//===- ValueHandle.h - Value Smart Pointer classes --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the ValueHandle class and its sub-classes. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_VALUEHANDLE_H #define LLVM_IR_VALUEHANDLE_H #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/IR/Value.h" namespace llvm { class ValueHandleBase; template<typename From> struct simplify_type; // ValueHandleBase** is only 4-byte aligned. template<> class PointerLikeTypeTraits<ValueHandleBase**> { public: static inline void *getAsVoidPointer(ValueHandleBase** P) { return P; } static inline ValueHandleBase **getFromVoidPointer(void *P) { return static_cast<ValueHandleBase**>(P); } enum { NumLowBitsAvailable = 2 }; }; /// \brief This is the common base class of value handles. /// /// ValueHandle's are smart pointers to Value's that have special behavior when /// the value is deleted or ReplaceAllUsesWith'd. See the specific handles /// below for details. class ValueHandleBase { friend class Value; protected: /// \brief This indicates what sub class the handle actually is. /// /// This is to avoid having a vtable for the light-weight handle pointers. The /// fully general Callback version does have a vtable. enum HandleBaseKind { Assert, Callback, Tracking, Weak }; ValueHandleBase(const ValueHandleBase &RHS) : ValueHandleBase(RHS.PrevPair.getInt(), RHS) {} ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS) : PrevPair(nullptr, Kind), Next(nullptr), V(RHS.V) { if (isValid(V)) AddToExistingUseList(RHS.getPrevPtr()); } private: PointerIntPair<ValueHandleBase**, 2, HandleBaseKind> PrevPair; ValueHandleBase *Next; Value* V; public: explicit ValueHandleBase(HandleBaseKind Kind) : PrevPair(nullptr, Kind), Next(nullptr), V(nullptr) {} ValueHandleBase(HandleBaseKind Kind, Value *V) : PrevPair(nullptr, Kind), Next(nullptr), V(V) { if (isValid(V)) AddToUseList(); } ~ValueHandleBase() { if (isValid(V)) RemoveFromUseList(); } Value *operator=(Value *RHS) { if (V == RHS) return RHS; if (isValid(V)) RemoveFromUseList(); V = RHS; if (isValid(V)) AddToUseList(); return RHS; } Value *operator=(const ValueHandleBase &RHS) { if (V == RHS.V) return RHS.V; if (isValid(V)) RemoveFromUseList(); V = RHS.V; if (isValid(V)) AddToExistingUseList(RHS.getPrevPtr()); return V; } Value *operator->() const { return V; } Value &operator*() const { return *V; } protected: Value *getValPtr() const { return V; } static bool isValid(Value *V) { return V && V != DenseMapInfo<Value *>::getEmptyKey() && V != DenseMapInfo<Value *>::getTombstoneKey(); } public: // Callbacks made from Value. static void ValueIsDeleted(Value *V); static void ValueIsRAUWd(Value *Old, Value *New); private: // Internal implementation details. ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); } HandleBaseKind getKind() const { return PrevPair.getInt(); } void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); } /// \brief Add this ValueHandle to the use list for V. /// /// List is the address of either the head of the list or a Next node within /// the existing use list. void AddToExistingUseList(ValueHandleBase **List); /// \brief Add this ValueHandle to the use list after Node. void AddToExistingUseListAfter(ValueHandleBase *Node); /// \brief Add this ValueHandle to the use list for V. void AddToUseList(); /// \brief Remove this ValueHandle from its current use list. void RemoveFromUseList(); }; /// \brief Value handle that is nullable, but tries to track the Value. /// /// This is a value handle that tries hard to point to a Value, even across /// RAUW operations, but will null itself out if the value is destroyed. this /// is useful for advisory sorts of information, but should not be used as the /// key of a map (since the map would have to rearrange itself when the pointer /// changes). class WeakVH : public ValueHandleBase { public: WeakVH() : ValueHandleBase(Weak) {} WeakVH(Value *P) : ValueHandleBase(Weak, P) {} WeakVH(const WeakVH &RHS) : ValueHandleBase(Weak, RHS) {} WeakVH &operator=(const WeakVH &RHS) = default; Value *operator=(Value *RHS) { return ValueHandleBase::operator=(RHS); } Value *operator=(const ValueHandleBase &RHS) { return ValueHandleBase::operator=(RHS); } operator Value*() const { return getValPtr(); } }; // Specialize simplify_type to allow WeakVH to participate in // dyn_cast, isa, etc. template <> struct simplify_type<WeakVH> { typedef Value *SimpleType; static SimpleType getSimplifiedValue(WeakVH &WVH) { return WVH; } }; template <> struct simplify_type<const WeakVH> { typedef Value *SimpleType; static SimpleType getSimplifiedValue(const WeakVH &WVH) { return WVH; } }; /// \brief Value handle that asserts if the Value is deleted. /// /// This is a Value Handle that points to a value and asserts out if the value /// is destroyed while the handle is still live. This is very useful for /// catching dangling pointer bugs and other things which can be non-obvious. /// One particularly useful place to use this is as the Key of a map. Dangling /// pointer bugs often lead to really subtle bugs that only occur if another /// object happens to get allocated to the same address as the old one. Using /// an AssertingVH ensures that an assert is triggered as soon as the bad /// delete occurs. /// /// Note that an AssertingVH handle does *not* follow values across RAUW /// operations. This means that RAUW's need to explicitly update the /// AssertingVH's as it moves. This is required because in non-assert mode this /// class turns into a trivial wrapper around a pointer. template <typename ValueTy> class AssertingVH #ifndef NDEBUG : public ValueHandleBase #endif { friend struct DenseMapInfo<AssertingVH<ValueTy> >; #ifndef NDEBUG Value *getRawValPtr() const { return ValueHandleBase::getValPtr(); } void setRawValPtr(Value *P) { ValueHandleBase::operator=(P); } #else Value *ThePtr; Value *getRawValPtr() const { return ThePtr; } void setRawValPtr(Value *P) { ThePtr = P; } #endif // Convert a ValueTy*, which may be const, to the raw Value*. static Value *GetAsValue(Value *V) { return V; } static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); } ValueTy *getValPtr() const { return static_cast<ValueTy *>(getRawValPtr()); } void setValPtr(ValueTy *P) { setRawValPtr(GetAsValue(P)); } public: #ifndef NDEBUG AssertingVH() : ValueHandleBase(Assert) {} AssertingVH(ValueTy *P) : ValueHandleBase(Assert, GetAsValue(P)) {} AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {} #else AssertingVH() : ThePtr(nullptr) {} AssertingVH(ValueTy *P) : ThePtr(GetAsValue(P)) {} #endif operator ValueTy*() const { return getValPtr(); } ValueTy *operator=(ValueTy *RHS) { setValPtr(RHS); return getValPtr(); } ValueTy *operator=(const AssertingVH<ValueTy> &RHS) { setValPtr(RHS.getValPtr()); return getValPtr(); } ValueTy *operator->() const { return getValPtr(); } ValueTy &operator*() const { return *getValPtr(); } }; // Specialize DenseMapInfo to allow AssertingVH to participate in DenseMap. template<typename T> struct DenseMapInfo<AssertingVH<T> > { static inline AssertingVH<T> getEmptyKey() { AssertingVH<T> Res; Res.setRawValPtr(DenseMapInfo<Value *>::getEmptyKey()); return Res; } static inline AssertingVH<T> getTombstoneKey() { AssertingVH<T> Res; Res.setRawValPtr(DenseMapInfo<Value *>::getTombstoneKey()); return Res; } static unsigned getHashValue(const AssertingVH<T> &Val) { return DenseMapInfo<Value *>::getHashValue(Val.getRawValPtr()); } static bool isEqual(const AssertingVH<T> &LHS, const AssertingVH<T> &RHS) { return DenseMapInfo<Value *>::isEqual(LHS.getRawValPtr(), RHS.getRawValPtr()); } }; template <typename T> struct isPodLike<AssertingVH<T> > { #ifdef NDEBUG static const bool value = true; #else static const bool value = false; #endif }; /// \brief Value handle that tracks a Value across RAUW. /// /// TrackingVH is designed for situations where a client needs to hold a handle /// to a Value (or subclass) across some operations which may move that value, /// but should never destroy it or replace it with some unacceptable type. /// /// It is an error to do anything with a TrackingVH whose value has been /// destroyed, except to destruct it. /// /// It is an error to attempt to replace a value with one of a type which is /// incompatible with any of its outstanding TrackingVHs. template<typename ValueTy> class TrackingVH : public ValueHandleBase { void CheckValidity() const { Value *VP = ValueHandleBase::getValPtr(); // Null is always ok. if (!VP) return; // Check that this value is valid (i.e., it hasn't been deleted). We // explicitly delay this check until access to avoid requiring clients to be // unnecessarily careful w.r.t. destruction. assert(ValueHandleBase::isValid(VP) && "Tracked Value was deleted!"); // Check that the value is a member of the correct subclass. We would like // to check this property on assignment for better debugging, but we don't // want to require a virtual interface on this VH. Instead we allow RAUW to // replace this value with a value of an invalid type, and check it here. assert(isa<ValueTy>(VP) && "Tracked Value was replaced by one with an invalid type!"); } ValueTy *getValPtr() const { CheckValidity(); return (ValueTy*)ValueHandleBase::getValPtr(); } void setValPtr(ValueTy *P) { CheckValidity(); ValueHandleBase::operator=(GetAsValue(P)); } // Convert a ValueTy*, which may be const, to the type the base // class expects. static Value *GetAsValue(Value *V) { return V; } static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); } public: TrackingVH() : ValueHandleBase(Tracking) {} TrackingVH(ValueTy *P) : ValueHandleBase(Tracking, GetAsValue(P)) {} operator ValueTy*() const { return getValPtr(); } ValueTy *operator=(ValueTy *RHS) { setValPtr(RHS); return getValPtr(); } ValueTy *operator->() const { return getValPtr(); } ValueTy &operator*() const { return *getValPtr(); } }; /// \brief Value handle with callbacks on RAUW and destruction. /// /// This is a value handle that allows subclasses to define callbacks that run /// when the underlying Value has RAUW called on it or is destroyed. This /// class can be used as the key of a map, as long as the user takes it out of /// the map before calling setValPtr() (since the map has to rearrange itself /// when the pointer changes). Unlike ValueHandleBase, this class has a vtable. class CallbackVH : public ValueHandleBase { virtual void anchor(); protected: ~CallbackVH() = default; CallbackVH(const CallbackVH &) = default; CallbackVH &operator=(const CallbackVH &) = default; void setValPtr(Value *P) { ValueHandleBase::operator=(P); } public: CallbackVH() : ValueHandleBase(Callback) {} CallbackVH(Value *P) : ValueHandleBase(Callback, P) {} operator Value*() const { return getValPtr(); } /// \brief Callback for Value destruction. /// /// Called when this->getValPtr() is destroyed, inside ~Value(), so you /// may call any non-virtual Value method on getValPtr(), but no subclass /// methods. If WeakVH were implemented as a CallbackVH, it would use this /// method to call setValPtr(NULL). AssertingVH would use this method to /// cause an assertion failure. /// /// All implementations must remove the reference from this object to the /// Value that's being destroyed. virtual void deleted() { setValPtr(nullptr); } /// \brief Callback for Value RAUW. /// /// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called, /// _before_ any of the uses have actually been replaced. If WeakVH were /// implemented as a CallbackVH, it would use this method to call /// setValPtr(new_value). AssertingVH would do nothing in this method. virtual void allUsesReplacedWith(Value *) {} }; } // End llvm namespace #endif