//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interface for lazy computation of value constraint // information. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CFG.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <map> #include <stack> using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "lazy-value-info" char LazyValueInfoWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", "Lazy Value Information Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", "Lazy Value Information Analysis", false, true) namespace llvm { FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } } char LazyValueAnalysis::PassID; //===----------------------------------------------------------------------===// // LVILatticeVal //===----------------------------------------------------------------------===// /// This is the information tracked by LazyValueInfo for each value. /// /// FIXME: This is basically just for bringup, this can be made a lot more rich /// in the future. /// namespace { class LVILatticeVal { enum LatticeValueTy { /// This Value has no known value yet. As a result, this implies the /// producing instruction is dead. Caution: We use this as the starting /// state in our local meet rules. In this usage, it's taken to mean /// "nothing known yet". undefined, /// This Value has a specific constant value. (For integers, constantrange /// is used instead.) constant, /// This Value is known to not have the specified value. (For integers, /// constantrange is used instead.) notconstant, /// The Value falls within this range. (Used only for integer typed values.) constantrange, /// We can not precisely model the dynamic values this value might take. overdefined }; /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'notconstant' value. LatticeValueTy Tag; Constant *Val; ConstantRange Range; public: LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {} static LVILatticeVal get(Constant *C) { LVILatticeVal Res; if (!isa<UndefValue>(C)) Res.markConstant(C); return Res; } static LVILatticeVal getNot(Constant *C) { LVILatticeVal Res; if (!isa<UndefValue>(C)) Res.markNotConstant(C); return Res; } static LVILatticeVal getRange(ConstantRange CR) { LVILatticeVal Res; Res.markConstantRange(std::move(CR)); return Res; } static LVILatticeVal getOverdefined() { LVILatticeVal Res; Res.markOverdefined(); return Res; } bool isUndefined() const { return Tag == undefined; } bool isConstant() const { return Tag == constant; } bool isNotConstant() const { return Tag == notconstant; } bool isConstantRange() const { return Tag == constantrange; } bool isOverdefined() const { return Tag == overdefined; } Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val; } Constant *getNotConstant() const { assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); return Val; } ConstantRange getConstantRange() const { assert(isConstantRange() && "Cannot get the constant-range of a non-constant-range!"); return Range; } /// Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; Tag = overdefined; return true; } /// Return true if this is a change in status. bool markConstant(Constant *V) { assert(V && "Marking constant with NULL"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) return markConstantRange(ConstantRange(CI->getValue())); if (isa<UndefValue>(V)) return false; assert((!isConstant() || getConstant() == V) && "Marking constant with different value"); assert(isUndefined()); Tag = constant; Val = V; return true; } /// Return true if this is a change in status. bool markNotConstant(Constant *V) { assert(V && "Marking constant with NULL"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); if (isa<UndefValue>(V)) return false; assert((!isConstant() || getConstant() != V) && "Marking constant !constant with same value"); assert((!isNotConstant() || getNotConstant() == V) && "Marking !constant with different value"); assert(isUndefined() || isConstant()); Tag = notconstant; Val = V; return true; } /// Return true if this is a change in status. bool markConstantRange(ConstantRange NewR) { if (isConstantRange()) { if (NewR.isEmptySet()) return markOverdefined(); bool changed = Range != NewR; Range = std::move(NewR); return changed; } assert(isUndefined()); if (NewR.isEmptySet()) return markOverdefined(); Tag = constantrange; Range = std::move(NewR); return true; } /// Merge the specified lattice value into this one, updating this /// one and returning true if anything changed. bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) { if (RHS.isUndefined() || isOverdefined()) return false; if (RHS.isOverdefined()) return markOverdefined(); if (isUndefined()) { Tag = RHS.Tag; Val = RHS.Val; Range = RHS.Range; return true; } if (isConstant()) { if (RHS.isConstant()) { if (Val == RHS.Val) return false; return markOverdefined(); } if (RHS.isNotConstant()) { if (Val == RHS.Val) return markOverdefined(); // Unless we can prove that the two Constants are different, we must // move to overdefined. if (ConstantInt *Res = dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands( CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL))) if (Res->isOne()) return markNotConstant(RHS.getNotConstant()); return markOverdefined(); } return markOverdefined(); } if (isNotConstant()) { if (RHS.isConstant()) { if (Val == RHS.Val) return markOverdefined(); // Unless we can prove that the two Constants are different, we must // move to overdefined. if (ConstantInt *Res = dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands( CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL))) if (Res->isOne()) return false; return markOverdefined(); } if (RHS.isNotConstant()) { if (Val == RHS.Val) return false; return markOverdefined(); } return markOverdefined(); } assert(isConstantRange() && "New LVILattice type?"); if (!RHS.isConstantRange()) return markOverdefined(); ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); if (NewR.isFullSet()) return markOverdefined(); return markConstantRange(NewR); } }; } // end anonymous namespace. namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) LLVM_ATTRIBUTE_USED; raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { if (Val.isUndefined()) return OS << "undefined"; if (Val.isOverdefined()) return OS << "overdefined"; if (Val.isNotConstant()) return OS << "notconstant<" << *Val.getNotConstant() << '>'; if (Val.isConstantRange()) return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " << Val.getConstantRange().getUpper() << '>'; return OS << "constant<" << *Val.getConstant() << '>'; } } /// Returns true if this lattice value represents at most one possible value. /// This is as precise as any lattice value can get while still representing /// reachable code. static bool hasSingleValue(const LVILatticeVal &Val) { if (Val.isConstantRange() && Val.getConstantRange().isSingleElement()) // Integer constants are single element ranges return true; if (Val.isConstant()) // Non integer constants return true; return false; } /// Combine two sets of facts about the same value into a single set of /// facts. Note that this method is not suitable for merging facts along /// different paths in a CFG; that's what the mergeIn function is for. This /// is for merging facts gathered about the same value at the same location /// through two independent means. /// Notes: /// * This method does not promise to return the most precise possible lattice /// value implied by A and B. It is allowed to return any lattice element /// which is at least as strong as *either* A or B (unless our facts /// conflict, see below). /// * Due to unreachable code, the intersection of two lattice values could be /// contradictory. If this happens, we return some valid lattice value so as /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but /// we do not make this guarantee. TODO: This would be a useful enhancement. static LVILatticeVal intersect(LVILatticeVal A, LVILatticeVal B) { // Undefined is the strongest state. It means the value is known to be along // an unreachable path. if (A.isUndefined()) return A; if (B.isUndefined()) return B; // If we gave up for one, but got a useable fact from the other, use it. if (A.isOverdefined()) return B; if (B.isOverdefined()) return A; // Can't get any more precise than constants. if (hasSingleValue(A)) return A; if (hasSingleValue(B)) return B; // Could be either constant range or not constant here. if (!A.isConstantRange() || !B.isConstantRange()) { // TODO: Arbitrary choice, could be improved return A; } // Intersect two constant ranges ConstantRange Range = A.getConstantRange().intersectWith(B.getConstantRange()); // Note: An empty range is implicitly converted to overdefined internally. // TODO: We could instead use Undefined here since we've proven a conflict // and thus know this path must be unreachable. return LVILatticeVal::getRange(std::move(Range)); } //===----------------------------------------------------------------------===// // LazyValueInfoCache Decl //===----------------------------------------------------------------------===// namespace { /// A callback value handle updates the cache when values are erased. class LazyValueInfoCache; struct LVIValueHandle final : public CallbackVH { LazyValueInfoCache *Parent; LVIValueHandle(Value *V, LazyValueInfoCache *P) : CallbackVH(V), Parent(P) { } void deleted() override; void allUsesReplacedWith(Value *V) override { deleted(); } }; } namespace { /// This is the cache kept by LazyValueInfo which /// maintains information about queries across the clients' queries. class LazyValueInfoCache { /// This is all of the cached block information for exactly one Value*. /// The entries are sorted by the BasicBlock* of the /// entries, allowing us to do a lookup with a binary search. /// Over-defined lattice values are recorded in OverDefinedCache to reduce /// memory overhead. typedef SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4> ValueCacheEntryTy; /// This is all of the cached information for all values, /// mapped from Value* to key information. std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache; /// This tracks, on a per-block basis, the set of values that are /// over-defined at the end of that block. typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>> OverDefinedCacheTy; OverDefinedCacheTy OverDefinedCache; /// Keep track of all blocks that we have ever seen, so we /// don't spend time removing unused blocks from our caches. DenseSet<AssertingVH<BasicBlock> > SeenBlocks; /// This stack holds the state of the value solver during a query. /// It basically emulates the callstack of the naive /// recursive value lookup process. std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack; /// Keeps track of which block-value pairs are in BlockValueStack. DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; /// Push BV onto BlockValueStack unless it's already in there. /// Returns true on success. bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { if (!BlockValueSet.insert(BV).second) return false; // It's already in the stack. DEBUG(dbgs() << "PUSH: " << *BV.second << " in " << BV.first->getName() << "\n"); BlockValueStack.push(BV); return true; } AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. const DataLayout &DL; ///< A mandatory DataLayout DominatorTree *DT; ///< An optional DT pointer. friend struct LVIValueHandle; void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) { SeenBlocks.insert(BB); // Insert over-defined values into their own cache to reduce memory // overhead. if (Result.isOverdefined()) OverDefinedCache[BB].insert(Val); else lookup(Val)[BB] = Result; } LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, LVILatticeVal &Result, Instruction *CxtI = nullptr); bool hasBlockValue(Value *Val, BasicBlock *BB); // These methods process one work item and may add more. A false value // returned means that the work item was not completely processed and must // be revisited after going through the new items. bool solveBlockValue(Value *Val, BasicBlock *BB); bool solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB); bool solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB); bool solveBlockValueSelect(LVILatticeVal &BBLV, SelectInst *S, BasicBlock *BB); bool solveBlockValueBinaryOp(LVILatticeVal &BBLV, Instruction *BBI, BasicBlock *BB); bool solveBlockValueCast(LVILatticeVal &BBLV, Instruction *BBI, BasicBlock *BB); void intersectAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV, Instruction *BBI); void solve(); ValueCacheEntryTy &lookup(Value *V) { return ValueCache[LVIValueHandle(V, this)]; } bool isOverdefined(Value *V, BasicBlock *BB) const { auto ODI = OverDefinedCache.find(BB); if (ODI == OverDefinedCache.end()) return false; return ODI->second.count(V); } bool hasCachedValueInfo(Value *V, BasicBlock *BB) { if (isOverdefined(V, BB)) return true; LVIValueHandle ValHandle(V, this); auto I = ValueCache.find(ValHandle); if (I == ValueCache.end()) return false; return I->second.count(BB); } LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) { if (isOverdefined(V, BB)) return LVILatticeVal::getOverdefined(); return lookup(V)[BB]; } public: /// This is the query interface to determine the lattice /// value for the specified Value* at the end of the specified block. LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB, Instruction *CxtI = nullptr); /// This is the query interface to determine the lattice /// value for the specified Value* at the specified instruction (generally /// from an assume intrinsic). LVILatticeVal getValueAt(Value *V, Instruction *CxtI); /// This is the query interface to determine the lattice /// value for the specified Value* that is true on the specified edge. LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB, Instruction *CxtI = nullptr); /// This is the update interface to inform the cache that an edge from /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); /// This is part of the update interface to inform the cache /// that a block has been deleted. void eraseBlock(BasicBlock *BB); /// clear - Empty the cache. void clear() { SeenBlocks.clear(); ValueCache.clear(); OverDefinedCache.clear(); } LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL, DominatorTree *DT = nullptr) : AC(AC), DL(DL), DT(DT) {} }; } // end anonymous namespace void LVIValueHandle::deleted() { SmallVector<AssertingVH<BasicBlock>, 4> ToErase; for (auto &I : Parent->OverDefinedCache) { SmallPtrSetImpl<Value *> &ValueSet = I.second; if (ValueSet.count(getValPtr())) ValueSet.erase(getValPtr()); if (ValueSet.empty()) ToErase.push_back(I.first); } for (auto &BB : ToErase) Parent->OverDefinedCache.erase(BB); // This erasure deallocates *this, so it MUST happen after we're done // using any and all members of *this. Parent->ValueCache.erase(*this); } void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { // Shortcut if we have never seen this block. DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); if (I == SeenBlocks.end()) return; SeenBlocks.erase(I); auto ODI = OverDefinedCache.find(BB); if (ODI != OverDefinedCache.end()) OverDefinedCache.erase(ODI); for (auto &I : ValueCache) I.second.erase(BB); } void LazyValueInfoCache::solve() { while (!BlockValueStack.empty()) { std::pair<BasicBlock*, Value*> &e = BlockValueStack.top(); assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); if (solveBlockValue(e.second, e.first)) { // The work item was completely processed. assert(BlockValueStack.top() == e && "Nothing should have been pushed!"); assert(hasCachedValueInfo(e.second, e.first) && "Result should be in cache!"); DEBUG(dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << getCachedValueInfo(e.second, e.first) << "\n"); BlockValueStack.pop(); BlockValueSet.erase(e); } else { // More work needs to be done before revisiting. assert(BlockValueStack.top() != e && "Stack should have been pushed!"); } } } bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (isa<Constant>(Val)) return true; return hasCachedValueInfo(Val, BB); } LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast<Constant>(Val)) return LVILatticeVal::get(VC); SeenBlocks.insert(BB); return getCachedValueInfo(Val, BB); } static LVILatticeVal getFromRangeMetadata(Instruction *BBI) { switch (BBI->getOpcode()) { default: break; case Instruction::Load: case Instruction::Call: case Instruction::Invoke: if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) if (isa<IntegerType>(BBI->getType())) { return LVILatticeVal::getRange(getConstantRangeFromMetadata(*Ranges)); } break; }; // Nothing known - will be intersected with other facts return LVILatticeVal::getOverdefined(); } bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { if (isa<Constant>(Val)) return true; if (hasCachedValueInfo(Val, BB)) { // If we have a cached value, use that. DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << getCachedValueInfo(Val, BB) << '\n'); // Since we're reusing a cached value, we don't need to update the // OverDefinedCache. The cache will have been properly updated whenever the // cached value was inserted. return true; } // Hold off inserting this value into the Cache in case we have to return // false and come back later. LVILatticeVal Res; Instruction *BBI = dyn_cast<Instruction>(Val); if (!BBI || BBI->getParent() != BB) { if (!solveBlockValueNonLocal(Res, Val, BB)) return false; insertResult(Val, BB, Res); return true; } if (PHINode *PN = dyn_cast<PHINode>(BBI)) { if (!solveBlockValuePHINode(Res, PN, BB)) return false; insertResult(Val, BB, Res); return true; } if (auto *SI = dyn_cast<SelectInst>(BBI)) { if (!solveBlockValueSelect(Res, SI, BB)) return false; insertResult(Val, BB, Res); return true; } // If this value is a nonnull pointer, record it's range and bailout. Note // that for all other pointer typed values, we terminate the search at the // definition. We could easily extend this to look through geps, bitcasts, // and the like to prove non-nullness, but it's not clear that's worth it // compile time wise. The context-insensative value walk done inside // isKnownNonNull gets most of the profitable cases at much less expense. // This does mean that we have a sensativity to where the defining // instruction is placed, even if it could legally be hoisted much higher. // That is unfortunate. PointerType *PT = dyn_cast<PointerType>(BBI->getType()); if (PT && isKnownNonNull(BBI)) { Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT)); insertResult(Val, BB, Res); return true; } if (BBI->getType()->isIntegerTy()) { if (isa<CastInst>(BBI)) { if (!solveBlockValueCast(Res, BBI, BB)) return false; insertResult(Val, BB, Res); return true; } BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); if (BO && isa<ConstantInt>(BO->getOperand(1))) { if (!solveBlockValueBinaryOp(Res, BBI, BB)) return false; insertResult(Val, BB, Res); return true; } } DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - unknown inst def found.\n"); Res = getFromRangeMetadata(BBI); insertResult(Val, BB, Res); return true; } static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { if (LoadInst *L = dyn_cast<LoadInst>(I)) { return L->getPointerAddressSpace() == 0 && GetUnderlyingObject(L->getPointerOperand(), L->getModule()->getDataLayout()) == Ptr; } if (StoreInst *S = dyn_cast<StoreInst>(I)) { return S->getPointerAddressSpace() == 0 && GetUnderlyingObject(S->getPointerOperand(), S->getModule()->getDataLayout()) == Ptr; } if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { if (MI->isVolatile()) return false; // FIXME: check whether it has a valuerange that excludes zero? ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); if (!Len || Len->isZero()) return false; if (MI->getDestAddressSpace() == 0) if (GetUnderlyingObject(MI->getRawDest(), MI->getModule()->getDataLayout()) == Ptr) return true; if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) if (MTI->getSourceAddressSpace() == 0) if (GetUnderlyingObject(MTI->getRawSource(), MTI->getModule()->getDataLayout()) == Ptr) return true; } return false; } /// Return true if the allocation associated with Val is ever dereferenced /// within the given basic block. This establishes the fact Val is not null, /// but does not imply that the memory at Val is dereferenceable. (Val may /// point off the end of the dereferenceable part of the object.) static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { assert(Val->getType()->isPointerTy()); const DataLayout &DL = BB->getModule()->getDataLayout(); Value *UnderlyingVal = GetUnderlyingObject(Val, DL); // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge // inside InstructionDereferencesPointer either. if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) for (Instruction &I : *BB) if (InstructionDereferencesPointer(&I, UnderlyingVal)) return true; return false; } bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB) { LVILatticeVal Result; // Start Undefined. // If this is the entry block, we must be asking about an argument. The // value is overdefined. if (BB == &BB->getParent()->getEntryBlock()) { assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); // Bofore giving up, see if we can prove the pointer non-null local to // this particular block. if (Val->getType()->isPointerTy() && (isKnownNonNull(Val) || isObjectDereferencedInBlock(Val, BB))) { PointerType *PTy = cast<PointerType>(Val->getType()); Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); } else { Result.markOverdefined(); } BBLV = Result; return true; } // Loop over all of our predecessors, merging what we know from them into // result. bool EdgesMissing = false; for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { LVILatticeVal EdgeResult; EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); if (EdgesMissing) continue; Result.mergeIn(EdgeResult, DL); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (non local).\n"); // Bofore giving up, see if we can prove the pointer non-null local to // this particular block. if (Val->getType()->isPointerTy() && isObjectDereferencedInBlock(Val, BB)) { PointerType *PTy = cast<PointerType>(Val->getType()); Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); } BBLV = Result; return true; } } if (EdgesMissing) return false; // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined()); BBLV = Result; return true; } bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB) { LVILatticeVal Result; // Start Undefined. // Loop over all of our predecessors, merging what we know from them into // result. bool EdgesMissing = false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *PhiBB = PN->getIncomingBlock(i); Value *PhiVal = PN->getIncomingValue(i); LVILatticeVal EdgeResult; // Note that we can provide PN as the context value to getEdgeValue, even // though the results will be cached, because PN is the value being used as // the cache key in the caller. EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN); if (EdgesMissing) continue; Result.mergeIn(EdgeResult, DL); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (local).\n"); BBLV = Result; return true; } } if (EdgesMissing) return false; // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined() && "Possible PHI in entry block?"); BBLV = Result; return true; } static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI, LVILatticeVal &Result, bool isTrueDest = true); // If we can determine a constraint on the value given conditions assumed by // the program, intersect those constraints with BBLV void LazyValueInfoCache::intersectAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV, Instruction *BBI) { BBI = BBI ? BBI : dyn_cast<Instruction>(Val); if (!BBI) return; for (auto &AssumeVH : AC->assumptions()) { if (!AssumeVH) continue; auto *I = cast<CallInst>(AssumeVH); if (!isValidAssumeForContext(I, BBI, DT)) continue; Value *C = I->getArgOperand(0); if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) { LVILatticeVal Result; if (getValueFromFromCondition(Val, ICI, Result)) BBLV = intersect(BBLV, Result); } } } bool LazyValueInfoCache::solveBlockValueSelect(LVILatticeVal &BBLV, SelectInst *SI, BasicBlock *BB) { // Recurse on our inputs if needed if (!hasBlockValue(SI->getTrueValue(), BB)) { if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) return false; BBLV.markOverdefined(); return true; } LVILatticeVal TrueVal = getBlockValue(SI->getTrueValue(), BB); // If we hit overdefined, don't ask more queries. We want to avoid poisoning // extra slots in the table if we can. if (TrueVal.isOverdefined()) { BBLV.markOverdefined(); return true; } if (!hasBlockValue(SI->getFalseValue(), BB)) { if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) return false; BBLV.markOverdefined(); return true; } LVILatticeVal FalseVal = getBlockValue(SI->getFalseValue(), BB); // If we hit overdefined, don't ask more queries. We want to avoid poisoning // extra slots in the table if we can. if (FalseVal.isOverdefined()) { BBLV.markOverdefined(); return true; } if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { ConstantRange TrueCR = TrueVal.getConstantRange(); ConstantRange FalseCR = FalseVal.getConstantRange(); Value *LHS = nullptr; Value *RHS = nullptr; SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); // Is this a min specifically of our two inputs? (Avoid the risk of // ValueTracking getting smarter looking back past our immediate inputs.) if (SelectPatternResult::isMinOrMax(SPR.Flavor) && LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { switch (SPR.Flavor) { default: llvm_unreachable("unexpected minmax type!"); case SPF_SMIN: /// Signed minimum BBLV.markConstantRange(TrueCR.smin(FalseCR)); return true; case SPF_UMIN: /// Unsigned minimum BBLV.markConstantRange(TrueCR.umin(FalseCR)); return true; case SPF_SMAX: /// Signed maximum BBLV.markConstantRange(TrueCR.smax(FalseCR)); return true; case SPF_UMAX: /// Unsigned maximum BBLV.markConstantRange(TrueCR.umax(FalseCR)); return true; }; } // TODO: ABS, NABS from the SelectPatternResult } // Can we constrain the facts about the true and false values by using the // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). // TODO: We could potentially refine an overdefined true value above. if (auto *ICI = dyn_cast<ICmpInst>(SI->getCondition())) { LVILatticeVal TrueValTaken, FalseValTaken; if (!getValueFromFromCondition(SI->getTrueValue(), ICI, TrueValTaken, true)) TrueValTaken.markOverdefined(); if (!getValueFromFromCondition(SI->getFalseValue(), ICI, FalseValTaken, false)) FalseValTaken.markOverdefined(); TrueVal = intersect(TrueVal, TrueValTaken); FalseVal = intersect(FalseVal, FalseValTaken); // Handle clamp idioms such as: // %24 = constantrange<0, 17> // %39 = icmp eq i32 %24, 0 // %40 = add i32 %24, -1 // %siv.next = select i1 %39, i32 16, i32 %40 // %siv.next = constantrange<0, 17> not <-1, 17> // In general, this can handle any clamp idiom which tests the edge // condition via an equality or inequality. ICmpInst::Predicate Pred = ICI->getPredicate(); Value *A = ICI->getOperand(0); if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { auto addConstants = [](ConstantInt *A, ConstantInt *B) { assert(A->getType() == B->getType()); return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); }; // See if either input is A + C2, subject to the constraint from the // condition that A != C when that input is used. We can assume that // that input doesn't include C + C2. ConstantInt *CIAdded; switch (Pred) { default: break; case ICmpInst::ICMP_EQ: if (match(SI->getFalseValue(), m_Add(m_Specific(A), m_ConstantInt(CIAdded)))) { auto ResNot = addConstants(CIBase, CIAdded); FalseVal = intersect(FalseVal, LVILatticeVal::getNot(ResNot)); } break; case ICmpInst::ICMP_NE: if (match(SI->getTrueValue(), m_Add(m_Specific(A), m_ConstantInt(CIAdded)))) { auto ResNot = addConstants(CIBase, CIAdded); TrueVal = intersect(TrueVal, LVILatticeVal::getNot(ResNot)); } break; }; } } LVILatticeVal Result; // Start Undefined. Result.mergeIn(TrueVal, DL); Result.mergeIn(FalseVal, DL); BBLV = Result; return true; } bool LazyValueInfoCache::solveBlockValueCast(LVILatticeVal &BBLV, Instruction *BBI, BasicBlock *BB) { if (!BBI->getOperand(0)->getType()->isSized()) { // Without knowing how wide the input is, we can't analyze it in any useful // way. BBLV.markOverdefined(); return true; } // Filter out casts we don't know how to reason about before attempting to // recurse on our operand. This can cut a long search short if we know we're // not going to be able to get any useful information anways. switch (BBI->getOpcode()) { case Instruction::Trunc: case Instruction::SExt: case Instruction::ZExt: case Instruction::BitCast: break; default: // Unhandled instructions are overdefined. DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown cast).\n"); BBLV.markOverdefined(); return true; } // Figure out the range of the LHS. If that fails, we still apply the // transfer rule on the full set since we may be able to locally infer // interesting facts. if (!hasBlockValue(BBI->getOperand(0), BB)) if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0)))) // More work to do before applying this transfer rule. return false; const unsigned OperandBitWidth = DL.getTypeSizeInBits(BBI->getOperand(0)->getType()); ConstantRange LHSRange = ConstantRange(OperandBitWidth); if (hasBlockValue(BBI->getOperand(0), BB)) { LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); intersectAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI); if (LHSVal.isConstantRange()) LHSRange = LHSVal.getConstantRange(); } const unsigned ResultBitWidth = cast<IntegerType>(BBI->getType())->getBitWidth(); // NOTE: We're currently limited by the set of operations that ConstantRange // can evaluate symbolically. Enhancing that set will allows us to analyze // more definitions. LVILatticeVal Result; switch (BBI->getOpcode()) { case Instruction::Trunc: Result.markConstantRange(LHSRange.truncate(ResultBitWidth)); break; case Instruction::SExt: Result.markConstantRange(LHSRange.signExtend(ResultBitWidth)); break; case Instruction::ZExt: Result.markConstantRange(LHSRange.zeroExtend(ResultBitWidth)); break; case Instruction::BitCast: Result.markConstantRange(LHSRange); break; default: // Should be dead if the code above is correct llvm_unreachable("inconsistent with above"); break; } BBLV = Result; return true; } bool LazyValueInfoCache::solveBlockValueBinaryOp(LVILatticeVal &BBLV, Instruction *BBI, BasicBlock *BB) { assert(BBI->getOperand(0)->getType()->isSized() && "all operands to binary operators are sized"); // Filter out operators we don't know how to reason about before attempting to // recurse on our operand(s). This can cut a long search short if we know // we're not going to be able to get any useful information anways. switch (BBI->getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::Shl: case Instruction::LShr: case Instruction::And: case Instruction::Or: // continue into the code below break; default: // Unhandled instructions are overdefined. DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown binary operator).\n"); BBLV.markOverdefined(); return true; }; // Figure out the range of the LHS. If that fails, use a conservative range, // but apply the transfer rule anyways. This lets us pick up facts from // expressions like "and i32 (call i32 @foo()), 32" if (!hasBlockValue(BBI->getOperand(0), BB)) if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0)))) // More work to do before applying this transfer rule. return false; const unsigned OperandBitWidth = DL.getTypeSizeInBits(BBI->getOperand(0)->getType()); ConstantRange LHSRange = ConstantRange(OperandBitWidth); if (hasBlockValue(BBI->getOperand(0), BB)) { LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); intersectAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI); if (LHSVal.isConstantRange()) LHSRange = LHSVal.getConstantRange(); } ConstantInt *RHS = cast<ConstantInt>(BBI->getOperand(1)); ConstantRange RHSRange = ConstantRange(RHS->getValue()); // NOTE: We're currently limited by the set of operations that ConstantRange // can evaluate symbolically. Enhancing that set will allows us to analyze // more definitions. LVILatticeVal Result; switch (BBI->getOpcode()) { case Instruction::Add: Result.markConstantRange(LHSRange.add(RHSRange)); break; case Instruction::Sub: Result.markConstantRange(LHSRange.sub(RHSRange)); break; case Instruction::Mul: Result.markConstantRange(LHSRange.multiply(RHSRange)); break; case Instruction::UDiv: Result.markConstantRange(LHSRange.udiv(RHSRange)); break; case Instruction::Shl: Result.markConstantRange(LHSRange.shl(RHSRange)); break; case Instruction::LShr: Result.markConstantRange(LHSRange.lshr(RHSRange)); break; case Instruction::And: Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); break; case Instruction::Or: Result.markConstantRange(LHSRange.binaryOr(RHSRange)); break; default: // Should be dead if the code above is correct llvm_unreachable("inconsistent with above"); break; } BBLV = Result; return true; } bool getValueFromFromCondition(Value *Val, ICmpInst *ICI, LVILatticeVal &Result, bool isTrueDest) { assert(ICI && "precondition"); if (isa<Constant>(ICI->getOperand(1))) { if (ICI->isEquality() && ICI->getOperand(0) == Val) { // We know that V has the RHS constant if this is a true SETEQ or // false SETNE. if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); else Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); return true; } // Recognize the range checking idiom that InstCombine produces. // (X-C1) u< C2 --> [C1, C1+C2) ConstantInt *NegOffset = nullptr; if (ICI->getPredicate() == ICmpInst::ICMP_ULT) match(ICI->getOperand(0), m_Add(m_Specific(Val), m_ConstantInt(NegOffset))); ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1)); if (CI && (ICI->getOperand(0) == Val || NegOffset)) { // Calculate the range of values that are allowed by the comparison ConstantRange CmpRange(CI->getValue()); ConstantRange TrueValues = ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange); if (NegOffset) // Apply the offset from above. TrueValues = TrueValues.subtract(NegOffset->getValue()); // If we're interested in the false dest, invert the condition. if (!isTrueDest) TrueValues = TrueValues.inverse(); Result = LVILatticeVal::getRange(std::move(TrueValues)); return true; } } return false; } /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if /// Val is not constrained on the edge. Result is unspecified if return value /// is false. static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, LVILatticeVal &Result) { // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we // know that v != 0. if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { // If this is a conditional branch and only one successor goes to BBTo, then // we may be able to infer something from the condition. if (BI->isConditional() && BI->getSuccessor(0) != BI->getSuccessor(1)) { bool isTrueDest = BI->getSuccessor(0) == BBTo; assert(BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"); // If V is the condition of the branch itself, then we know exactly what // it is. if (BI->getCondition() == Val) { Result = LVILatticeVal::get(ConstantInt::get( Type::getInt1Ty(Val->getContext()), isTrueDest)); return true; } // If the condition of the branch is an equality comparison, we may be // able to infer the value. if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) if (getValueFromFromCondition(Val, ICI, Result, isTrueDest)) return true; } } // If the edge was formed by a switch on the value, then we may know exactly // what it is. if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { if (SI->getCondition() != Val) return false; bool DefaultCase = SI->getDefaultDest() == BBTo; unsigned BitWidth = Val->getType()->getIntegerBitWidth(); ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); for (SwitchInst::CaseIt i : SI->cases()) { ConstantRange EdgeVal(i.getCaseValue()->getValue()); if (DefaultCase) { // It is possible that the default destination is the destination of // some cases. There is no need to perform difference for those cases. if (i.getCaseSuccessor() != BBTo) EdgesVals = EdgesVals.difference(EdgeVal); } else if (i.getCaseSuccessor() == BBTo) EdgesVals = EdgesVals.unionWith(EdgeVal); } Result = LVILatticeVal::getRange(std::move(EdgesVals)); return true; } return false; } /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at /// the basic block if the edge does not constrain Val. bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, LVILatticeVal &Result, Instruction *CxtI) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast<Constant>(Val)) { Result = LVILatticeVal::get(VC); return true; } LVILatticeVal LocalResult; if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) // If we couldn't constrain the value on the edge, LocalResult doesn't // provide any information. LocalResult.markOverdefined(); if (hasSingleValue(LocalResult)) { // Can't get any more precise here Result = LocalResult; return true; } if (!hasBlockValue(Val, BBFrom)) { if (pushBlockValue(std::make_pair(BBFrom, Val))) return false; // No new information. Result = LocalResult; return true; } // Try to intersect ranges of the BB and the constraint on the edge. LVILatticeVal InBlock = getBlockValue(Val, BBFrom); intersectAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator()); // We can use the context instruction (generically the ultimate instruction // the calling pass is trying to simplify) here, even though the result of // this function is generally cached when called from the solve* functions // (and that cached result might be used with queries using a different // context instruction), because when this function is called from the solve* // functions, the context instruction is not provided. When called from // LazyValueInfoCache::getValueOnEdge, the context instruction is provided, // but then the result is not cached. intersectAssumeBlockValueConstantRange(Val, InBlock, CxtI); Result = intersect(LocalResult, InBlock); return true; } LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB, Instruction *CxtI) { DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"); assert(BlockValueStack.empty() && BlockValueSet.empty()); if (!hasBlockValue(V, BB)) { pushBlockValue(std::make_pair(BB, V)); solve(); } LVILatticeVal Result = getBlockValue(V, BB); intersectAssumeBlockValueConstantRange(V, Result, CxtI); DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) { DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() << "'\n"); if (auto *C = dyn_cast<Constant>(V)) return LVILatticeVal::get(C); LVILatticeVal Result = LVILatticeVal::getOverdefined(); if (auto *I = dyn_cast<Instruction>(V)) Result = getFromRangeMetadata(I); intersectAssumeBlockValueConstantRange(V, Result, CxtI); DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } LVILatticeVal LazyValueInfoCache:: getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI) { DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); LVILatticeVal Result; if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { solve(); bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); (void)WasFastQuery; assert(WasFastQuery && "More work to do after problem solved?"); } DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { // When an edge in the graph has been threaded, values that we could not // determine a value for before (i.e. were marked overdefined) may be // possible to solve now. We do NOT try to proactively update these values. // Instead, we clear their entries from the cache, and allow lazy updating to // recompute them when needed. // The updating process is fairly simple: we need to drop cached info // for all values that were marked overdefined in OldSucc, and for those same // values in any successor of OldSucc (except NewSucc) in which they were // also marked overdefined. std::vector<BasicBlock*> worklist; worklist.push_back(OldSucc); auto I = OverDefinedCache.find(OldSucc); if (I == OverDefinedCache.end()) return; // Nothing to process here. SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); // Use a worklist to perform a depth-first search of OldSucc's successors. // NOTE: We do not need a visited list since any blocks we have already // visited will have had their overdefined markers cleared already, and we // thus won't loop to their successors. while (!worklist.empty()) { BasicBlock *ToUpdate = worklist.back(); worklist.pop_back(); // Skip blocks only accessible through NewSucc. if (ToUpdate == NewSucc) continue; bool changed = false; for (Value *V : ValsToClear) { // If a value was marked overdefined in OldSucc, and is here too... auto OI = OverDefinedCache.find(ToUpdate); if (OI == OverDefinedCache.end()) continue; SmallPtrSetImpl<Value *> &ValueSet = OI->second; if (!ValueSet.count(V)) continue; ValueSet.erase(V); if (ValueSet.empty()) OverDefinedCache.erase(OI); // If we removed anything, then we potentially need to update // blocks successors too. changed = true; } if (!changed) continue; worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); } } //===----------------------------------------------------------------------===// // LazyValueInfo Impl //===----------------------------------------------------------------------===// /// This lazily constructs the LazyValueInfoCache. static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC, const DataLayout *DL, DominatorTree *DT = nullptr) { if (!PImpl) { assert(DL && "getCache() called with a null DataLayout"); PImpl = new LazyValueInfoCache(AC, *DL, DT); } return *static_cast<LazyValueInfoCache*>(PImpl); } bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); const DataLayout &DL = F.getParent()->getDataLayout(); DominatorTreeWrapperPass *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); if (Info.PImpl) getCache(Info.PImpl, Info.AC, &DL, Info.DT).clear(); // Fully lazy. return false; } void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<AssumptionCacheTracker>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); } LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } LazyValueInfo::~LazyValueInfo() { releaseMemory(); } void LazyValueInfo::releaseMemory() { // If the cache was allocated, free it. if (PImpl) { delete &getCache(PImpl, AC, nullptr); PImpl = nullptr; } } void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { auto &AC = FAM.getResult<AssumptionAnalysis>(F); auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); return LazyValueInfo(&AC, &TLI, DT); } Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, Instruction *CxtI) { const DataLayout &DL = BB->getModule()->getDataLayout(); LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); if (Result.isConstant()) return Result.getConstant(); if (Result.isConstantRange()) { ConstantRange CR = Result.getConstantRange(); if (const APInt *SingleVal = CR.getSingleElement()) return ConstantInt::get(V->getContext(), *SingleVal); } return nullptr; } ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, Instruction *CxtI) { assert(V->getType()->isIntegerTy()); unsigned Width = V->getType()->getIntegerBitWidth(); const DataLayout &DL = BB->getModule()->getDataLayout(); LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); assert(!Result.isConstant()); if (Result.isUndefined()) return ConstantRange(Width, /*isFullSet=*/false); if (Result.isConstantRange()) return Result.getConstantRange(); return ConstantRange(Width, /*isFullSet=*/true); } /// Determine whether the specified value is known to be a /// constant on the specified edge. Return null if not. Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI) { const DataLayout &DL = FromBB->getModule()->getDataLayout(); LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); if (Result.isConstant()) return Result.getConstant(); if (Result.isConstantRange()) { ConstantRange CR = Result.getConstantRange(); if (const APInt *SingleVal = CR.getSingleElement()) return ConstantInt::get(V->getContext(), *SingleVal); } return nullptr; } static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C, LVILatticeVal &Result, const DataLayout &DL, TargetLibraryInfo *TLI) { // If we know the value is a constant, evaluate the conditional. Constant *Res = nullptr; if (Result.isConstant()) { Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL, TLI); if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; return LazyValueInfo::Unknown; } if (Result.isConstantRange()) { ConstantInt *CI = dyn_cast<ConstantInt>(C); if (!CI) return LazyValueInfo::Unknown; ConstantRange CR = Result.getConstantRange(); if (Pred == ICmpInst::ICMP_EQ) { if (!CR.contains(CI->getValue())) return LazyValueInfo::False; if (CR.isSingleElement() && CR.contains(CI->getValue())) return LazyValueInfo::True; } else if (Pred == ICmpInst::ICMP_NE) { if (!CR.contains(CI->getValue())) return LazyValueInfo::True; if (CR.isSingleElement() && CR.contains(CI->getValue())) return LazyValueInfo::False; } // Handle more complex predicates. ConstantRange TrueValues = ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); if (TrueValues.contains(CR)) return LazyValueInfo::True; if (TrueValues.inverse().contains(CR)) return LazyValueInfo::False; return LazyValueInfo::Unknown; } if (Result.isNotConstant()) { // If this is an equality comparison, we can try to fold it knowing that // "V != C1". if (Pred == ICmpInst::ICMP_EQ) { // !C1 == C -> false iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, DL, TLI); if (Res->isNullValue()) return LazyValueInfo::False; } else if (Pred == ICmpInst::ICMP_NE) { // !C1 != C -> true iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, DL, TLI); if (Res->isNullValue()) return LazyValueInfo::True; } return LazyValueInfo::Unknown; } return LazyValueInfo::Unknown; } /// Determine whether the specified value comparison with a constant is known to /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. LazyValueInfo::Tristate LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI) { const DataLayout &DL = FromBB->getModule()->getDataLayout(); LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); return getPredicateResult(Pred, C, Result, DL, TLI); } LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, Instruction *CxtI) { const DataLayout &DL = CxtI->getModule()->getDataLayout(); LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI); Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); if (Ret != Unknown) return Ret; // Note: The following bit of code is somewhat distinct from the rest of LVI; // LVI as a whole tries to compute a lattice value which is conservatively // correct at a given location. In this case, we have a predicate which we // weren't able to prove about the merged result, and we're pushing that // predicate back along each incoming edge to see if we can prove it // separately for each input. As a motivating example, consider: // bb1: // %v1 = ... ; constantrange<1, 5> // br label %merge // bb2: // %v2 = ... ; constantrange<10, 20> // br label %merge // merge: // %phi = phi [%v1, %v2] ; constantrange<1,20> // %pred = icmp eq i32 %phi, 8 // We can't tell from the lattice value for '%phi' that '%pred' is false // along each path, but by checking the predicate over each input separately, // we can. // We limit the search to one step backwards from the current BB and value. // We could consider extending this to search further backwards through the // CFG and/or value graph, but there are non-obvious compile time vs quality // tradeoffs. if (CxtI) { BasicBlock *BB = CxtI->getParent(); // Function entry or an unreachable block. Bail to avoid confusing // analysis below. pred_iterator PI = pred_begin(BB), PE = pred_end(BB); if (PI == PE) return Unknown; // If V is a PHI node in the same block as the context, we need to ask // questions about the predicate as applied to the incoming value along // each edge. This is useful for eliminating cases where the predicate is // known along all incoming edges. if (auto *PHI = dyn_cast<PHINode>(V)) if (PHI->getParent() == BB) { Tristate Baseline = Unknown; for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { Value *Incoming = PHI->getIncomingValue(i); BasicBlock *PredBB = PHI->getIncomingBlock(i); // Note that PredBB may be BB itself. Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); // Keep going as long as we've seen a consistent known result for // all inputs. Baseline = (i == 0) ? Result /* First iteration */ : (Baseline == Result ? Baseline : Unknown); /* All others */ if (Baseline == Unknown) break; } if (Baseline != Unknown) return Baseline; } // For a comparison where the V is outside this block, it's possible // that we've branched on it before. Look to see if the value is known // on all incoming edges. if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { // For predecessor edge, determine if the comparison is true or false // on that edge. If they're all true or all false, we can conclude // the value of the comparison in this block. Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); if (Baseline != Unknown) { // Check that all remaining incoming values match the first one. while (++PI != PE) { Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); if (Ret != Baseline) break; } // If we terminated early, then one of the values didn't match. if (PI == PE) { return Baseline; } } } } return Unknown; } void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { if (PImpl) { const DataLayout &DL = PredBB->getModule()->getDataLayout(); getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); } } void LazyValueInfo::eraseBlock(BasicBlock *BB) { if (PImpl) { const DataLayout &DL = BB->getModule()->getDataLayout(); getCache(PImpl, AC, &DL, DT).eraseBlock(BB); } }