE. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs // numrefs x valueid, n x (valueid, callsitecount, profilecount) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for FS_ALIAS. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); SmallVector<uint64_t, 64> NameVals; // Iterate over the list of functions instead of the Index to // ensure the ordering is stable. for (const Function &F : M) { if (F.isDeclaration()) continue; // Summary emission does not support anonymous functions, they have to // renamed using the anonymous function renaming pass. if (!F.hasName()) report_fatal_error("Unexpected anonymous function when writing summary"); auto *Summary = Index->getGlobalValueSummary(F); writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), FSCallsAbbrev, FSCallsProfileAbbrev, F); } // Capture references from GlobalVariable initializers, which are outside // of a function scope. for (const GlobalVariable &G : M.globals()) writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); for (const GlobalAlias &A : M.aliases()) { auto *Aliasee = A.getBaseObject(); if (!Aliasee->hasName()) // Nameless function don't have an entry in the summary, skip it. continue; auto AliasId = VE.getValueID(&A); auto AliaseeId = VE.getValueID(Aliasee); NameVals.push_back(AliasId); NameVals.push_back(getEncodedGVSummaryFlags(A)); NameVals.push_back(AliaseeId); Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); NameVals.clear(); } Stream.ExitBlock(); } /// Emit the combined summary section into the combined index file. void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); // Abbrev for FS_COMBINED. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs // numrefs x valueid, n x (valueid, callsitecount) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for FS_COMBINED_PROFILE. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs // numrefs x valueid, n x (valueid, callsitecount, profilecount) Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for FS_COMBINED_ALIAS. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); // The aliases are emitted as a post-pass, and will point to the value // id of the aliasee. Save them in a vector for post-processing. SmallVector<AliasSummary *, 64> Aliases; // Save the value id for each summary for alias emission. DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; SmallVector<uint64_t, 64> NameVals; // For local linkage, we also emit the original name separately // immediately after the record. auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { if (!GlobalValue::isLocalLinkage(S.linkage())) return; NameVals.push_back(S.getOriginalName()); Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); NameVals.clear(); }; for (const auto &I : *this) { GlobalValueSummary *S = I.second; assert(S); assert(hasValueId(I.first)); unsigned ValueId = getValueId(I.first); SummaryToValueIdMap[S] = ValueId; if (auto *AS = dyn_cast<AliasSummary>(S)) { // Will process aliases as a post-pass because the reader wants all // global to be loaded first. Aliases.push_back(AS); continue; } if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { NameVals.push_back(ValueId); NameVals.push_back(Index.getModuleId(VS->modulePath())); NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); for (auto &RI : VS->refs()) { NameVals.push_back(getValueId(RI.getGUID())); } // Emit the finished record. Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, FSModRefsAbbrev); NameVals.clear(); MaybeEmitOriginalName(*S); continue; } auto *FS = cast<FunctionSummary>(S); NameVals.push_back(ValueId); NameVals.push_back(Index.getModuleId(FS->modulePath())); NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); NameVals.push_back(FS->instCount()); NameVals.push_back(FS->refs().size()); for (auto &RI : FS->refs()) { NameVals.push_back(getValueId(RI.getGUID())); } bool HasProfileData = false; for (auto &EI : FS->calls()) { HasProfileData |= EI.second.ProfileCount != 0; if (HasProfileData) break; } for (auto &EI : FS->calls()) { // If this GUID doesn't have a value id, it doesn't have a function // summary and we don't need to record any calls to it. if (!hasValueId(EI.first.getGUID())) continue; NameVals.push_back(getValueId(EI.first.getGUID())); assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); NameVals.push_back(EI.second.CallsiteCount); if (HasProfileData) NameVals.push_back(EI.second.ProfileCount); } unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); unsigned Code = (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); // Emit the finished record. Stream.EmitRecord(Code, NameVals, FSAbbrev); NameVals.clear(); MaybeEmitOriginalName(*S); } for (auto *AS : Aliases) { auto AliasValueId = SummaryToValueIdMap[AS]; assert(AliasValueId); NameVals.push_back(AliasValueId); NameVals.push_back(Index.getModuleId(AS->modulePath())); NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; assert(AliaseeValueId); NameVals.push_back(AliaseeValueId); // Emit the finished record. Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); NameVals.clear(); MaybeEmitOriginalName(*AS); } Stream.ExitBlock(); } void ModuleBitcodeWriter::writeIdentificationBlock() { Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); // Write the "user readable" string identifying the bitcode producer BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); auto StringAbbrev = Stream.EmitAbbrev(Abbv); writeStringRecord(bitc::IDENTIFICATION_CODE_STRING, "LLVM" LLVM_VERSION_STRING, StringAbbrev); // Write the epoch version Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); auto EpochAbbrev = Stream.EmitAbbrev(Abbv); SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); Stream.ExitBlock(); } void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { // Emit the module's hash. // MODULE_CODE_HASH: [5*i32] SHA1 Hasher; Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], Buffer.size() - BlockStartPos)); auto Hash = Hasher.result(); SmallVector<uint64_t, 20> Vals; auto LShift = [&](unsigned char Val, unsigned Amount) -> uint64_t { return ((uint64_t)Val) << Amount; }; for (int Pos = 0; Pos < 20; Pos += 4) { uint32_t SubHash = LShift(Hash[Pos + 0], 24); SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | (unsigned)(unsigned char)Hash[Pos + 3]; Vals.push_back(SubHash); } // Emit the finished record. Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); } void BitcodeWriter::write() { // Emit the file header first. writeBitcodeHeader(); writeBlocks(); } void ModuleBitcodeWriter::writeBlocks() { writeIdentificationBlock(); writeModule(); } void IndexBitcodeWriter::writeBlocks() { // Index contains only a single outer (module) block. writeIndex(); } void ModuleBitcodeWriter::writeModule() { Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); size_t BlockStartPos = Buffer.size(); SmallVector<unsigned, 1> Vals; unsigned CurVersion = 1; Vals.push_back(CurVersion); Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); // Emit blockinfo, which defines the standard abbreviations etc. writeBlockInfo(); // Emit information about attribute groups. writeAttributeGroupTable(); // Emit information about parameter attributes. writeAttributeTable(); // Emit information describing all of the types in the module. writeTypeTable(); writeComdats(); // Emit top-level description of module, including target triple, inline asm, // descriptors for global variables, and function prototype info. writeModuleInfo(); // Emit constants. writeModuleConstants(); // Emit metadata kind names. writeModuleMetadataKinds(); // Emit metadata. writeModuleMetadata(); // Emit module-level use-lists. if (VE.shouldPreserveUseListOrder()) writeUseListBlock(nullptr); writeOperandBundleTags(); // Emit function bodies. DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) if (!F->isDeclaration()) writeFunction(*F, FunctionToBitcodeIndex); // Need to write after the above call to WriteFunction which populates // the summary information in the index. if (Index) writePerModuleGlobalValueSummary(); writeValueSymbolTable(M.getValueSymbolTable(), /* IsModuleLevel */ true, &FunctionToBitcodeIndex); if (GenerateHash) { writeModuleHash(BlockStartPos); } Stream.ExitBlock(); } static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, uint32_t &Position) { support::endian::write32le(&Buffer[Position], Value); Position += 4; } /// If generating a bc file on darwin, we have to emit a /// header and trailer to make it compatible with the system archiver. To do /// this we emit the following header, and then emit a trailer that pads the /// file out to be a multiple of 16 bytes. /// /// struct bc_header { /// uint32_t Magic; // 0x0B17C0DE /// uint32_t Version; // Version, currently always 0. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. /// uint32_t BitcodeSize; // Size of traditional bitcode file. /// uint32_t CPUType; // CPU specifier. /// ... potentially more later ... /// }; static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, const Triple &TT) { unsigned CPUType = ~0U; // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic // number from /usr/include/mach/machine.h. It is ok to reproduce the // specific constants here because they are implicitly part of the Darwin ABI. enum { DARWIN_CPU_ARCH_ABI64 = 0x01000000, DARWIN_CPU_TYPE_X86 = 7, DARWIN_CPU_TYPE_ARM = 12, DARWIN_CPU_TYPE_POWERPC = 18 }; Triple::ArchType Arch = TT.getArch(); if (Arch == Triple::x86_64) CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; else if (Arch == Triple::x86) CPUType = DARWIN_CPU_TYPE_X86; else if (Arch == Triple::ppc) CPUType = DARWIN_CPU_TYPE_POWERPC; else if (Arch == Triple::ppc64) CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; else if (Arch == Triple::arm || Arch == Triple::thumb) CPUType = DARWIN_CPU_TYPE_ARM; // Traditional Bitcode starts after header. assert(Buffer.size() >= BWH_HeaderSize && "Expected header size to be reserved"); unsigned BCOffset = BWH_HeaderSize; unsigned BCSize = Buffer.size() - BWH_HeaderSize; // Write the magic and version. unsigned Position = 0; writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); writeInt32ToBuffer(0, Buffer, Position); // Version. writeInt32ToBuffer(BCOffset, Buffer, Position); writeInt32ToBuffer(BCSize, Buffer, Position); writeInt32ToBuffer(CPUType, Buffer, Position); // If the file is not a multiple of 16 bytes, insert dummy padding. while (Buffer.size() & 15) Buffer.push_back(0); } /// Helper to write the header common to all bitcode files. void BitcodeWriter::writeBitcodeHeader() { // Emit the file header. Stream.Emit((unsigned)'B', 8); Stream.Emit((unsigned)'C', 8); Stream.Emit(0x0, 4); Stream.Emit(0xC, 4); Stream.Emit(0xE, 4); Stream.Emit(0xD, 4); } /// WriteBitcodeToFile - Write the specified module to the specified output /// stream. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, bool ShouldPreserveUseListOrder, const ModuleSummaryIndex *Index, bool GenerateHash) { SmallVector<char, 0> Buffer; Buffer.reserve(256*1024); // If this is darwin or another generic macho target, reserve space for the // header. Triple TT(M->getTargetTriple()); if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); // Emit the module into the buffer. ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index, GenerateHash); ModuleWriter.write(); if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) emitDarwinBCHeaderAndTrailer(Buffer, TT); // Write the generated bitstream to "Out". Out.write((char*)&Buffer.front(), Buffer.size()); } void IndexBitcodeWriter::writeIndex() { Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); SmallVector<unsigned, 1> Vals; unsigned CurVersion = 1; Vals.push_back(CurVersion); Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); // If we have a VST, write the VSTOFFSET record placeholder. writeValueSymbolTableForwardDecl(); // Write the module paths in the combined index. writeModStrings(); // Write the summary combined index records. writeCombinedGlobalValueSummary(); // Need a special VST writer for the combined index (we don't have a // real VST and real values when this is invoked). writeCombinedValueSymbolTable(); Stream.ExitBlock(); } // Write the specified module summary index to the given raw output stream, // where it will be written in a new bitcode block. This is used when // writing the combined index file for ThinLTO. When writing a subset of the // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. void llvm::WriteIndexToFile( const ModuleSummaryIndex &Index, raw_ostream &Out, std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { SmallVector<char, 0> Buffer; Buffer.reserve(256 * 1024); IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex); IndexWriter.write(); Out.write((char *)&Buffer.front(), Buffer.size()); }