//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the generic AliasAnalysis interface which is used as the // common interface used by all clients and implementations of alias analysis. // // This file also implements the default version of the AliasAnalysis interface // that is to be used when no other implementation is specified. This does some // simple tests that detect obvious cases: two different global pointers cannot // alias, a global cannot alias a malloc, two different mallocs cannot alias, // etc. // // This alias analysis implementation really isn't very good for anything, but // it is very fast, and makes a nice clean default implementation. Because it // handles lots of little corner cases, other, more complex, alias analysis // implementations may choose to rely on this pass to resolve these simple and // easy cases. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/CFLAndersAliasAnalysis.h" #include "llvm/Analysis/CFLSteensAliasAnalysis.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/ObjCARCAliasAnalysis.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Type.h" #include "llvm/Pass.h" using namespace llvm; /// Allow disabling BasicAA from the AA results. This is particularly useful /// when testing to isolate a single AA implementation. static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, cl::init(false)); AAResults::AAResults(AAResults &&Arg) : TLI(Arg.TLI), AAs(std::move(Arg.AAs)) { for (auto &AA : AAs) AA->setAAResults(this); } AAResults::~AAResults() { // FIXME; It would be nice to at least clear out the pointers back to this // aggregation here, but we end up with non-nesting lifetimes in the legacy // pass manager that prevent this from working. In the legacy pass manager // we'll end up with dangling references here in some cases. #if 0 for (auto &AA : AAs) AA->setAAResults(nullptr); #endif } //===----------------------------------------------------------------------===// // Default chaining methods //===----------------------------------------------------------------------===// AliasResult AAResults::alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { for (const auto &AA : AAs) { auto Result = AA->alias(LocA, LocB); if (Result != MayAlias) return Result; } return MayAlias; } bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) { for (const auto &AA : AAs) if (AA->pointsToConstantMemory(Loc, OrLocal)) return true; return false; } ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { ModRefInfo Result = MRI_ModRef; for (const auto &AA : AAs) { Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx)); // Early-exit the moment we reach the bottom of the lattice. if (Result == MRI_NoModRef) return Result; } return Result; } ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { // We may have two calls if (auto CS = ImmutableCallSite(I)) { // Check if the two calls modify the same memory return getModRefInfo(CS, Call); } else { // Otherwise, check if the call modifies or references the // location this memory access defines. The best we can say // is that if the call references what this instruction // defines, it must be clobbered by this location. const MemoryLocation DefLoc = MemoryLocation::get(I); if (getModRefInfo(Call, DefLoc) != MRI_NoModRef) return MRI_ModRef; } return MRI_NoModRef; } ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) { ModRefInfo Result = MRI_ModRef; for (const auto &AA : AAs) { Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc)); // Early-exit the moment we reach the bottom of the lattice. if (Result == MRI_NoModRef) return Result; } // Try to refine the mod-ref info further using other API entry points to the // aggregate set of AA results. auto MRB = getModRefBehavior(CS); if (MRB == FMRB_DoesNotAccessMemory) return MRI_NoModRef; if (onlyReadsMemory(MRB)) Result = ModRefInfo(Result & MRI_Ref); else if (doesNotReadMemory(MRB)) Result = ModRefInfo(Result & MRI_Mod); if (onlyAccessesArgPointees(MRB)) { bool DoesAlias = false; ModRefInfo AllArgsMask = MRI_NoModRef; if (doesAccessArgPointees(MRB)) { for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) { const Value *Arg = *AI; if (!Arg->getType()->isPointerTy()) continue; unsigned ArgIdx = std::distance(CS.arg_begin(), AI); MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI); AliasResult ArgAlias = alias(ArgLoc, Loc); if (ArgAlias != NoAlias) { ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx); DoesAlias = true; AllArgsMask = ModRefInfo(AllArgsMask | ArgMask); } } } if (!DoesAlias) return MRI_NoModRef; Result = ModRefInfo(Result & AllArgsMask); } // If Loc is a constant memory location, the call definitely could not // modify the memory location. if ((Result & MRI_Mod) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) Result = ModRefInfo(Result & ~MRI_Mod); return Result; } ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { ModRefInfo Result = MRI_ModRef; for (const auto &AA : AAs) { Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2)); // Early-exit the moment we reach the bottom of the lattice. if (Result == MRI_NoModRef) return Result; } // Try to refine the mod-ref info further using other API entry points to the // aggregate set of AA results. // If CS1 or CS2 are readnone, they don't interact. auto CS1B = getModRefBehavior(CS1); if (CS1B == FMRB_DoesNotAccessMemory) return MRI_NoModRef; auto CS2B = getModRefBehavior(CS2); if (CS2B == FMRB_DoesNotAccessMemory) return MRI_NoModRef; // If they both only read from memory, there is no dependence. if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) return MRI_NoModRef; // If CS1 only reads memory, the only dependence on CS2 can be // from CS1 reading memory written by CS2. if (onlyReadsMemory(CS1B)) Result = ModRefInfo(Result & MRI_Ref); else if (doesNotReadMemory(CS1B)) Result = ModRefInfo(Result & MRI_Mod); // If CS2 only access memory through arguments, accumulate the mod/ref // information from CS1's references to the memory referenced by // CS2's arguments. if (onlyAccessesArgPointees(CS2B)) { ModRefInfo R = MRI_NoModRef; if (doesAccessArgPointees(CS2B)) { for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { const Value *Arg = *I; if (!Arg->getType()->isPointerTy()) continue; unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI); // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence // of CS1 on that location is the inverse. ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx); if (ArgMask == MRI_Mod) ArgMask = MRI_ModRef; else if (ArgMask == MRI_Ref) ArgMask = MRI_Mod; ArgMask = ModRefInfo(ArgMask & getModRefInfo(CS1, CS2ArgLoc)); R = ModRefInfo((R | ArgMask) & Result); if (R == Result) break; } } return R; } // If CS1 only accesses memory through arguments, check if CS2 references // any of the memory referenced by CS1's arguments. If not, return NoModRef. if (onlyAccessesArgPointees(CS1B)) { ModRefInfo R = MRI_NoModRef; if (doesAccessArgPointees(CS1B)) { for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { const Value *Arg = *I; if (!Arg->getType()->isPointerTy()) continue; unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI); // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1 // might Ref, then we care only about a Mod by CS2. ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx); ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc); if (((ArgMask & MRI_Mod) != MRI_NoModRef && (ArgR & MRI_ModRef) != MRI_NoModRef) || ((ArgMask & MRI_Ref) != MRI_NoModRef && (ArgR & MRI_Mod) != MRI_NoModRef)) R = ModRefInfo((R | ArgMask) & Result); if (R == Result) break; } } return R; } return Result; } FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; for (const auto &AA : AAs) { Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); // Early-exit the moment we reach the bottom of the lattice. if (Result == FMRB_DoesNotAccessMemory) return Result; } return Result; } FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; for (const auto &AA : AAs) { Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); // Early-exit the moment we reach the bottom of the lattice. if (Result == FMRB_DoesNotAccessMemory) return Result; } return Result; } //===----------------------------------------------------------------------===// // Helper method implementation //===----------------------------------------------------------------------===// ModRefInfo AAResults::getModRefInfo(const LoadInst *L, const MemoryLocation &Loc) { // Be conservative in the face of volatile/atomic. if (!L->isUnordered()) return MRI_ModRef; // If the load address doesn't alias the given address, it doesn't read // or write the specified memory. if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc)) return MRI_NoModRef; // Otherwise, a load just reads. return MRI_Ref; } ModRefInfo AAResults::getModRefInfo(const StoreInst *S, const MemoryLocation &Loc) { // Be conservative in the face of volatile/atomic. if (!S->isUnordered()) return MRI_ModRef; if (Loc.Ptr) { // If the store address cannot alias the pointer in question, then the // specified memory cannot be modified by the store. if (!alias(MemoryLocation::get(S), Loc)) return MRI_NoModRef; // If the pointer is a pointer to constant memory, then it could not have // been modified by this store. if (pointsToConstantMemory(Loc)) return MRI_NoModRef; } // Otherwise, a store just writes. return MRI_Mod; } ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc) { if (Loc.Ptr) { // If the va_arg address cannot alias the pointer in question, then the // specified memory cannot be accessed by the va_arg. if (!alias(MemoryLocation::get(V), Loc)) return MRI_NoModRef; // If the pointer is a pointer to constant memory, then it could not have // been modified by this va_arg. if (pointsToConstantMemory(Loc)) return MRI_NoModRef; } // Otherwise, a va_arg reads and writes. return MRI_ModRef; } ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, const MemoryLocation &Loc) { if (Loc.Ptr) { // If the pointer is a pointer to constant memory, // then it could not have been modified by this catchpad. if (pointsToConstantMemory(Loc)) return MRI_NoModRef; } // Otherwise, a catchpad reads and writes. return MRI_ModRef; } ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, const MemoryLocation &Loc) { if (Loc.Ptr) { // If the pointer is a pointer to constant memory, // then it could not have been modified by this catchpad. if (pointsToConstantMemory(Loc)) return MRI_NoModRef; } // Otherwise, a catchret reads and writes. return MRI_ModRef; } ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, const MemoryLocation &Loc) { // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. if (isStrongerThanMonotonic(CX->getSuccessOrdering())) return MRI_ModRef; // If the cmpxchg address does not alias the location, it does not access it. if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc)) return MRI_NoModRef; return MRI_ModRef; } ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc) { // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. if (isStrongerThanMonotonic(RMW->getOrdering())) return MRI_ModRef; // If the atomicrmw address does not alias the location, it does not access it. if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc)) return MRI_NoModRef; return MRI_ModRef; } /// \brief Return information about whether a particular call site modifies /// or reads the specified memory location \p MemLoc before instruction \p I /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up /// instruction-ordering queries inside the BasicBlock containing \p I. /// FIXME: this is really just shoring-up a deficiency in alias analysis. /// BasicAA isn't willing to spend linear time determining whether an alloca /// was captured before or after this particular call, while we are. However, /// with a smarter AA in place, this test is just wasting compile time. ModRefInfo AAResults::callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT, OrderedBasicBlock *OBB) { if (!DT) return MRI_ModRef; const Value *Object = GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || isa<Constant>(Object)) return MRI_ModRef; ImmutableCallSite CS(I); if (!CS.getInstruction() || CS.getInstruction() == Object) return MRI_ModRef; if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, /* StoreCaptures */ true, I, DT, /* include Object */ true, /* OrderedBasicBlock */ OBB)) return MRI_ModRef; unsigned ArgNo = 0; ModRefInfo R = MRI_NoModRef; for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); CI != CE; ++CI, ++ArgNo) { // Only look at the no-capture or byval pointer arguments. If this // pointer were passed to arguments that were neither of these, then it // couldn't be no-capture. if (!(*CI)->getType()->isPointerTy() || (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) continue; // If this is a no-capture pointer argument, see if we can tell that it // is impossible to alias the pointer we're checking. If not, we have to // assume that the call could touch the pointer, even though it doesn't // escape. if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) continue; if (CS.doesNotAccessMemory(ArgNo)) continue; if (CS.onlyReadsMemory(ArgNo)) { R = MRI_Ref; continue; } return MRI_ModRef; } return R; } /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the location Loc. /// bool AAResults::canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc) { return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod); } /// canInstructionRangeModRef - Return true if it is possible for the /// execution of the specified instructions to mod\ref (according to the /// mode) the location Loc. The instructions to consider are all /// of the instructions in the range of [I1,I2] INCLUSIVE. /// I1 and I2 must be in the same basic block. bool AAResults::canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, const MemoryLocation &Loc, const ModRefInfo Mode) { assert(I1.getParent() == I2.getParent() && "Instructions not in same basic block!"); BasicBlock::const_iterator I = I1.getIterator(); BasicBlock::const_iterator E = I2.getIterator(); ++E; // Convert from inclusive to exclusive range. for (; I != E; ++I) // Check every instruction in range if (getModRefInfo(&*I, Loc) & Mode) return true; return false; } // Provide a definition for the root virtual destructor. AAResults::Concept::~Concept() {} // Provide a definition for the static object used to identify passes. char AAManager::PassID; namespace { /// A wrapper pass for external alias analyses. This just squirrels away the /// callback used to run any analyses and register their results. struct ExternalAAWrapperPass : ImmutablePass { typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT; CallbackT CB; static char ID; ExternalAAWrapperPass() : ImmutablePass(ID) { initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); } explicit ExternalAAWrapperPass(CallbackT CB) : ImmutablePass(ID), CB(std::move(CB)) { initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } }; } char ExternalAAWrapperPass::ID = 0; INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", false, true) ImmutablePass * llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { return new ExternalAAWrapperPass(std::move(Callback)); } AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); } char AAResultsWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", "Function Alias Analysis Results", false, true) INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", "Function Alias Analysis Results", false, true) FunctionPass *llvm::createAAResultsWrapperPass() { return new AAResultsWrapperPass(); } /// Run the wrapper pass to rebuild an aggregation over known AA passes. /// /// This is the legacy pass manager's interface to the new-style AA results /// aggregation object. Because this is somewhat shoe-horned into the legacy /// pass manager, we hard code all the specific alias analyses available into /// it. While the particular set enabled is configured via commandline flags, /// adding a new alias analysis to LLVM will require adding support for it to /// this list. bool AAResultsWrapperPass::runOnFunction(Function &F) { // NB! This *must* be reset before adding new AA results to the new // AAResults object because in the legacy pass manager, each instance // of these will refer to the *same* immutable analyses, registering and // unregistering themselves with them. We need to carefully tear down the // previous object first, in this case replacing it with an empty one, before // registering new results. AAR.reset( new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); // BasicAA is always available for function analyses. Also, we add it first // so that it can trump TBAA results when it proves MustAlias. // FIXME: TBAA should have an explicit mode to support this and then we // should reconsider the ordering here. if (!DisableBasicAA) AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); // Populate the results with the currently available AAs. if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) AAR->addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) AAR->addAAResult(WrapperPass->getResult()); // If available, run an external AA providing callback over the results as // well. if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) if (WrapperPass->CB) WrapperPass->CB(*this, F, *AAR); // Analyses don't mutate the IR, so return false. return false; } void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<BasicAAWrapperPass>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); // We also need to mark all the alias analysis passes we will potentially // probe in runOnFunction as used here to ensure the legacy pass manager // preserves them. This hard coding of lists of alias analyses is specific to // the legacy pass manager. AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); AU.addUsedIfAvailable<SCEVAAWrapperPass>(); AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); } AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR) { AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); // Add in our explicitly constructed BasicAA results. if (!DisableBasicAA) AAR.addAAResult(BAR); // Populate the results with the other currently available AAs. if (auto *WrapperPass = P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) AAR.addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) AAR.addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) AAR.addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) AAR.addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) AAR.addAAResult(WrapperPass->getResult()); if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) AAR.addAAResult(WrapperPass->getResult()); return AAR; } bool llvm::isNoAliasCall(const Value *V) { if (auto CS = ImmutableCallSite(V)) return CS.paramHasAttr(0, Attribute::NoAlias); return false; } bool llvm::isNoAliasArgument(const Value *V) { if (const Argument *A = dyn_cast<Argument>(V)) return A->hasNoAliasAttr(); return false; } bool llvm::isIdentifiedObject(const Value *V) { if (isa<AllocaInst>(V)) return true; if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) return true; if (isNoAliasCall(V)) return true; if (const Argument *A = dyn_cast<Argument>(V)) return A->hasNoAliasAttr() || A->hasByValAttr(); return false; } bool llvm::isIdentifiedFunctionLocal(const Value *V) { return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); } void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { // This function needs to be in sync with llvm::createLegacyPMAAResults -- if // more alias analyses are added to llvm::createLegacyPMAAResults, they need // to be added here also. AU.addRequired<TargetLibraryInfoWrapperPass>(); AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); }