/* * Testsuite for eBPF verifier * * Copyright (c) 2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2017 Facebook * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. */ #include <endian.h> #include <asm/types.h> #include <linux/types.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <string.h> #include <stddef.h> #include <stdbool.h> #include <sched.h> #include <limits.h> #include <sys/capability.h> #include <linux/unistd.h> #include <linux/filter.h> #include <linux/bpf_perf_event.h> #include <linux/bpf.h> #include <linux/if_ether.h> #include <bpf/bpf.h> #ifdef HAVE_GENHDR # include "autoconf.h" #else # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 # endif #endif #include "bpf_rlimit.h" #include "bpf_rand.h" #include "bpf_util.h" #include "../../../include/linux/filter.h" #define MAX_INSNS BPF_MAXINSNS #define MAX_FIXUPS 8 #define MAX_NR_MAPS 13 #define POINTER_VALUE 0xcafe4all #define TEST_DATA_LEN 64 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" static bool unpriv_disabled = false; struct bpf_test { const char *descr; struct bpf_insn insns[MAX_INSNS]; int fixup_map_hash_8b[MAX_FIXUPS]; int fixup_map_hash_48b[MAX_FIXUPS]; int fixup_map_hash_16b[MAX_FIXUPS]; int fixup_map_array_48b[MAX_FIXUPS]; int fixup_map_sockmap[MAX_FIXUPS]; int fixup_map_sockhash[MAX_FIXUPS]; int fixup_map_xskmap[MAX_FIXUPS]; int fixup_map_stacktrace[MAX_FIXUPS]; int fixup_prog1[MAX_FIXUPS]; int fixup_prog2[MAX_FIXUPS]; int fixup_map_in_map[MAX_FIXUPS]; int fixup_cgroup_storage[MAX_FIXUPS]; int fixup_percpu_cgroup_storage[MAX_FIXUPS]; const char *errstr; const char *errstr_unpriv; uint32_t retval, retval_unpriv; enum { UNDEF, ACCEPT, REJECT } result, result_unpriv; enum bpf_prog_type prog_type; uint8_t flags; __u8 data[TEST_DATA_LEN]; void (*fill_helper)(struct bpf_test *self); }; /* Note we want this to be 64 bit aligned so that the end of our array is * actually the end of the structure. */ #define MAX_ENTRIES 11 struct test_val { unsigned int index; int foo[MAX_ENTRIES]; }; struct other_val { long long foo; long long bar; }; static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) { /* test: {skb->data[0], vlan_push} x 68 + {skb->data[0], vlan_pop} x 68 */ #define PUSH_CNT 51 unsigned int len = BPF_MAXINSNS; struct bpf_insn *insn = self->insns; int i = 0, j, k = 0; insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); loop: for (j = 0; j < PUSH_CNT; j++) { insn[i++] = BPF_LD_ABS(BPF_B, 0); insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2); i++; insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_vlan_push), insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2); i++; } for (j = 0; j < PUSH_CNT; j++) { insn[i++] = BPF_LD_ABS(BPF_B, 0); insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2); i++; insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_vlan_pop), insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2); i++; } if (++k < 5) goto loop; for (; i < len - 1; i++) insn[i] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 0xbef); insn[len - 1] = BPF_EXIT_INSN(); } static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) { struct bpf_insn *insn = self->insns; unsigned int len = BPF_MAXINSNS; int i = 0; insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); insn[i++] = BPF_LD_ABS(BPF_B, 0); insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); i++; while (i < len - 1) insn[i++] = BPF_LD_ABS(BPF_B, 1); insn[i] = BPF_EXIT_INSN(); } static void bpf_fill_rand_ld_dw(struct bpf_test *self) { struct bpf_insn *insn = self->insns; uint64_t res = 0; int i = 0; insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); while (i < self->retval) { uint64_t val = bpf_semi_rand_get(); struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; res ^= val; insn[i++] = tmp[0]; insn[i++] = tmp[1]; insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); } insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); insn[i] = BPF_EXIT_INSN(); res ^= (res >> 32); self->retval = (uint32_t)res; } /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ #define BPF_SK_LOOKUP \ /* struct bpf_sock_tuple tuple = {} */ \ BPF_MOV64_IMM(BPF_REG_2, 0), \ BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ /* sk = sk_lookup_tcp(ctx, &tuple, sizeof tuple, 0, 0) */ \ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ BPF_MOV64_IMM(BPF_REG_4, 0), \ BPF_MOV64_IMM(BPF_REG_5, 0), \ BPF_EMIT_CALL(BPF_FUNC_sk_lookup_tcp) static struct bpf_test tests[] = { { "add+sub+mul", .insns = { BPF_MOV64_IMM(BPF_REG_1, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_2, 3), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -1), BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 3), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = -3, }, { "DIV32 by 0, zero check 1", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_2, 1), BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 42, }, { "DIV32 by 0, zero check 2", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL), BPF_MOV32_IMM(BPF_REG_2, 1), BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 42, }, { "DIV64 by 0, zero check", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_2, 1), BPF_ALU64_REG(BPF_DIV, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 42, }, { "MOD32 by 0, zero check 1", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_2, 1), BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 42, }, { "MOD32 by 0, zero check 2", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL), BPF_MOV32_IMM(BPF_REG_2, 1), BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 42, }, { "MOD64 by 0, zero check", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_2, 1), BPF_ALU64_REG(BPF_MOD, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 42, }, { "DIV32 by 0, zero check ok, cls", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_MOV32_IMM(BPF_REG_1, 2), BPF_MOV32_IMM(BPF_REG_2, 16), BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 8, }, { "DIV32 by 0, zero check 1, cls", .insns = { BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "DIV32 by 0, zero check 2, cls", .insns = { BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "DIV64 by 0, zero check, cls", .insns = { BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_ALU64_REG(BPF_DIV, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "MOD32 by 0, zero check ok, cls", .insns = { BPF_MOV32_IMM(BPF_REG_0, 42), BPF_MOV32_IMM(BPF_REG_1, 3), BPF_MOV32_IMM(BPF_REG_2, 5), BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 2, }, { "MOD32 by 0, zero check 1, cls", .insns = { BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "MOD32 by 0, zero check 2, cls", .insns = { BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "MOD64 by 0, zero check 1, cls", .insns = { BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_0, 2), BPF_ALU64_REG(BPF_MOD, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 2, }, { "MOD64 by 0, zero check 2, cls", .insns = { BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_0, -1), BPF_ALU64_REG(BPF_MOD, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = -1, }, /* Just make sure that JITs used udiv/umod as otherwise we get * an exception from INT_MIN/-1 overflow similarly as with div * by zero. */ { "DIV32 overflow, check 1", .insns = { BPF_MOV32_IMM(BPF_REG_1, -1), BPF_MOV32_IMM(BPF_REG_0, INT_MIN), BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "DIV32 overflow, check 2", .insns = { BPF_MOV32_IMM(BPF_REG_0, INT_MIN), BPF_ALU32_IMM(BPF_DIV, BPF_REG_0, -1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "DIV64 overflow, check 1", .insns = { BPF_MOV64_IMM(BPF_REG_1, -1), BPF_LD_IMM64(BPF_REG_0, LLONG_MIN), BPF_ALU64_REG(BPF_DIV, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "DIV64 overflow, check 2", .insns = { BPF_LD_IMM64(BPF_REG_0, LLONG_MIN), BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, -1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "MOD32 overflow, check 1", .insns = { BPF_MOV32_IMM(BPF_REG_1, -1), BPF_MOV32_IMM(BPF_REG_0, INT_MIN), BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = INT_MIN, }, { "MOD32 overflow, check 2", .insns = { BPF_MOV32_IMM(BPF_REG_0, INT_MIN), BPF_ALU32_IMM(BPF_MOD, BPF_REG_0, -1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = INT_MIN, }, { "MOD64 overflow, check 1", .insns = { BPF_MOV64_IMM(BPF_REG_1, -1), BPF_LD_IMM64(BPF_REG_2, LLONG_MIN), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_ALU64_REG(BPF_MOD, BPF_REG_2, BPF_REG_1), BPF_MOV32_IMM(BPF_REG_0, 0), BPF_JMP_REG(BPF_JNE, BPF_REG_3, BPF_REG_2, 1), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "MOD64 overflow, check 2", .insns = { BPF_LD_IMM64(BPF_REG_2, LLONG_MIN), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_ALU64_IMM(BPF_MOD, BPF_REG_2, -1), BPF_MOV32_IMM(BPF_REG_0, 0), BPF_JMP_REG(BPF_JNE, BPF_REG_3, BPF_REG_2, 1), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "xor32 zero extend check", .insns = { BPF_MOV32_IMM(BPF_REG_2, -1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 32), BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 0xffff), BPF_ALU32_REG(BPF_XOR, BPF_REG_2, BPF_REG_2), BPF_MOV32_IMM(BPF_REG_0, 2), BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 1), BPF_MOV32_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "empty prog", .insns = { }, .errstr = "unknown opcode 00", .result = REJECT, }, { "only exit insn", .insns = { BPF_EXIT_INSN(), }, .errstr = "R0 !read_ok", .result = REJECT, }, { "unreachable", .insns = { BPF_EXIT_INSN(), BPF_EXIT_INSN(), }, .errstr = "unreachable", .result = REJECT, }, { "unreachable2", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "unreachable", .result = REJECT, }, { "out of range jump", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_EXIT_INSN(), }, .errstr = "jump out of range", .result = REJECT, }, { "out of range jump2", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, -2), BPF_EXIT_INSN(), }, .errstr = "jump out of range", .result = REJECT, }, { "test1 ld_imm64", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 1), BPF_LD_IMM64(BPF_REG_0, 1), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .errstr = "invalid BPF_LD_IMM insn", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "test2 ld_imm64", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 1), BPF_LD_IMM64(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .errstr = "invalid BPF_LD_IMM insn", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "test3 ld_imm64", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 1), BPF_LD_IMM64(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test4 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test5 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test6 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0), BPF_RAW_INSN(0, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "test7 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1), BPF_RAW_INSN(0, 0, 0, 0, 1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 1, }, { "test8 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 1, 1), BPF_RAW_INSN(0, 0, 0, 0, 1), BPF_EXIT_INSN(), }, .errstr = "uses reserved fields", .result = REJECT, }, { "test9 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1), BPF_RAW_INSN(0, 0, 0, 1, 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test10 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1), BPF_RAW_INSN(0, BPF_REG_1, 0, 0, 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test11 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1), BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test12 ld_imm64", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1), BPF_RAW_INSN(0, 0, 0, 0, 1), BPF_EXIT_INSN(), }, .errstr = "not pointing to valid bpf_map", .result = REJECT, }, { "test13 ld_imm64", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1), BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "arsh32 on imm", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_ALU32_IMM(BPF_ARSH, BPF_REG_0, 5), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "unknown opcode c4", }, { "arsh32 on reg", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_MOV64_IMM(BPF_REG_1, 5), BPF_ALU32_REG(BPF_ARSH, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "unknown opcode cc", }, { "arsh64 on imm", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_ALU64_IMM(BPF_ARSH, BPF_REG_0, 5), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "arsh64 on reg", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_MOV64_IMM(BPF_REG_1, 5), BPF_ALU64_REG(BPF_ARSH, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "no bpf_exit", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2), }, .errstr = "not an exit", .result = REJECT, }, { "loop (back-edge)", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, -1), BPF_EXIT_INSN(), }, .errstr = "back-edge", .result = REJECT, }, { "loop2 (back-edge)", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_0), BPF_JMP_IMM(BPF_JA, 0, 0, -4), BPF_EXIT_INSN(), }, .errstr = "back-edge", .result = REJECT, }, { "conditional loop", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3), BPF_EXIT_INSN(), }, .errstr = "back-edge", .result = REJECT, }, { "read uninitialized register", .insns = { BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr = "R2 !read_ok", .result = REJECT, }, { "read invalid register", .insns = { BPF_MOV64_REG(BPF_REG_0, -1), BPF_EXIT_INSN(), }, .errstr = "R15 is invalid", .result = REJECT, }, { "program doesn't init R0 before exit", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .errstr = "R0 !read_ok", .result = REJECT, }, { "program doesn't init R0 before exit in all branches", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2), BPF_EXIT_INSN(), }, .errstr = "R0 !read_ok", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "stack out of bounds", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack", .result = REJECT, }, { "invalid call insn1", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL | BPF_X, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "unknown opcode 8d", .result = REJECT, }, { "invalid call insn2", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 1, 0), BPF_EXIT_INSN(), }, .errstr = "BPF_CALL uses reserved", .result = REJECT, }, { "invalid function call", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 1234567), BPF_EXIT_INSN(), }, .errstr = "invalid func unknown#1234567", .result = REJECT, }, { "uninitialized stack1", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 2 }, .errstr = "invalid indirect read from stack", .result = REJECT, }, { "uninitialized stack2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -8), BPF_EXIT_INSN(), }, .errstr = "invalid read from stack", .result = REJECT, }, { "invalid fp arithmetic", /* If this gets ever changed, make sure JITs can deal with it. */ .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 8), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 subtraction from stack pointer", .result = REJECT, }, { "non-invalid fp arithmetic", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "invalid argument register", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_EXIT_INSN(), }, .errstr = "R1 !read_ok", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "non-invalid argument register", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_ALU64_REG(BPF_MOV, BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "check valid spill/fill", .insns = { /* spill R1(ctx) into stack */ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), /* fill it back into R2 */ BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8), /* should be able to access R0 = *(R2 + 8) */ /* BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 8), */ BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, .retval = POINTER_VALUE, }, { "check valid spill/fill, skb mark", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = ACCEPT, }, { "check corrupted spill/fill", .insns = { /* spill R1(ctx) into stack */ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), /* mess up with R1 pointer on stack */ BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23), /* fill back into R0 should fail */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_EXIT_INSN(), }, .errstr_unpriv = "attempt to corrupt spilled", .errstr = "corrupted spill", .result = REJECT, }, { "invalid src register in STX", .insns = { BPF_STX_MEM(BPF_B, BPF_REG_10, -1, -1), BPF_EXIT_INSN(), }, .errstr = "R15 is invalid", .result = REJECT, }, { "invalid dst register in STX", .insns = { BPF_STX_MEM(BPF_B, 14, BPF_REG_10, -1), BPF_EXIT_INSN(), }, .errstr = "R14 is invalid", .result = REJECT, }, { "invalid dst register in ST", .insns = { BPF_ST_MEM(BPF_B, 14, -1, -1), BPF_EXIT_INSN(), }, .errstr = "R14 is invalid", .result = REJECT, }, { "invalid src register in LDX", .insns = { BPF_LDX_MEM(BPF_B, BPF_REG_0, 12, 0), BPF_EXIT_INSN(), }, .errstr = "R12 is invalid", .result = REJECT, }, { "invalid dst register in LDX", .insns = { BPF_LDX_MEM(BPF_B, 11, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .errstr = "R11 is invalid", .result = REJECT, }, { "junk insn", .insns = { BPF_RAW_INSN(0, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "unknown opcode 00", .result = REJECT, }, { "junk insn2", .insns = { BPF_RAW_INSN(1, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "BPF_LDX uses reserved fields", .result = REJECT, }, { "junk insn3", .insns = { BPF_RAW_INSN(-1, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "unknown opcode ff", .result = REJECT, }, { "junk insn4", .insns = { BPF_RAW_INSN(-1, -1, -1, -1, -1), BPF_EXIT_INSN(), }, .errstr = "unknown opcode ff", .result = REJECT, }, { "junk insn5", .insns = { BPF_RAW_INSN(0x7f, -1, -1, -1, -1), BPF_EXIT_INSN(), }, .errstr = "BPF_ALU uses reserved fields", .result = REJECT, }, { "misaligned read from stack", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -4), BPF_EXIT_INSN(), }, .errstr = "misaligned stack access", .result = REJECT, }, { "invalid map_fd for function call", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_delete_elem), BPF_EXIT_INSN(), }, .errstr = "fd 0 is not pointing to valid bpf_map", .result = REJECT, }, { "don't check return value before access", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R0 invalid mem access 'map_value_or_null'", .result = REJECT, }, { "access memory with incorrect alignment", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "misaligned value access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "sometimes access memory with incorrect alignment", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R0 invalid mem access", .errstr_unpriv = "R0 leaks addr", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "jump test 1", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "jump test 2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 14), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 11), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 5), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "jump test 3", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 19), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_JMP_IMM(BPF_JA, 0, 0, 15), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -32), BPF_JMP_IMM(BPF_JA, 0, 0, 11), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -40), BPF_JMP_IMM(BPF_JA, 0, 0, 7), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), BPF_JMP_IMM(BPF_JA, 0, 0, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 0), BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -56), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_delete_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 24 }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, .retval = -ENOENT, }, { "jump test 4", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "jump test 5", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "access skb fields ok", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, pkt_type)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, queue_mapping)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, protocol)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, vlan_present)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, vlan_tci)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, napi_id)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "access skb fields bad1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -4), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "access skb fields bad2", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, pkt_type)), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .errstr = "different pointers", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "access skb fields bad3", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, pkt_type)), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JA, 0, 0, -12), }, .fixup_map_hash_8b = { 6 }, .errstr = "different pointers", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "access skb fields bad4", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 3), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JA, 0, 0, -13), }, .fixup_map_hash_8b = { 7 }, .errstr = "different pointers", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "invalid access __sk_buff family", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, family)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "invalid access __sk_buff remote_ip4", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_ip4)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "invalid access __sk_buff local_ip4", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_ip4)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "invalid access __sk_buff remote_ip6", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "invalid access __sk_buff local_ip6", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_ip6)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "invalid access __sk_buff remote_port", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_port)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "invalid access __sk_buff remote_port", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_port)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "valid access __sk_buff family", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, family)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access __sk_buff remote_ip4", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_ip4)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access __sk_buff local_ip4", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_ip4)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access __sk_buff remote_ip6", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[0])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[1])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[2])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[3])), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access __sk_buff local_ip6", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[0])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[1])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[2])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[3])), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access __sk_buff remote_port", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, remote_port)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access __sk_buff remote_port", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, local_port)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "invalid access of tc_classid for SK_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_EXIT_INSN(), }, .result = REJECT, .prog_type = BPF_PROG_TYPE_SK_SKB, .errstr = "invalid bpf_context access", }, { "invalid access of skb->mark for SK_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = REJECT, .prog_type = BPF_PROG_TYPE_SK_SKB, .errstr = "invalid bpf_context access", }, { "check skb->mark is not writeable by SK_SKB", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = REJECT, .prog_type = BPF_PROG_TYPE_SK_SKB, .errstr = "invalid bpf_context access", }, { "check skb->tc_index is writeable by SK_SKB", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, tc_index)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "check skb->priority is writeable by SK_SKB", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, priority)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "direct packet read for SK_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "direct packet write for SK_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "overlapping checks for direct packet access SK_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access family in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, family)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "valid access remote_ip4 in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, remote_ip4)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "valid access local_ip4 in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, local_ip4)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "valid access remote_port in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, remote_port)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "valid access local_port in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, local_port)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "valid access remote_ip6 in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, remote_ip6[0])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, remote_ip6[1])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, remote_ip6[2])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, remote_ip6[3])), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "valid access local_ip6 in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, local_ip6[0])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, local_ip6[1])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, local_ip6[2])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct sk_msg_md, local_ip6[3])), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_SKB, }, { "invalid 64B read of family in SK_MSG", .insns = { BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, offsetof(struct sk_msg_md, family)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "invalid read past end of SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct sk_msg_md, local_port) + 4), BPF_EXIT_INSN(), }, .errstr = "R0 !read_ok", .result = REJECT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "invalid read offset in SK_MSG", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct sk_msg_md, family) + 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "direct packet read for SK_MSG", .insns = { BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, offsetof(struct sk_msg_md, data)), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, offsetof(struct sk_msg_md, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "direct packet write for SK_MSG", .insns = { BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, offsetof(struct sk_msg_md, data)), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, offsetof(struct sk_msg_md, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "overlapping checks for direct packet access SK_MSG", .insns = { BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, offsetof(struct sk_msg_md, data)), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, offsetof(struct sk_msg_md, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SK_MSG, }, { "check skb->mark is not writeable by sockets", .insns = { BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .errstr_unpriv = "R1 leaks addr", .result = REJECT, }, { "check skb->tc_index is not writeable by sockets", .insns = { BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, tc_index)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .errstr_unpriv = "R1 leaks addr", .result = REJECT, }, { "check cb access: byte", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 3), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "__sk_buff->hash, offset 0, byte store not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, hash)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "__sk_buff->tc_index, offset 3, byte store not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, tc_index) + 3), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check skb->hash byte load permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash)), #else BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash) + 3), #endif BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check skb->hash byte load not permitted 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash) + 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check skb->hash byte load not permitted 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash) + 2), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check skb->hash byte load not permitted 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash) + 3), #else BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash)), #endif BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: byte, wrong type", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "check cb access: half", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 2), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check cb access: half, unaligned", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 1), BPF_EXIT_INSN(), }, .errstr = "misaligned context access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "check __sk_buff->hash, offset 0, half store not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, hash)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check __sk_buff->tc_index, offset 2, half store not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, tc_index) + 2), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check skb->hash half load permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash)), #else BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash) + 2), #endif BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check skb->hash half load not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash) + 2), #else BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, hash)), #endif BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: half, wrong type", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "check cb access: word", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check cb access: word, unaligned 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 2), BPF_EXIT_INSN(), }, .errstr = "misaligned context access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "check cb access: word, unaligned 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 1), BPF_EXIT_INSN(), }, .errstr = "misaligned context access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "check cb access: word, unaligned 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 2), BPF_EXIT_INSN(), }, .errstr = "misaligned context access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "check cb access: word, unaligned 4", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 3), BPF_EXIT_INSN(), }, .errstr = "misaligned context access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "check cb access: double", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check cb access: double, unaligned 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_EXIT_INSN(), }, .errstr = "misaligned context access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "check cb access: double, unaligned 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_EXIT_INSN(), }, .errstr = "misaligned context access", .result = REJECT, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "check cb access: double, oob 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, oob 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check __sk_buff->ifindex dw store not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, ifindex)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check __sk_buff->ifindex dw load not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, ifindex)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, wrong type", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "check out of range skb->cb access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 256), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .errstr_unpriv = "", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_ACT, }, { "write skb fields from socket prog", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_index)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_EXIT_INSN(), }, .result = ACCEPT, .errstr_unpriv = "R1 leaks addr", .result_unpriv = REJECT, }, { "write skb fields from tc_cls_act prog", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_index)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, tc_index)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_EXIT_INSN(), }, .errstr_unpriv = "", .result_unpriv = REJECT, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "PTR_TO_STACK store/load", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10), BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 0xfaceb00c, }, { "PTR_TO_STACK store/load - bad alignment on off", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "misaligned stack access off (0x0; 0x0)+-8+2 size 8", }, { "PTR_TO_STACK store/load - bad alignment on reg", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10), BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "misaligned stack access off (0x0; 0x0)+-10+8 size 8", }, { "PTR_TO_STACK store/load - out of bounds low", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -80000), BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack off=-79992 size=8", }, { "PTR_TO_STACK store/load - out of bounds high", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack off=0 size=8", }, { "unpriv: return pointer", .insns = { BPF_MOV64_REG(BPF_REG_0, BPF_REG_10), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R0 leaks addr", .retval = POINTER_VALUE, }, { "unpriv: add const to pointer", .insns = { BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "unpriv: add pointer to pointer", .insns = { BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R1 pointer += pointer", }, { "unpriv: neg pointer", .insns = { BPF_ALU64_IMM(BPF_NEG, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R1 pointer arithmetic", }, { "unpriv: cmp pointer with const", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R1 pointer comparison", }, { "unpriv: cmp pointer with pointer", .insns = { BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R10 pointer comparison", }, { "unpriv: check that printk is disallowed", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_trace_printk), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "unknown func bpf_trace_printk#6", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: pass pointer to helper function", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_update_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr_unpriv = "R4 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: indirectly pass pointer on stack to helper function", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "invalid indirect read from stack off -8+0 size 8", .result = REJECT, }, { "unpriv: mangle pointer on stack 1", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_ST_MEM(BPF_W, BPF_REG_10, -8, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "attempt to corrupt spilled", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: mangle pointer on stack 2", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_ST_MEM(BPF_B, BPF_REG_10, -1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "attempt to corrupt spilled", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: read pointer from stack in small chunks", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid size", .result = REJECT, }, { "unpriv: write pointer into ctx", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 leaks addr", .result_unpriv = REJECT, .errstr = "invalid bpf_context access", .result = REJECT, }, { "unpriv: spill/fill of ctx", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "unpriv: spill/fill of ctx 2", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_hash_recalc), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of ctx 3", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_hash_recalc), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R1 type=fp expected=ctx", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of ctx 4", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_10, BPF_REG_0, -8, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_hash_recalc), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R1 type=inv expected=ctx", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers stx", .insns = { BPF_MOV64_IMM(BPF_REG_3, 42), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3, offsetof(struct __sk_buff, mark)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "same insn cannot be used with different pointers", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers stx - ctx and sock", .insns = { BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), /* struct bpf_sock *sock = bpf_sock_lookup(...); */ BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), /* u64 foo; */ /* void *target = &foo; */ BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), /* if (skb == NULL) *target = sock; */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), /* else *target = skb; */ BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), /* struct __sk_buff *skb = *target; */ BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), /* skb->mark = 42; */ BPF_MOV64_IMM(BPF_REG_3, 42), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3, offsetof(struct __sk_buff, mark)), /* if (sk) bpf_sk_release(sk) */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "type=ctx expected=sock", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers stx - leak sock", .insns = { BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), /* struct bpf_sock *sock = bpf_sock_lookup(...); */ BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), /* u64 foo; */ /* void *target = &foo; */ BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), /* if (skb == NULL) *target = sock; */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), /* else *target = skb; */ BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), /* struct __sk_buff *skb = *target; */ BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), /* skb->mark = 42; */ BPF_MOV64_IMM(BPF_REG_3, 42), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = REJECT, //.errstr = "same insn cannot be used with different pointers", .errstr = "Unreleased reference", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers stx - sock and ctx (read)", .insns = { BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), /* struct bpf_sock *sock = bpf_sock_lookup(...); */ BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), /* u64 foo; */ /* void *target = &foo; */ BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), /* if (skb) *target = skb */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), /* else *target = sock */ BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), /* struct bpf_sock *sk = *target; */ BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), /* if (sk) u32 foo = sk->mark; bpf_sk_release(sk); */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct bpf_sock, mark)), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "same insn cannot be used with different pointers", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers stx - sock and ctx (write)", .insns = { BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), /* struct bpf_sock *sock = bpf_sock_lookup(...); */ BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), /* u64 foo; */ /* void *target = &foo; */ BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), /* if (skb) *target = skb */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), /* else *target = sock */ BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), /* struct bpf_sock *sk = *target; */ BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), /* if (sk) sk->mark = 42; bpf_sk_release(sk); */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_MOV64_IMM(BPF_REG_3, 42), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3, offsetof(struct bpf_sock, mark)), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, //.errstr = "same insn cannot be used with different pointers", .errstr = "cannot write into socket", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers ldx", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -(__s32)offsetof(struct bpf_perf_event_data, sample_period) - 8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "same insn cannot be used with different pointers", .prog_type = BPF_PROG_TYPE_PERF_EVENT, }, { "unpriv: write pointer into map elem value", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: partial copy of pointer", .insns = { BPF_MOV32_REG(BPF_REG_1, BPF_REG_10), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R10 partial copy", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: pass pointer to tail_call", .insns = { BPF_MOV64_REG(BPF_REG_3, BPF_REG_1), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_prog1 = { 1 }, .errstr_unpriv = "R3 leaks addr into helper", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: cmp map pointer with zero", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 1 }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: write into frame pointer", .insns = { BPF_MOV64_REG(BPF_REG_10, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "frame pointer is read only", .result = REJECT, }, { "unpriv: spill/fill frame pointer", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "frame pointer is read only", .result = REJECT, }, { "unpriv: cmp of frame pointer", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_10, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R10 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: adding of fp", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_1, 0), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, -8), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "unpriv: cmp of stack pointer", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R2 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "runtime/jit: tail_call within bounds, prog once", .insns = { BPF_MOV64_IMM(BPF_REG_3, 0), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_prog1 = { 1 }, .result = ACCEPT, .retval = 42, }, { "runtime/jit: tail_call within bounds, prog loop", .insns = { BPF_MOV64_IMM(BPF_REG_3, 1), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_prog1 = { 1 }, .result = ACCEPT, .retval = 41, }, { "runtime/jit: tail_call within bounds, no prog", .insns = { BPF_MOV64_IMM(BPF_REG_3, 2), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_prog1 = { 1 }, .result = ACCEPT, .retval = 1, }, { "runtime/jit: tail_call out of bounds", .insns = { BPF_MOV64_IMM(BPF_REG_3, 256), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .fixup_prog1 = { 1 }, .result = ACCEPT, .retval = 2, }, { "runtime/jit: pass negative index to tail_call", .insns = { BPF_MOV64_IMM(BPF_REG_3, -1), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .fixup_prog1 = { 1 }, .result = ACCEPT, .retval = 2, }, { "runtime/jit: pass > 32bit index to tail_call", .insns = { BPF_LD_IMM64(BPF_REG_3, 0x100000000ULL), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .fixup_prog1 = { 2 }, .result = ACCEPT, .retval = 42, /* Verifier rewrite for unpriv skips tail call here. */ .retval_unpriv = 2, }, { "stack pointer arithmetic", .insns = { BPF_MOV64_IMM(BPF_REG_1, 4), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_REG(BPF_REG_7, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1), BPF_ST_MEM(0, BPF_REG_2, 4, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8), BPF_ST_MEM(0, BPF_REG_2, 4, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "raw_stack: no skb_load_bytes", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), /* Call to skb_load_bytes() omitted. */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid read from stack off -8+0 size 8", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, negative len", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R4 min value is negative", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, negative len 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, ~0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R4 min value is negative", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, zero len", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, no init", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, init", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xcafe), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs around bounds", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2, offsetof(struct __sk_buff, priority)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs corruption", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R0 invalid mem access 'inv'", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs corruption 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2, offsetof(struct __sk_buff, priority)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_3, offsetof(struct __sk_buff, pkt_type)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R3 invalid mem access 'inv'", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs + data", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2, offsetof(struct __sk_buff, priority)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 1", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -513), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-513 access_size=8", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-1 access_size=8", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 3", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 0xffffffff), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0xffffffff), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R4 min value is negative", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 4", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 5", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 6", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-512 access_size=0", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, large access", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 512), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "context stores via ST", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_ST_MEM(BPF_DW, BPF_REG_1, offsetof(struct __sk_buff, mark), 0), BPF_EXIT_INSN(), }, .errstr = "BPF_ST stores into R1 ctx is not allowed", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "context stores via XADD", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, mark), 0), BPF_EXIT_INSN(), }, .errstr = "BPF_XADD stores into R1 ctx is not allowed", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 15), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 7), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_3, 12), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 14), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_4), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 49), BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 49), BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_2), BPF_MOV64_REG(BPF_REG_2, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access off=76", .result = REJECT, .prog_type = BPF_PROG_TYPE_SOCKET_FILTER, }, { "direct packet access: test4 (write)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test5 (pkt_end >= reg, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test6 (pkt_end >= reg, bad access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid access to packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test7 (pkt_end >= reg, both accesses)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid access to packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test8 (double test, variant 1)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 4), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test9 (double test, variant 2)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test10 (write invalid)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid access to packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test11 (shift, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_3, 144), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23), BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 3), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 1, }, { "direct packet access: test12 (and, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_3, 144), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23), BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 1, }, { "direct packet access: test13 (branches, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 13), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_MOV64_IMM(BPF_REG_4, 1), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_3, 14), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_MOV64_IMM(BPF_REG_3, 24), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23), BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 1, }, { "direct packet access: test14 (pkt_ptr += 0, CONST_IMM, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7), BPF_MOV64_IMM(BPF_REG_5, 12), BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 4), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_6, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 1, }, { "direct packet access: test15 (spill with xadd)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_5, 4096), BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_STX_XADD(BPF_DW, BPF_REG_4, BPF_REG_5, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0), BPF_STX_MEM(BPF_W, BPF_REG_2, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R2 invalid mem access 'inv'", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test16 (arith on data_end)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 16), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R3 pointer arithmetic on pkt_end", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test17 (pruning, alignment)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 14), BPF_JMP_IMM(BPF_JGT, BPF_REG_7, 1, 4), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 1), BPF_JMP_A(-6), }, .errstr = "misaligned packet access off 2+(0x0; 0x0)+15+-4 size 4", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "direct packet access: test18 (imm += pkt_ptr, 1)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_IMM(BPF_REG_0, 8), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test19 (imm += pkt_ptr, 2)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3), BPF_MOV64_IMM(BPF_REG_4, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2), BPF_STX_MEM(BPF_B, BPF_REG_4, BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test20 (x += pkt_ptr, 1)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_IMM(BPF_REG_0, 0xffffffff), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0x7fff), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2), BPF_MOV64_REG(BPF_REG_5, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1), BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "direct packet access: test21 (x += pkt_ptr, 2)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 9), BPF_MOV64_IMM(BPF_REG_4, 0xffffffff), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_ALU64_IMM(BPF_AND, BPF_REG_4, 0x7fff), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2), BPF_MOV64_REG(BPF_REG_5, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1), BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "direct packet access: test22 (x += pkt_ptr, 3)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -8), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_3, -16), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_10, -16), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 11), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8), BPF_MOV64_IMM(BPF_REG_4, 0xffffffff), BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_4, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 49), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2), BPF_MOV64_REG(BPF_REG_0, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_STX_MEM(BPF_H, BPF_REG_4, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "direct packet access: test23 (x += pkt_ptr, 4)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_IMM(BPF_REG_0, 0xffffffff), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xffff), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_0, 31), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_MOV64_REG(BPF_REG_5, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0xffff - 1), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .errstr = "invalid access to packet, off=0 size=8, R5(id=1,off=0,r=0)", }, { "direct packet access: test24 (x += pkt_ptr, 5)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_IMM(BPF_REG_0, 0xffffffff), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xff), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_0, 64), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_MOV64_REG(BPF_REG_5, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7fff - 1), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "direct packet access: test25 (marking on <, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_JMP_IMM(BPF_JA, 0, 0, -4), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test26 (marking on <, bad access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JA, 0, 0, -3), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test27 (marking on <=, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 1, }, { "direct packet access: test28 (marking on <=, bad access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_JMP_IMM(BPF_JA, 0, 0, -4), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test1, valid packet_ptr range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_update_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 5 }, .result_unpriv = ACCEPT, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test2, unchecked packet_ptr", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 1 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test3, variable add", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10), BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5), BPF_MOV64_REG(BPF_REG_5, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_4), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 11 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test4, packet_ptr with bad range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 7 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test5, packet_ptr with too short range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 6 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test6, cls valid packet_ptr range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_update_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 5 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test7, cls unchecked packet_ptr", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 1 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test8, cls variable add", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10), BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5), BPF_MOV64_REG(BPF_REG_5, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_4), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 11 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test9, cls packet_ptr with bad range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 7 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test10, cls packet_ptr with too short range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 6 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test11, cls unsuitable helper 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_7, 4), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_4, 42), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_store_bytes), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "helper access to the packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test12, cls unsuitable helper 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_7, 3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_4, 4), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "helper access to the packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test13, cls helper ok", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test14, cls helper ok sub", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 4), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test15, cls helper fail sub", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 12), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test16, cls helper fail range 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test17, cls helper fail range 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, -9), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R2 min value is negative", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test18, cls helper fail range 3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, ~0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R2 min value is negative", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test19, cls helper range zero", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test20, pkt end as input", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R1 type=pkt_end expected=fp", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test21, wrong reg", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "prevent map lookup in sockmap", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_sockmap = { 3 }, .result = REJECT, .errstr = "cannot pass map_type 15 into func bpf_map_lookup_elem", .prog_type = BPF_PROG_TYPE_SOCK_OPS, }, { "prevent map lookup in sockhash", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_sockhash = { 3 }, .result = REJECT, .errstr = "cannot pass map_type 18 into func bpf_map_lookup_elem", .prog_type = BPF_PROG_TYPE_SOCK_OPS, }, { "prevent map lookup in xskmap", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_xskmap = { 3 }, .result = REJECT, .errstr = "cannot pass map_type 17 into func bpf_map_lookup_elem", .prog_type = BPF_PROG_TYPE_XDP, }, { "prevent map lookup in stack trace", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_stacktrace = { 3 }, .result = REJECT, .errstr = "cannot pass map_type 7 into func bpf_map_lookup_elem", .prog_type = BPF_PROG_TYPE_PERF_EVENT, }, { "prevent map lookup in prog array", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_prog2 = { 3 }, .result = REJECT, .errstr = "cannot pass map_type 3 into func bpf_map_lookup_elem", }, { "valid map access into an array with a constant", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, }, { "valid map access into an array with a register", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_IMM(BPF_REG_1, 4), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "valid map access into an array with a variable", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "valid map access into an array with a signed variable", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES), BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "invalid map access into an array with a constant", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=48 size=8", .result = REJECT, }, { "invalid map access into an array with a register", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 min value is outside of the array range", .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "invalid map access into an array with a variable", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 unbounded memory access, make sure to bounds check any array access into a map", .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "invalid map access into an array with no floor check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES), BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .errstr = "R0 unbounded memory access", .result_unpriv = REJECT, .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "invalid map access into an array with a invalid max check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .errstr = "invalid access to map value, value_size=48 off=44 size=8", .result_unpriv = REJECT, .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "invalid map access into an array with a invalid max check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_MOV64_REG(BPF_REG_8, BPF_REG_0), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3, 11 }, .errstr = "R0 pointer += pointer", .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "direct packet read test#1 for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_LDX_MEM(BPF_W, BPF_REG_5, BPF_REG_1, offsetof(struct __sk_buff, pkt_type)), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_6, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, queue_mapping)), BPF_LDX_MEM(BPF_W, BPF_REG_8, BPF_REG_1, offsetof(struct __sk_buff, protocol)), BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1, offsetof(struct __sk_buff, vlan_present)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "invalid bpf_context access off=76 size=4", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "direct packet read test#2 for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct __sk_buff, vlan_tci)), BPF_LDX_MEM(BPF_W, BPF_REG_5, BPF_REG_1, offsetof(struct __sk_buff, vlan_proto)), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, priority)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_6, offsetof(struct __sk_buff, priority)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, ingress_ifindex)), BPF_LDX_MEM(BPF_W, BPF_REG_8, BPF_REG_1, offsetof(struct __sk_buff, tc_index)), BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1, offsetof(struct __sk_buff, hash)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "direct packet read test#3 for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_W, BPF_REG_5, BPF_REG_1, offsetof(struct __sk_buff, cb[1])), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, cb[3])), BPF_LDX_MEM(BPF_W, BPF_REG_8, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1, offsetof(struct __sk_buff, napi_id)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_4, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_5, offsetof(struct __sk_buff, cb[1])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_6, offsetof(struct __sk_buff, cb[2])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_7, offsetof(struct __sk_buff, cb[3])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_8, offsetof(struct __sk_buff, cb[4])), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "direct packet read test#4 for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, family)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, remote_ip4)), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct __sk_buff, local_ip4)), BPF_LDX_MEM(BPF_W, BPF_REG_5, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[0])), BPF_LDX_MEM(BPF_W, BPF_REG_5, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[1])), BPF_LDX_MEM(BPF_W, BPF_REG_5, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[2])), BPF_LDX_MEM(BPF_W, BPF_REG_5, BPF_REG_1, offsetof(struct __sk_buff, remote_ip6[3])), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[0])), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[1])), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[2])), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, local_ip6[3])), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, remote_port)), BPF_LDX_MEM(BPF_W, BPF_REG_8, BPF_REG_1, offsetof(struct __sk_buff, local_port)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid access of tc_classid for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid access of data_meta for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, data_meta)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid access of flow_keys for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, flow_keys)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid write access to napi_id for CGROUP_SKB", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1, offsetof(struct __sk_buff, napi_id)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_9, offsetof(struct __sk_buff, napi_id)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "valid cgroup storage access", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_cgroup_storage = { 1 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid cgroup storage access 1", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 1 }, .result = REJECT, .errstr = "cannot pass map_type 1 into func bpf_get_local_storage", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid cgroup storage access 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "fd 1 is not pointing to valid bpf_map", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid cgroup storage access 3", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 256), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_cgroup_storage = { 1 }, .result = REJECT, .errstr = "invalid access to map value, value_size=64 off=256 size=4", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid cgroup storage access 4", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, -2), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1), BPF_EXIT_INSN(), }, .fixup_cgroup_storage = { 1 }, .result = REJECT, .errstr = "invalid access to map value, value_size=64 off=-2 size=4", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid cgroup storage access 5", .insns = { BPF_MOV64_IMM(BPF_REG_2, 7), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_cgroup_storage = { 1 }, .result = REJECT, .errstr = "get_local_storage() doesn't support non-zero flags", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid cgroup storage access 6", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_1), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_cgroup_storage = { 1 }, .result = REJECT, .errstr = "get_local_storage() doesn't support non-zero flags", .errstr_unpriv = "R2 leaks addr into helper function", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "valid per-cpu cgroup storage access", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_percpu_cgroup_storage = { 1 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid per-cpu cgroup storage access 1", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 1 }, .result = REJECT, .errstr = "cannot pass map_type 1 into func bpf_get_local_storage", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid per-cpu cgroup storage access 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "fd 1 is not pointing to valid bpf_map", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid per-cpu cgroup storage access 3", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 256), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_percpu_cgroup_storage = { 1 }, .result = REJECT, .errstr = "invalid access to map value, value_size=64 off=256 size=4", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid per-cpu cgroup storage access 4", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, -2), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1), BPF_EXIT_INSN(), }, .fixup_cgroup_storage = { 1 }, .result = REJECT, .errstr = "invalid access to map value, value_size=64 off=-2 size=4", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid per-cpu cgroup storage access 5", .insns = { BPF_MOV64_IMM(BPF_REG_2, 7), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_percpu_cgroup_storage = { 1 }, .result = REJECT, .errstr = "get_local_storage() doesn't support non-zero flags", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "invalid per-cpu cgroup storage access 6", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_1), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_local_storage), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_percpu_cgroup_storage = { 1 }, .result = REJECT, .errstr = "get_local_storage() doesn't support non-zero flags", .errstr_unpriv = "R2 leaks addr into helper function", .prog_type = BPF_PROG_TYPE_CGROUP_SKB, }, { "multiple registers share map_lookup_elem result", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "alu ops on ptr_to_map_value_or_null, 1", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .errstr = "R4 pointer arithmetic on map_value_or_null", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "alu ops on ptr_to_map_value_or_null, 2", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_ALU64_IMM(BPF_AND, BPF_REG_4, -1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .errstr = "R4 pointer arithmetic on map_value_or_null", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "alu ops on ptr_to_map_value_or_null, 3", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .errstr = "R4 pointer arithmetic on map_value_or_null", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "invalid memory access with multiple map_lookup_elem calls", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .result = REJECT, .errstr = "R4 !read_ok", .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "valid indirect map_lookup_elem access with 2nd lookup in branch", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_2, 10), BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 3), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "invalid map access from else condition", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES-1, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 unbounded memory access", .result = REJECT, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "constant register |= constant should keep constant type", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 13), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "constant register |= constant should not bypass stack boundary checks", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 24), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-48 access_size=58", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "constant register |= constant register should keep constant type", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_MOV64_IMM(BPF_REG_4, 13), BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "constant register |= constant register should not bypass stack boundary checks", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_MOV64_IMM(BPF_REG_4, 24), BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-48 access_size=58", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "invalid direct packet write for LWT_IN", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "cannot write into packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "invalid direct packet write for LWT_OUT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "cannot write into packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_OUT, }, { "direct packet write for LWT_XMIT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_XMIT, }, { "direct packet read for LWT_IN", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "direct packet read for LWT_OUT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_OUT, }, { "direct packet read for LWT_XMIT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_XMIT, }, { "overlapping checks for direct packet access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_XMIT, }, { "make headroom for LWT_XMIT", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_skb_change_head), /* split for s390 to succeed */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, 42), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_skb_change_head), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_XMIT, }, { "invalid access of tc_classid for LWT_IN", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", }, { "invalid access of tc_classid for LWT_OUT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", }, { "invalid access of tc_classid for LWT_XMIT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", }, { "leak pointer into ctx 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_2, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 2 }, .errstr_unpriv = "R2 leaks addr into mem", .result_unpriv = REJECT, .result = REJECT, .errstr = "BPF_XADD stores into R1 ctx is not allowed", }, { "leak pointer into ctx 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_10, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .errstr_unpriv = "R10 leaks addr into mem", .result_unpriv = REJECT, .result = REJECT, .errstr = "BPF_XADD stores into R1 ctx is not allowed", }, { "leak pointer into ctx 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 1 }, .errstr_unpriv = "R2 leaks addr into ctx", .result_unpriv = REJECT, .result = ACCEPT, }, { "leak pointer into map val", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0), BPF_STX_XADD(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .errstr_unpriv = "R6 leaks addr into mem", .result_unpriv = REJECT, .result = ACCEPT, }, { "helper access to map: full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_EMIT_CALL(BPF_FUNC_trace_printk), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=0 size=0", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: out-of-bound range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) + 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=0 size=56", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: negative range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, -8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R2 min value is negative", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_EMIT_CALL(BPF_FUNC_trace_printk), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=0", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): out-of-bound range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo) + 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=52", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): negative range (> adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, -8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R2 min value is negative", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): negative range (< adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R2 min value is negative", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_EMIT_CALL(BPF_FUNC_trace_printk), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): out-of-bound range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo) + 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=52", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): negative range (> adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, -8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R2 min value is negative", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): negative range (< adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R2 min value is negative", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 3), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_EMIT_CALL(BPF_FUNC_trace_printk), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): no max check", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R1 unbounded memory access", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): wrong max check", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo) + 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=45", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using <, good access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using <, bad access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = REJECT, .errstr = "R1 unbounded memory access", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using <=, good access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using <=, bad access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = REJECT, .errstr = "R1 unbounded memory access", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using s<, good access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 0, -3), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using s<, good access 2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using s<, bad access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = REJECT, .errstr = "R1 min value is negative", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using s<=, good access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 0, -3), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using s<=, good access 2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: bounds check using s<=, bad access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = REJECT, .errstr = "R1 min value is negative", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map access: known scalar += value_ptr", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_MOV64_IMM(BPF_REG_1, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = ACCEPT, .retval = 1, }, { "map access: value_ptr += known scalar", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_MOV64_IMM(BPF_REG_1, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = ACCEPT, .retval = 1, }, { "map access: unknown scalar += value_ptr", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xf), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = ACCEPT, .retval = 1, }, { "map access: value_ptr += unknown scalar", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xf), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = ACCEPT, .retval = 1, }, { "map access: value_ptr += value_ptr", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_0), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = REJECT, .errstr = "R0 pointer += pointer prohibited", }, { "map access: known scalar -= value_ptr", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_MOV64_IMM(BPF_REG_1, 4), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = REJECT, .errstr = "R1 tried to subtract pointer from scalar", }, { "map access: value_ptr -= known scalar", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_MOV64_IMM(BPF_REG_1, 4), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = REJECT, .errstr = "R0 min value is outside of the array range", }, { "map access: value_ptr -= known scalar, 2", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_IMM(BPF_REG_1, 6), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_2), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = ACCEPT, .retval = 1, }, { "map access: unknown scalar -= value_ptr", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xf), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = REJECT, .errstr = "R1 tried to subtract pointer from scalar", }, { "map access: value_ptr -= unknown scalar", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xf), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = REJECT, .errstr = "R0 min value is negative", }, { "map access: value_ptr -= unknown scalar, 2", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xf), BPF_ALU64_IMM(BPF_OR, BPF_REG_1, 0x7), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0x7), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = ACCEPT, .retval = 1, }, { "map access: value_ptr -= value_ptr", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_0), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_map_array_48b = { 3 }, .result = REJECT, .errstr = "R0 invalid mem access 'inv'", .errstr_unpriv = "R0 pointer -= pointer prohibited", }, { "map lookup helper access to map", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 8 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map update helper access to map", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_update_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 10 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map update helper access to map: wrong size", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_update_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .fixup_map_hash_16b = { 10 }, .result = REJECT, .errstr = "invalid access to map value, value_size=8 off=0 size=16", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via const imm)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, offsetof(struct other_val, bar)), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 9 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via const imm): out-of-bound 1", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, sizeof(struct other_val) - 4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 9 }, .result = REJECT, .errstr = "invalid access to map value, value_size=16 off=12 size=8", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via const imm): out-of-bound 2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 9 }, .result = REJECT, .errstr = "invalid access to map value, value_size=16 off=-4 size=8", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via const reg)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct other_val, bar)), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 10 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via const reg): out-of-bound 1", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, sizeof(struct other_val) - 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 10 }, .result = REJECT, .errstr = "invalid access to map value, value_size=16 off=12 size=8", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via const reg): out-of-bound 2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, -4), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 10 }, .result = REJECT, .errstr = "invalid access to map value, value_size=16 off=-4 size=8", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via variable)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct other_val, bar), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 11 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via variable): no max check", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 10 }, .result = REJECT, .errstr = "R2 unbounded memory access, make sure to bounds check any array access into a map", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map helper access to adjusted map (via variable): wrong max check", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct other_val, bar) + 1, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_16b = { 3, 11 }, .result = REJECT, .errstr = "invalid access to map value, value_size=16 off=9 size=8", .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map element value is preserved across register spilling", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0), BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, }, { "map element value or null is marked on register spilling", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -152), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0), BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, }, { "map element value store of cleared call register", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R1 !read_ok", .errstr = "R1 !read_ok", .result = REJECT, .result_unpriv = REJECT, }, { "map element value with unaligned store", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 17), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42), BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 43), BPF_ST_MEM(BPF_DW, BPF_REG_0, -2, 44), BPF_MOV64_REG(BPF_REG_8, BPF_REG_0), BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 32), BPF_ST_MEM(BPF_DW, BPF_REG_8, 2, 33), BPF_ST_MEM(BPF_DW, BPF_REG_8, -2, 34), BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 5), BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 22), BPF_ST_MEM(BPF_DW, BPF_REG_8, 4, 23), BPF_ST_MEM(BPF_DW, BPF_REG_8, -7, 24), BPF_MOV64_REG(BPF_REG_7, BPF_REG_8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 3), BPF_ST_MEM(BPF_DW, BPF_REG_7, 0, 22), BPF_ST_MEM(BPF_DW, BPF_REG_7, 4, 23), BPF_ST_MEM(BPF_DW, BPF_REG_7, -4, 24), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "map element value with unaligned load", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 9), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 2), BPF_MOV64_REG(BPF_REG_8, BPF_REG_0), BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 5), BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 4), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "map element value illegal alu op, 1", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 8), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 bitwise operator &= on pointer", .result = REJECT, }, { "map element value illegal alu op, 2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU32_IMM(BPF_ADD, BPF_REG_0, 0), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 32-bit pointer arithmetic prohibited", .result = REJECT, }, { "map element value illegal alu op, 3", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, 42), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 pointer arithmetic with /= operator", .result = REJECT, }, { "map element value illegal alu op, 4", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ENDIAN(BPF_FROM_BE, BPF_REG_0, 64), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "invalid mem access 'inv'", .result = REJECT, .result_unpriv = REJECT, }, { "map element value illegal alu op, 5", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_IMM(BPF_REG_3, 4096), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_STX_XADD(BPF_DW, BPF_REG_2, BPF_REG_3, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 invalid mem access 'inv'", .result = REJECT, }, { "map element value is preserved across register spilling", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, offsetof(struct test_val, foo)), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0), BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "helper access to variable memory: stack, bitwise AND + JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, bitwise AND, zero included", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "invalid indirect read from stack off -64+0 size 64", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, bitwise AND + JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 65), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=65", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP (signed), correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, bounds + offset", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 5), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=65", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 65, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=65", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, no max check", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, /* because max wasn't checked, signed min is negative */ .errstr = "R2 min value is negative, either use unsigned or 'var &= const'", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, no min check", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 3), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid indirect read from stack off -64+0 size 64", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP (signed), no min check", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 3), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R2 min value is negative", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map, JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val), 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map, JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val) + 1, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "invalid access to map value, value_size=48 off=0 size=49", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map adjusted, JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val) - 20, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map adjusted, JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val) - 19, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: size = 0 allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: size > 0 not allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .errstr = "R1 type=inv expected=fp", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: size = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: size = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: size possible = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: size possible = 0 allowed on != NULL packet pointer (ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 0 /* csum_diff of 64-byte packet */, }, { "helper access to variable memory: size = 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "R1 type=inv expected=fp", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: size > 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "R1 type=inv expected=fp", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: size = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: size = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: size possible = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: 8 bytes leak", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 63), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_EXIT_INSN(), }, .errstr = "invalid indirect read from stack off -64+32 size 64", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: 8 bytes no leak (init memory)", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 32), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 32), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "invalid and of negative number", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, -4), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 max value is outside of the array range", .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "invalid range check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 12), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_9, 1), BPF_ALU32_IMM(BPF_MOD, BPF_REG_1, 2), BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 1), BPF_ALU32_REG(BPF_AND, BPF_REG_9, BPF_REG_1), BPF_ALU32_IMM(BPF_ADD, BPF_REG_9, 1), BPF_ALU32_IMM(BPF_RSH, BPF_REG_9, 1), BPF_MOV32_IMM(BPF_REG_3, 1), BPF_ALU32_REG(BPF_SUB, BPF_REG_3, BPF_REG_9), BPF_ALU32_IMM(BPF_MUL, BPF_REG_3, 0x10000000), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3), BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_3, 0), BPF_MOV64_REG(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr = "R0 max value is outside of the array range", .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "map in map access", .insns = { BPF_ST_MEM(0, BPF_REG_10, -4, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_ST_MEM(0, BPF_REG_10, -4, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_in_map = { 3 }, .result = ACCEPT, }, { "invalid inner map pointer", .insns = { BPF_ST_MEM(0, BPF_REG_10, -4, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_ST_MEM(0, BPF_REG_10, -4, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_in_map = { 3 }, .errstr = "R1 pointer arithmetic on map_ptr prohibited", .result = REJECT, }, { "forgot null checking on the inner map pointer", .insns = { BPF_ST_MEM(0, BPF_REG_10, -4, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_ST_MEM(0, BPF_REG_10, -4, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_in_map = { 3 }, .errstr = "R1 type=map_value_or_null expected=map_ptr", .result = REJECT, }, { "ld_abs: check calling conv, r1", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_1, 0), BPF_LD_ABS(BPF_W, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .errstr = "R1 !read_ok", .result = REJECT, }, { "ld_abs: check calling conv, r2", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_LD_ABS(BPF_W, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr = "R2 !read_ok", .result = REJECT, }, { "ld_abs: check calling conv, r3", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_LD_ABS(BPF_W, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_3), BPF_EXIT_INSN(), }, .errstr = "R3 !read_ok", .result = REJECT, }, { "ld_abs: check calling conv, r4", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_LD_ABS(BPF_W, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_4), BPF_EXIT_INSN(), }, .errstr = "R4 !read_ok", .result = REJECT, }, { "ld_abs: check calling conv, r5", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_LD_ABS(BPF_W, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .errstr = "R5 !read_ok", .result = REJECT, }, { "ld_abs: check calling conv, r7", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_7, 0), BPF_LD_ABS(BPF_W, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "ld_abs: tests on r6 and skb data reload helper", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_6, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_vlan_push), BPF_MOV64_REG(BPF_REG_6, BPF_REG_7), BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_MOV64_IMM(BPF_REG_0, 42), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 42 /* ultimate return value */, }, { "ld_ind: check calling conv, r1", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_1, 1), BPF_LD_IND(BPF_W, BPF_REG_1, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .errstr = "R1 !read_ok", .result = REJECT, }, { "ld_ind: check calling conv, r2", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_LD_IND(BPF_W, BPF_REG_2, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr = "R2 !read_ok", .result = REJECT, }, { "ld_ind: check calling conv, r3", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_3, 1), BPF_LD_IND(BPF_W, BPF_REG_3, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_3), BPF_EXIT_INSN(), }, .errstr = "R3 !read_ok", .result = REJECT, }, { "ld_ind: check calling conv, r4", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_4, 1), BPF_LD_IND(BPF_W, BPF_REG_4, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_4), BPF_EXIT_INSN(), }, .errstr = "R4 !read_ok", .result = REJECT, }, { "ld_ind: check calling conv, r5", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_5, 1), BPF_LD_IND(BPF_W, BPF_REG_5, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .errstr = "R5 !read_ok", .result = REJECT, }, { "ld_ind: check calling conv, r7", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_7, 1), BPF_LD_IND(BPF_W, BPF_REG_7, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 1, }, { "check bpf_perf_event_data->sample_period byte load permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period)), #else BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period) + 7), #endif BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_PERF_EVENT, }, { "check bpf_perf_event_data->sample_period half load permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period)), #else BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period) + 6), #endif BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_PERF_EVENT, }, { "check bpf_perf_event_data->sample_period word load permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period)), #else BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period) + 4), #endif BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_PERF_EVENT, }, { "check bpf_perf_event_data->sample_period dword load permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period)), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_PERF_EVENT, }, { "check skb->data half load not permitted", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, data)), #else BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, data) + 2), #endif BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", }, { "check skb->tc_classid half load not permitted for lwt prog", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), #if __BYTE_ORDER == __LITTLE_ENDIAN BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), #else BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid) + 2), #endif BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "bounds checks mixing signed and unsigned, positive bounds", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 2), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 3), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 4, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 2", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5), BPF_MOV64_IMM(BPF_REG_8, 0), BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_1), BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8), BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 3", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 4), BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8), BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 4", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_ALU64_REG(BPF_AND, BPF_REG_1, BPF_REG_2), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, }, { "bounds checks mixing signed and unsigned, variant 5", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 4), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 6", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -512), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_6, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_6, 5), BPF_JMP_IMM(BPF_JSGT, BPF_REG_4, 1, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_ST_MEM(BPF_H, BPF_REG_10, -512, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R4 min value is negative, either use unsigned", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 7", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 1024 * 1024 * 1024), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, }, { "bounds checks mixing signed and unsigned, variant 8", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 9", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_LD_IMM64(BPF_REG_2, -9223372036854775808ULL), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, }, { "bounds checks mixing signed and unsigned, variant 10", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 11", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), /* Dead branch. */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 12", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -6), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 13", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 2), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_7, 1), BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_1), BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 4, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_7), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 14", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_MOV64_IMM(BPF_REG_8, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_9, 42, 6), BPF_JMP_REG(BPF_JSGT, BPF_REG_8, BPF_REG_1, 3), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, -3), BPF_JMP_IMM(BPF_JA, 0, 0, -7), }, .fixup_map_hash_8b = { 4 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 15", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -6), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_JMP_IMM(BPF_JGT, BPF_REG_0, 1, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "unbounded min value", .result = REJECT, .result_unpriv = REJECT, }, { "subtraction bounds (map value) variant 1", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 7), BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 5), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3), BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 56), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R0 max value is outside of the array range", .result = REJECT, }, { "subtraction bounds (map value) variant 2", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 6), BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 4), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.", .result = REJECT, }, { "bounds check based on zero-extended MOV", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), /* r2 = 0x0000'0000'ffff'ffff */ BPF_MOV32_IMM(BPF_REG_2, 0xffffffff), /* r2 = 0 */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32), /* no-op */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), /* access at offset 0 */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT }, { "bounds check based on sign-extended MOV. test1", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), /* r2 = 0xffff'ffff'ffff'ffff */ BPF_MOV64_IMM(BPF_REG_2, 0xffffffff), /* r2 = 0xffff'ffff */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32), /* r0 = <oob pointer> */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), /* access to OOB pointer */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "map_value pointer and 4294967295", .result = REJECT }, { "bounds check based on sign-extended MOV. test2", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), /* r2 = 0xffff'ffff'ffff'ffff */ BPF_MOV64_IMM(BPF_REG_2, 0xffffffff), /* r2 = 0xfff'ffff */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36), /* r0 = <oob pointer> */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), /* access to OOB pointer */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R0 min value is outside of the array range", .result = REJECT }, { "bounds check based on reg_off + var_off + insn_off. test1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 29) - 1), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .errstr = "value_size=8 off=1073741825", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "bounds check based on reg_off + var_off + insn_off. test2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 30) - 1), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 4 }, .errstr = "value 1073741823", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "bounds check after truncation of non-boundary-crossing range", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), /* r1 = [0x00, 0xff] */ BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_2, 1), /* r2 = 0x10'0000'0000 */ BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 36), /* r1 = [0x10'0000'0000, 0x10'0000'00ff] */ BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2), /* r1 = [0x10'7fff'ffff, 0x10'8000'00fe] */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), /* r1 = [0x00, 0xff] */ BPF_ALU32_IMM(BPF_SUB, BPF_REG_1, 0x7fffffff), /* r1 = 0 */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), /* no-op */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), /* access at offset 0 */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT }, { "bounds check after truncation of boundary-crossing range (1)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), /* r1 = [0x00, 0xff] */ BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), /* r1 = [0xffff'ff80, 0x1'0000'007f] */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), /* r1 = [0xffff'ff80, 0xffff'ffff] or * [0x0000'0000, 0x0000'007f] */ BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 0), BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), /* r1 = [0x00, 0xff] or * [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff] */ BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), /* r1 = 0 or * [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff] */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), /* no-op or OOB pointer computation */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), /* potentially OOB access */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, /* not actually fully unbounded, but the bound is very high */ .errstr = "R0 unbounded memory access", .result = REJECT }, { "bounds check after truncation of boundary-crossing range (2)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), /* r1 = [0x00, 0xff] */ BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), /* r1 = [0xffff'ff80, 0x1'0000'007f] */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), /* r1 = [0xffff'ff80, 0xffff'ffff] or * [0x0000'0000, 0x0000'007f] * difference to previous test: truncation via MOV32 * instead of ALU32. */ BPF_MOV32_REG(BPF_REG_1, BPF_REG_1), BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), /* r1 = [0x00, 0xff] or * [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff] */ BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), /* r1 = 0 or * [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff] */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), /* no-op or OOB pointer computation */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), /* potentially OOB access */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, /* not actually fully unbounded, but the bound is very high */ .errstr = "R0 unbounded memory access", .result = REJECT }, { "bounds check after wrapping 32-bit addition", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), /* r1 = 0x7fff'ffff */ BPF_MOV64_IMM(BPF_REG_1, 0x7fffffff), /* r1 = 0xffff'fffe */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), /* r1 = 0 */ BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 2), /* no-op */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), /* access at offset 0 */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT }, { "bounds check after shift with oversized count operand", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_IMM(BPF_REG_2, 32), BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = (u32)1 << (u32)32 = ? */ BPF_ALU32_REG(BPF_LSH, BPF_REG_1, BPF_REG_2), /* r1 = [0x0000, 0xffff] */ BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xffff), /* computes unknown pointer, potentially OOB */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), /* potentially OOB access */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R0 max value is outside of the array range", .result = REJECT }, { "bounds check after right shift of maybe-negative number", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), /* r1 = [0x00, 0xff] */ BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), /* r1 = [-0x01, 0xfe] */ BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 1), /* r1 = 0 or 0xff'ffff'ffff'ffff */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), /* r1 = 0 or 0xffff'ffff'ffff */ BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), /* computes unknown pointer, potentially OOB */ BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), /* potentially OOB access */ BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), /* exit */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R0 unbounded memory access", .result = REJECT }, { "bounds check map access with off+size signed 32bit overflow. test1", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7ffffffe), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), BPF_JMP_A(0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "map_value pointer and 2147483646", .result = REJECT }, { "bounds check map access with off+size signed 32bit overflow. test2", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), BPF_JMP_A(0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "pointer offset 1073741822", .result = REJECT }, { "bounds check map access with off+size signed 32bit overflow. test3", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff), BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2), BPF_JMP_A(0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "pointer offset -1073741822", .result = REJECT }, { "bounds check map access with off+size signed 32bit overflow. test4", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_1, 1000000), BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 1000000), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2), BPF_JMP_A(0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "map_value pointer and 1000000000000", .result = REJECT }, { "pointer/scalar confusion in state equality check (way 1)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), BPF_JMP_A(1), BPF_MOV64_REG(BPF_REG_0, BPF_REG_10), BPF_JMP_A(0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .retval = POINTER_VALUE, .result_unpriv = REJECT, .errstr_unpriv = "R0 leaks addr as return value" }, { "pointer/scalar confusion in state equality check (way 2)", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_REG(BPF_REG_0, BPF_REG_10), BPF_JMP_A(1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = ACCEPT, .retval = POINTER_VALUE, .result_unpriv = REJECT, .errstr_unpriv = "R0 leaks addr as return value" }, { "variable-offset ctx access", .insns = { /* Get an unknown value */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), /* Make it small and 4-byte aligned */ BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4), /* add it to skb. We now have either &skb->len or * &skb->pkt_type, but we don't know which */ BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2), /* dereference it */ BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .errstr = "variable ctx access var_off=(0x0; 0x4)", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "variable-offset stack access", .insns = { /* Fill the top 8 bytes of the stack */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), /* Get an unknown value */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), /* Make it small and 4-byte aligned */ BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4), BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8), /* add it to fp. We now have either fp-4 or fp-8, but * we don't know which */ BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10), /* dereference it */ BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0), BPF_EXIT_INSN(), }, .errstr = "variable stack access var_off=(0xfffffffffffffff8; 0x4)", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "indirect variable-offset stack access", .insns = { /* Fill the top 8 bytes of the stack */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), /* Get an unknown value */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), /* Make it small and 4-byte aligned */ BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4), BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8), /* add it to fp. We now have either fp-4 or fp-8, but * we don't know which */ BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10), /* dereference it indirectly */ BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 5 }, .errstr = "variable stack read R2", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "direct stack access with 32-bit wraparound. test1", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), BPF_MOV32_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_EXIT_INSN() }, .errstr = "fp pointer and 2147483647", .result = REJECT }, { "direct stack access with 32-bit wraparound. test2", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff), BPF_MOV32_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_EXIT_INSN() }, .errstr = "fp pointer and 1073741823", .result = REJECT }, { "direct stack access with 32-bit wraparound. test3", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff), BPF_MOV32_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), BPF_EXIT_INSN() }, .errstr = "fp pointer offset 1073741822", .result = REJECT }, { "liveness pruning and write screening", .insns = { /* Get an unknown value */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), /* branch conditions teach us nothing about R2 */ BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R0 !read_ok", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "varlen_map_value_access pruning", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES), BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 3 }, .errstr_unpriv = "R0 leaks addr", .errstr = "R0 unbounded memory access", .result_unpriv = REJECT, .result = REJECT, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "invalid 64-bit BPF_END", .insns = { BPF_MOV32_IMM(BPF_REG_0, 0), { .code = BPF_ALU64 | BPF_END | BPF_TO_LE, .dst_reg = BPF_REG_0, .src_reg = 0, .off = 0, .imm = 32, }, BPF_EXIT_INSN(), }, .errstr = "unknown opcode d7", .result = REJECT, }, { "XDP, using ifindex from netdev", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, ingress_ifindex)), BPF_JMP_IMM(BPF_JLT, BPF_REG_2, 1, 1), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .retval = 1, }, { "meta access, test1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 8), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet, off=-8", .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test4", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test5", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_4, 3), BPF_MOV64_IMM(BPF_REG_2, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_xdp_adjust_meta), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R3 !read_ok", .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test6", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_0, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test7", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test8", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test9", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test10", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_IMM(BPF_REG_5, 42), BPF_MOV64_IMM(BPF_REG_6, 24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8), BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8), BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6), BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_5), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_5, 1), BPF_LDX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test11", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_IMM(BPF_REG_5, 42), BPF_MOV64_IMM(BPF_REG_6, 24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8), BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8), BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_5), BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "meta access, test12", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 5), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0), BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "arithmetic ops make PTR_TO_CTX unusable", .insns = { BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct __sk_buff, data) - offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .errstr = "dereference of modified ctx ptr", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "pkt_end - pkt_start is allowed", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = TEST_DATA_LEN, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "XDP pkt read, pkt_end mangling, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R3 pointer arithmetic on pkt_end", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end mangling, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_ALU64_IMM(BPF_SUB, BPF_REG_3, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R3 pointer arithmetic on pkt_end", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' > pkt_end, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' > pkt_end, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data' > pkt_end, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end > pkt_data', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_end > pkt_data', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end > pkt_data', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' < pkt_end, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data' < pkt_end, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' < pkt_end, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end < pkt_data', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end < pkt_data', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_end < pkt_data', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' >= pkt_end, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data' >= pkt_end, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' >= pkt_end, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_end >= pkt_data', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end >= pkt_data', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_end >= pkt_data', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' <= pkt_end, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data' <= pkt_end, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data' <= pkt_end, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end <= pkt_data', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_end <= pkt_data', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_end <= pkt_data', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_meta' > pkt_data, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_meta' > pkt_data, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_meta' > pkt_data, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data > pkt_meta', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data > pkt_meta', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data > pkt_meta', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_meta' < pkt_data, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_meta' < pkt_data, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_meta' < pkt_data, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data < pkt_meta', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data < pkt_meta', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data < pkt_meta', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_meta' >= pkt_data, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_meta' >= pkt_data, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_meta' >= pkt_data, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data >= pkt_meta', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data >= pkt_meta', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data >= pkt_meta', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_meta' <= pkt_data, good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_meta' <= pkt_data, bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_meta' <= pkt_data, bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data <= pkt_meta', good access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "XDP pkt read, pkt_data <= pkt_meta', bad access 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "XDP pkt read, pkt_data <= pkt_meta', bad access 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data_meta)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R1 offset is outside of the packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS, }, { "check deducing bounds from const, 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 1, 0), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R0 tried to subtract pointer from scalar", }, { "check deducing bounds from const, 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 1, 1), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 1, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 1, }, { "check deducing bounds from const, 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 0), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R0 tried to subtract pointer from scalar", }, { "check deducing bounds from const, 4", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check deducing bounds from const, 5", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 1, 1), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R0 tried to subtract pointer from scalar", }, { "check deducing bounds from const, 6", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R0 tried to subtract pointer from scalar", }, { "check deducing bounds from const, 7", .insns = { BPF_MOV64_IMM(BPF_REG_0, ~0), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 0), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "dereference of modified ctx ptr", }, { "check deducing bounds from const, 8", .insns = { BPF_MOV64_IMM(BPF_REG_0, ~0), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "dereference of modified ctx ptr", }, { "check deducing bounds from const, 9", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 0), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R0 tried to subtract pointer from scalar", }, { "check deducing bounds from const, 10", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 0), /* Marks reg as unknown. */ BPF_ALU64_IMM(BPF_NEG, BPF_REG_0, 0), BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "math between ctx pointer and register with unbounded min value is not allowed", }, { "bpf_exit with invalid return code. test1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .errstr = "R0 has value (0x0; 0xffffffff)", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "bpf_exit with invalid return code. test2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "bpf_exit with invalid return code. test3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 3), BPF_EXIT_INSN(), }, .errstr = "R0 has value (0x0; 0x3)", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "bpf_exit with invalid return code. test4", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "bpf_exit with invalid return code. test5", .insns = { BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .errstr = "R0 has value (0x2; 0x0)", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "bpf_exit with invalid return code. test6", .insns = { BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .errstr = "R0 is not a known value (ctx)", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "bpf_exit with invalid return code. test7", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 4), BPF_ALU64_REG(BPF_MUL, BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr = "R0 has unknown scalar value", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "calls: basic sanity", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .result = ACCEPT, }, { "calls: not on unpriviledged", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .errstr_unpriv = "function calls to other bpf functions are allowed for root only", .result_unpriv = REJECT, .result = ACCEPT, .retval = 1, }, { "calls: div by 0 in subprog", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV32_IMM(BPF_REG_2, 0), BPF_MOV32_IMM(BPF_REG_3, 1), BPF_ALU32_REG(BPF_DIV, BPF_REG_3, BPF_REG_2), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "calls: multiple ret types in subprog 1", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_MOV32_IMM(BPF_REG_0, 42), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .errstr = "R0 invalid mem access 'inv'", }, { "calls: multiple ret types in subprog 2", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_6, offsetof(struct __sk_buff, data)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 64), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_hash_8b = { 16 }, .result = REJECT, .errstr = "R0 min value is outside of the array range", }, { "calls: overlapping caller/callee", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "last insn is not an exit or jmp", .result = REJECT, }, { "calls: wrong recursive calls", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, 4), BPF_JMP_IMM(BPF_JA, 0, 0, 4), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "jump out of range", .result = REJECT, }, { "calls: wrong src reg", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 2, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "BPF_CALL uses reserved fields", .result = REJECT, }, { "calls: wrong off value", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, -1, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "BPF_CALL uses reserved fields", .result = REJECT, }, { "calls: jump back loop", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -1), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "back-edge from insn 0 to 0", .result = REJECT, }, { "calls: conditional call", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "jump out of range", .result = REJECT, }, { "calls: conditional call 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .result = ACCEPT, }, { "calls: conditional call 3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_JMP_IMM(BPF_JA, 0, 0, 4), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_JMP_IMM(BPF_JA, 0, 0, -6), BPF_MOV64_IMM(BPF_REG_0, 3), BPF_JMP_IMM(BPF_JA, 0, 0, -6), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "back-edge from insn", .result = REJECT, }, { "calls: conditional call 4", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_JMP_IMM(BPF_JA, 0, 0, -5), BPF_MOV64_IMM(BPF_REG_0, 3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .result = ACCEPT, }, { "calls: conditional call 5", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_JMP_IMM(BPF_JA, 0, 0, -6), BPF_MOV64_IMM(BPF_REG_0, 3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "back-edge from insn", .result = REJECT, }, { "calls: conditional call 6", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -2), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "back-edge from insn", .result = REJECT, }, { "calls: using r0 returned by callee", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .result = ACCEPT, }, { "calls: using uninit r0 from callee", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "!read_ok", .result = REJECT, }, { "calls: callee is using r1", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_ACT, .result = ACCEPT, .retval = TEST_DATA_LEN, }, { "calls: callee using args1", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .errstr_unpriv = "allowed for root only", .result_unpriv = REJECT, .result = ACCEPT, .retval = POINTER_VALUE, }, { "calls: callee using wrong args2", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "R2 !read_ok", .result = REJECT, }, { "calls: callee using two args", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_6, offsetof(struct __sk_buff, len)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_6, offsetof(struct __sk_buff, len)), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr_unpriv = "allowed for root only", .result_unpriv = REJECT, .result = ACCEPT, .retval = TEST_DATA_LEN + TEST_DATA_LEN - ETH_HLEN - ETH_HLEN, }, { "calls: callee changing pkt pointers", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_8, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_8, BPF_REG_7, 2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), /* clear_all_pkt_pointers() has to walk all frames * to make sure that pkt pointers in the caller * are cleared when callee is calling a helper that * adjusts packet size */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_MOV32_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_xdp_adjust_head), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R6 invalid mem access 'inv'", .prog_type = BPF_PROG_TYPE_XDP, }, { "calls: two calls with args", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = TEST_DATA_LEN + TEST_DATA_LEN, }, { "calls: calls with stack arith", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64), BPF_MOV64_IMM(BPF_REG_0, 42), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 42, }, { "calls: calls with misaligned stack access", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -63), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -61), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -63), BPF_MOV64_IMM(BPF_REG_0, 42), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .flags = F_LOAD_WITH_STRICT_ALIGNMENT, .errstr = "misaligned stack access", .result = REJECT, }, { "calls: calls control flow, jump test", .insns = { BPF_MOV64_IMM(BPF_REG_0, 42), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 43), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_JMP_IMM(BPF_JA, 0, 0, -3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 43, }, { "calls: calls control flow, jump test 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 42), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 43), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "jump out of range from insn 1 to 4", .result = REJECT, }, { "calls: two calls with bad jump", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "jump out of range from insn 11 to 9", .result = REJECT, }, { "calls: recursive call. test1", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -1), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "back-edge", .result = REJECT, }, { "calls: recursive call. test2", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "back-edge", .result = REJECT, }, { "calls: unreachable code", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "unreachable insn 6", .result = REJECT, }, { "calls: invalid call", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -4), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "invalid destination", .result = REJECT, }, { "calls: invalid call 2", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 0x7fffffff), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "invalid destination", .result = REJECT, }, { "calls: jumping across function bodies. test1", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "jump out of range", .result = REJECT, }, { "calls: jumping across function bodies. test2", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "jump out of range", .result = REJECT, }, { "calls: call without exit", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -2), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "not an exit", .result = REJECT, }, { "calls: call into middle of ld_imm64", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_LD_IMM64(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "last insn", .result = REJECT, }, { "calls: call into middle of other call", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "last insn", .result = REJECT, }, { "calls: ld_abs with changing ctx data in callee", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5), BPF_MOV64_REG(BPF_REG_6, BPF_REG_7), BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_vlan_push), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "BPF_LD_[ABS|IND] instructions cannot be mixed", .result = REJECT, }, { "calls: two calls with bad fallthrough", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_MOV64_REG(BPF_REG_0, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_TRACEPOINT, .errstr = "not an exit", .result = REJECT, }, { "calls: two calls with stack read", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .result = ACCEPT, }, { "calls: two calls with stack write", .insns = { /* main prog */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 7), BPF_MOV64_REG(BPF_REG_8, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_8), /* write into stack frame of main prog */ BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 2 */ /* read from stack frame of main prog */ BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .result = ACCEPT, }, { "calls: stack overflow using two frames (pre-call access)", .insns = { /* prog 1 */ BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), /* prog 2 */ BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .errstr = "combined stack size", .result = REJECT, }, { "calls: stack overflow using two frames (post-call access)", .insns = { /* prog 1 */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 2), BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0), BPF_EXIT_INSN(), /* prog 2 */ BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .errstr = "combined stack size", .result = REJECT, }, { "calls: stack depth check using three frames. test1", .insns = { /* main */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 5), /* call B */ BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* A */ BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0), BPF_EXIT_INSN(), /* B */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -3), /* call A */ BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, /* stack_main=32, stack_A=256, stack_B=64 * and max(main+A, main+A+B) < 512 */ .result = ACCEPT, }, { "calls: stack depth check using three frames. test2", .insns = { /* main */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 5), /* call B */ BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* A */ BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0), BPF_EXIT_INSN(), /* B */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -3), /* call A */ BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, /* stack_main=32, stack_A=64, stack_B=256 * and max(main+A, main+A+B) < 512 */ .result = ACCEPT, }, { "calls: stack depth check using three frames. test3", .insns = { /* main */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 6), /* call A */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 8), /* call B */ BPF_JMP_IMM(BPF_JGE, BPF_REG_6, 0, 1), BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* A */ BPF_JMP_IMM(BPF_JLT, BPF_REG_1, 10, 1), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_B, BPF_REG_10, -224, 0), BPF_JMP_IMM(BPF_JA, 0, 0, -3), /* B */ BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 2, 1), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -6), /* call A */ BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, /* stack_main=64, stack_A=224, stack_B=256 * and max(main+A, main+A+B) > 512 */ .errstr = "combined stack", .result = REJECT, }, { "calls: stack depth check using three frames. test4", /* void main(void) { * func1(0); * func1(1); * func2(1); * } * void func1(int alloc_or_recurse) { * if (alloc_or_recurse) { * frame_pointer[-300] = 1; * } else { * func2(alloc_or_recurse); * } * } * void func2(int alloc_or_recurse) { * if (alloc_or_recurse) { * frame_pointer[-300] = 1; * } * } */ .insns = { /* main */ BPF_MOV64_IMM(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 6), /* call A */ BPF_MOV64_IMM(BPF_REG_1, 1), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */ BPF_MOV64_IMM(BPF_REG_1, 1), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 7), /* call B */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* A */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2), BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0), BPF_EXIT_INSN(), BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call B */ BPF_EXIT_INSN(), /* B */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .result = REJECT, .errstr = "combined stack", }, { "calls: stack depth check using three frames. test5", .insns = { /* main */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call A */ BPF_EXIT_INSN(), /* A */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call B */ BPF_EXIT_INSN(), /* B */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call C */ BPF_EXIT_INSN(), /* C */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call D */ BPF_EXIT_INSN(), /* D */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call E */ BPF_EXIT_INSN(), /* E */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call F */ BPF_EXIT_INSN(), /* F */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call G */ BPF_EXIT_INSN(), /* G */ BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call H */ BPF_EXIT_INSN(), /* H */ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .errstr = "call stack", .result = REJECT, }, { "calls: spill into caller stack frame", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .errstr = "cannot spill", .result = REJECT, }, { "calls: write into caller stack frame", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .result = ACCEPT, .retval = 42, }, { "calls: write into callee stack frame", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_0, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, -8), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_XDP, .errstr = "cannot return stack pointer", .result = REJECT, }, { "calls: two calls with stack write and void return", .insns = { /* main prog */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), /* subprog 2 */ /* write into stack frame of main prog */ BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 0), BPF_EXIT_INSN(), /* void return */ }, .prog_type = BPF_PROG_TYPE_XDP, .result = ACCEPT, }, { "calls: ambiguous return value", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "allowed for root only", .result_unpriv = REJECT, .errstr = "R0 !read_ok", .result = REJECT, }, { "calls: two calls that return map_value", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), /* fetch secound map_value_ptr from the stack */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ /* call 3rd function twice */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* first time with fp-8 */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), /* second time with fp-16 */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), /* subprog 2 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), /* write map_value_ptr into stack frame of main prog */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* return 0 */ }, .prog_type = BPF_PROG_TYPE_XDP, .fixup_map_hash_8b = { 23 }, .result = ACCEPT, }, { "calls: two calls that return map_value with bool condition", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ /* call 3rd function twice */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* first time with fp-8 */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), /* second time with fp-16 */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2), /* fetch secound map_value_ptr from the stack */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), /* subprog 2 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* return 0 */ /* write map_value_ptr into stack frame of main prog */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), /* return 1 */ }, .prog_type = BPF_PROG_TYPE_XDP, .fixup_map_hash_8b = { 23 }, .result = ACCEPT, }, { "calls: two calls that return map_value with incorrect bool check", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ /* call 3rd function twice */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* first time with fp-8 */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), /* second time with fp-16 */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), /* fetch secound map_value_ptr from the stack */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), /* subprog 2 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* return 0 */ /* write map_value_ptr into stack frame of main prog */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), /* return 1 */ }, .prog_type = BPF_PROG_TYPE_XDP, .fixup_map_hash_8b = { 23 }, .result = REJECT, .errstr = "invalid read from stack off -16+0 size 8", }, { "calls: two calls that receive map_value via arg=ptr_stack_of_caller. test1", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* 1st lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* write map_value_ptr into stack frame of main prog at fp-8 */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_8, 1), /* 2nd lookup from map */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */ BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_9, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* write map_value_ptr into stack frame of main prog at fp-16 */ BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_9, 1), /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_7), BPF_MOV64_REG(BPF_REG_4, BPF_REG_9), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */ BPF_EXIT_INSN(), /* subprog 2 */ /* if arg2 == 1 do *arg1 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), /* if arg4 == 1 do *arg3 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_hash_8b = { 12, 22 }, .result = REJECT, .errstr = "invalid access to map value, value_size=8 off=2 size=8", }, { "calls: two calls that receive map_value via arg=ptr_stack_of_caller. test2", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* 1st lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* write map_value_ptr into stack frame of main prog at fp-8 */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_8, 1), /* 2nd lookup from map */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */ BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_9, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* write map_value_ptr into stack frame of main prog at fp-16 */ BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_9, 1), /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_7), BPF_MOV64_REG(BPF_REG_4, BPF_REG_9), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */ BPF_EXIT_INSN(), /* subprog 2 */ /* if arg2 == 1 do *arg1 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), /* if arg4 == 1 do *arg3 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_hash_8b = { 12, 22 }, .result = ACCEPT, }, { "calls: two jumps that receive map_value via arg=ptr_stack_of_jumper. test3", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* 1st lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -24, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* write map_value_ptr into stack frame of main prog at fp-8 */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_8, 1), /* 2nd lookup from map */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_9, 0), // 26 BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* write map_value_ptr into stack frame of main prog at fp-16 */ BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_9, 1), /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), // 30 BPF_MOV64_REG(BPF_REG_2, BPF_REG_8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_7), BPF_MOV64_REG(BPF_REG_4, BPF_REG_9), BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), // 34 BPF_JMP_IMM(BPF_JA, 0, 0, -30), /* subprog 2 */ /* if arg2 == 1 do *arg1 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), /* if arg4 == 1 do *arg3 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0), BPF_JMP_IMM(BPF_JA, 0, 0, -8), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_hash_8b = { 12, 22 }, .result = REJECT, .errstr = "invalid access to map value, value_size=8 off=2 size=8", }, { "calls: two calls that receive map_value_ptr_or_null via arg. test1", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* 1st lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), /* write map_value_ptr_or_null into stack frame of main prog at fp-8 */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_MOV64_IMM(BPF_REG_8, 1), /* 2nd lookup from map */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), /* write map_value_ptr_or_null into stack frame of main prog at fp-16 */ BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_9, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_MOV64_IMM(BPF_REG_9, 1), /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_REG(BPF_REG_2, BPF_REG_8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_7), BPF_MOV64_REG(BPF_REG_4, BPF_REG_9), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), /* subprog 2 */ /* if arg2 == 1 do *arg1 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), /* if arg4 == 1 do *arg3 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_hash_8b = { 12, 22 }, .result = ACCEPT, }, { "calls: two calls that receive map_value_ptr_or_null via arg. test2", .insns = { /* main prog */ /* pass fp-16, fp-8 into a function */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), /* 1st lookup from map */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), /* write map_value_ptr_or_null into stack frame of main prog at fp-8 */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_MOV64_IMM(BPF_REG_8, 1), /* 2nd lookup from map */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), /* write map_value_ptr_or_null into stack frame of main prog at fp-16 */ BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV64_IMM(BPF_REG_9, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_MOV64_IMM(BPF_REG_9, 1), /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_REG(BPF_REG_2, BPF_REG_8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_7), BPF_MOV64_REG(BPF_REG_4, BPF_REG_9), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), /* subprog 2 */ /* if arg2 == 1 do *arg1 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), /* if arg4 == 0 do *arg3 = 0 */ BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 0, 2), /* fetch map_value_ptr from the stack of this function */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0), /* write into map value */ BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_hash_8b = { 12, 22 }, .result = REJECT, .errstr = "R0 invalid mem access 'inv'", }, { "calls: pkt_ptr spill into caller stack", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), /* spill unchecked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2), /* now the pkt range is verified, read pkt_ptr from stack */ BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0), /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = POINTER_VALUE, }, { "calls: pkt_ptr spill into caller stack 2", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), /* Marking is still kept, but not in all cases safe. */ BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), /* spill unchecked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2), /* now the pkt range is verified, read pkt_ptr from stack */ BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0), /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "invalid access to packet", .result = REJECT, }, { "calls: pkt_ptr spill into caller stack 3", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), /* Marking is still kept and safe here. */ BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), /* spill unchecked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3), BPF_MOV64_IMM(BPF_REG_5, 1), /* now the pkt range is verified, read pkt_ptr from stack */ BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0), /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "calls: pkt_ptr spill into caller stack 4", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), /* Check marking propagated. */ BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), /* spill unchecked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_5, 1), /* don't read back pkt_ptr from stack here */ /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "calls: pkt_ptr spill into caller stack 5", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3), /* spill checked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_5, 1), /* don't read back pkt_ptr from stack here */ /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "same insn cannot be used with different", .result = REJECT, }, { "calls: pkt_ptr spill into caller stack 6", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3), /* spill checked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_5, 1), /* don't read back pkt_ptr from stack here */ /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "R4 invalid mem access", .result = REJECT, }, { "calls: pkt_ptr spill into caller stack 7", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3), /* spill checked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_5, 1), /* don't read back pkt_ptr from stack here */ /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "R4 invalid mem access", .result = REJECT, }, { "calls: pkt_ptr spill into caller stack 8", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3), /* spill checked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_5, 1), /* don't read back pkt_ptr from stack here */ /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "calls: pkt_ptr spill into caller stack 9", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_MOV64_IMM(BPF_REG_5, 0), /* spill unchecked pkt_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_5, 1), /* don't read back pkt_ptr from stack here */ /* write 4 bytes into packet */ BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_MOV64_REG(BPF_REG_0, BPF_REG_5), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "invalid access to packet", .result = REJECT, }, { "calls: caller stack init to zero or map_value_or_null", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), /* fetch map_value_or_null or const_zero from stack */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), /* store into map_value */ BPF_ST_MEM(BPF_W, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), /* subprog 1 */ /* if (ctx == 0) return; */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 8), /* else bpf_map_lookup() and *(fp - 8) = r0 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), /* write map_value_ptr_or_null into stack frame of main prog at fp-8 */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 13 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "calls: stack init to zero and pruning", .insns = { /* first make allocated_stack 16 byte */ BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, 0), /* now fork the execution such that the false branch * of JGT insn will be verified second and it skisp zero * init of fp-8 stack slot. If stack liveness marking * is missing live_read marks from call map_lookup * processing then pruning will incorrectly assume * that fp-8 stack slot was unused in the fall-through * branch and will accept the program incorrectly */ BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 2, 2), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 6 }, .errstr = "invalid indirect read from stack off -8+0 size 8", .result = REJECT, .prog_type = BPF_PROG_TYPE_XDP, }, { "calls: two calls returning different map pointers for lookup (hash, array)", .insns = { /* main prog */ BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2), BPF_CALL_REL(11), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_CALL_REL(12), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LD_MAP_FD(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 2 */ BPF_LD_MAP_FD(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_hash_48b = { 13 }, .fixup_map_array_48b = { 16 }, .result = ACCEPT, .retval = 1, }, { "calls: two calls returning different map pointers for lookup (hash, map in map)", .insns = { /* main prog */ BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2), BPF_CALL_REL(11), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_CALL_REL(12), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), /* subprog 1 */ BPF_LD_MAP_FD(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 2 */ BPF_LD_MAP_FD(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .fixup_map_in_map = { 16 }, .fixup_map_array_48b = { 13 }, .result = REJECT, .errstr = "R0 invalid mem access 'map_ptr'", }, { "cond: two branches returning different map pointers for lookup (tail, tail)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JNE, BPF_REG_6, 0, 3), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_prog1 = { 5 }, .fixup_prog2 = { 2 }, .result_unpriv = REJECT, .errstr_unpriv = "tail_call abusing map_ptr", .result = ACCEPT, .retval = 42, }, { "cond: two branches returning same map pointers for lookup (tail, tail)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 3), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .fixup_prog2 = { 2, 5 }, .result_unpriv = ACCEPT, .result = ACCEPT, .retval = 42, }, { "search pruning: all branches should be verified (nop operation)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0xbeef, 2), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_A(1), BPF_MOV64_IMM(BPF_REG_4, 1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -16), BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -16), BPF_JMP_IMM(BPF_JEQ, BPF_REG_5, 0, 2), BPF_MOV64_IMM(BPF_REG_6, 0), BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xdead), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "R6 invalid mem access 'inv'", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "search pruning: all branches should be verified (invalid stack access)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0xbeef, 2), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -16), BPF_JMP_A(1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -24), BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -16), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .errstr = "invalid read from stack off -16+0 size 8", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "jit: lsh, rsh, arsh by 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_MOV64_IMM(BPF_REG_1, 0xff), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 1), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0x3fc, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 1), BPF_ALU32_IMM(BPF_RSH, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0xff, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_ARSH, BPF_REG_1, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0x7f, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 2, }, { "jit: mov32 for ldimm64, 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 2), BPF_LD_IMM64(BPF_REG_1, 0xfeffffffffffffffULL), BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32), BPF_LD_IMM64(BPF_REG_2, 0xfeffffffULL), BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 2, }, { "jit: mov32 for ldimm64, 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_LD_IMM64(BPF_REG_1, 0x1ffffffffULL), BPF_LD_IMM64(BPF_REG_2, 0xffffffffULL), BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 2, }, { "jit: various mul tests", .insns = { BPF_LD_IMM64(BPF_REG_2, 0xeeff0d413122ULL), BPF_LD_IMM64(BPF_REG_0, 0xfefefeULL), BPF_LD_IMM64(BPF_REG_1, 0xefefefULL), BPF_ALU64_REG(BPF_MUL, BPF_REG_0, BPF_REG_1), BPF_JMP_REG(BPF_JEQ, BPF_REG_0, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LD_IMM64(BPF_REG_3, 0xfefefeULL), BPF_ALU64_REG(BPF_MUL, BPF_REG_3, BPF_REG_1), BPF_JMP_REG(BPF_JEQ, BPF_REG_3, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV32_REG(BPF_REG_2, BPF_REG_2), BPF_LD_IMM64(BPF_REG_0, 0xfefefeULL), BPF_ALU32_REG(BPF_MUL, BPF_REG_0, BPF_REG_1), BPF_JMP_REG(BPF_JEQ, BPF_REG_0, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LD_IMM64(BPF_REG_3, 0xfefefeULL), BPF_ALU32_REG(BPF_MUL, BPF_REG_3, BPF_REG_1), BPF_JMP_REG(BPF_JEQ, BPF_REG_3, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LD_IMM64(BPF_REG_0, 0x952a7bbcULL), BPF_LD_IMM64(BPF_REG_1, 0xfefefeULL), BPF_LD_IMM64(BPF_REG_2, 0xeeff0d413122ULL), BPF_ALU32_REG(BPF_MUL, BPF_REG_2, BPF_REG_1), BPF_JMP_REG(BPF_JEQ, BPF_REG_2, BPF_REG_0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .result = ACCEPT, .retval = 2, }, { "xadd/w check unaligned stack", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_STX_XADD(BPF_W, BPF_REG_10, BPF_REG_0, -7), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "misaligned stack access off", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "xadd/w check unaligned map", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_1, 1), BPF_STX_XADD(BPF_W, BPF_REG_0, BPF_REG_1, 3), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 3), BPF_EXIT_INSN(), }, .fixup_map_hash_8b = { 3 }, .result = REJECT, .errstr = "misaligned value access off", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "xadd/w check unaligned pkt", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 99), BPF_JMP_IMM(BPF_JA, 0, 0, 6), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0), BPF_ST_MEM(BPF_W, BPF_REG_2, 3, 0), BPF_STX_XADD(BPF_W, BPF_REG_2, BPF_REG_0, 1), BPF_STX_XADD(BPF_W, BPF_REG_2, BPF_REG_0, 2), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 1), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "BPF_XADD stores into R2 pkt is not allowed", .prog_type = BPF_PROG_TYPE_XDP, }, { "xadd/w check whether src/dst got mangled, 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_MOV64_REG(BPF_REG_7, BPF_REG_10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_JMP_REG(BPF_JNE, BPF_REG_6, BPF_REG_0, 3), BPF_JMP_REG(BPF_JNE, BPF_REG_7, BPF_REG_10, 2), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 42), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 3, }, { "xadd/w check whether src/dst got mangled, 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_MOV64_REG(BPF_REG_7, BPF_REG_10), BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -8), BPF_STX_XADD(BPF_W, BPF_REG_10, BPF_REG_0, -8), BPF_STX_XADD(BPF_W, BPF_REG_10, BPF_REG_0, -8), BPF_JMP_REG(BPF_JNE, BPF_REG_6, BPF_REG_0, 3), BPF_JMP_REG(BPF_JNE, BPF_REG_7, BPF_REG_10, 2), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 42), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = 3, }, { "bpf_get_stack return R0 within range", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 28), BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_9, sizeof(struct test_val)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_MOV64_IMM(BPF_REG_3, sizeof(struct test_val)), BPF_MOV64_IMM(BPF_REG_4, 256), BPF_EMIT_CALL(BPF_FUNC_get_stack), BPF_MOV64_IMM(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_8, BPF_REG_0), BPF_ALU64_IMM(BPF_LSH, BPF_REG_8, 32), BPF_ALU64_IMM(BPF_ARSH, BPF_REG_8, 32), BPF_JMP_REG(BPF_JSLT, BPF_REG_1, BPF_REG_8, 16), BPF_ALU64_REG(BPF_SUB, BPF_REG_9, BPF_REG_8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_8), BPF_MOV64_REG(BPF_REG_1, BPF_REG_9), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 32), BPF_ALU64_IMM(BPF_ARSH, BPF_REG_1, 32), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_MOV64_IMM(BPF_REG_5, sizeof(struct test_val)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_5), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_REG(BPF_REG_3, BPF_REG_9), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_EMIT_CALL(BPF_FUNC_get_stack), BPF_EXIT_INSN(), }, .fixup_map_hash_48b = { 4 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "ld_abs: invalid op 1", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_LD_ABS(BPF_DW, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .errstr = "unknown opcode", }, { "ld_abs: invalid op 2", .insns = { BPF_MOV32_IMM(BPF_REG_0, 256), BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_LD_IND(BPF_DW, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .errstr = "unknown opcode", }, { "ld_abs: nmap reduced", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_LD_ABS(BPF_H, 12), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x806, 28), BPF_LD_ABS(BPF_H, 12), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x806, 26), BPF_MOV32_IMM(BPF_REG_0, 18), BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -64), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -64), BPF_LD_IND(BPF_W, BPF_REG_7, 14), BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -60), BPF_MOV32_IMM(BPF_REG_0, 280971478), BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -56), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -56), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -60), BPF_ALU32_REG(BPF_SUB, BPF_REG_0, BPF_REG_7), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 15), BPF_LD_ABS(BPF_H, 12), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x806, 13), BPF_MOV32_IMM(BPF_REG_0, 22), BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -56), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -56), BPF_LD_IND(BPF_H, BPF_REG_7, 14), BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -52), BPF_MOV32_IMM(BPF_REG_0, 17366), BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -48), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -48), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -52), BPF_ALU32_REG(BPF_SUB, BPF_REG_0, BPF_REG_7), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), BPF_MOV32_IMM(BPF_REG_0, 256), BPF_EXIT_INSN(), BPF_MOV32_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .data = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0x06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6, }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 256, }, { "ld_abs: div + abs, test 1", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_LD_ABS(BPF_B, 3), BPF_ALU64_IMM(BPF_MOV, BPF_REG_2, 2), BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_2), BPF_ALU64_REG(BPF_MOV, BPF_REG_8, BPF_REG_0), BPF_LD_ABS(BPF_B, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0), BPF_LD_IND(BPF_B, BPF_REG_8, -70), BPF_EXIT_INSN(), }, .data = { 10, 20, 30, 40, 50, }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 10, }, { "ld_abs: div + abs, test 2", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_LD_ABS(BPF_B, 3), BPF_ALU64_IMM(BPF_MOV, BPF_REG_2, 2), BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_2), BPF_ALU64_REG(BPF_MOV, BPF_REG_8, BPF_REG_0), BPF_LD_ABS(BPF_B, 128), BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0), BPF_LD_IND(BPF_B, BPF_REG_8, -70), BPF_EXIT_INSN(), }, .data = { 10, 20, 30, 40, 50, }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "ld_abs: div + abs, test 3", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_ALU64_IMM(BPF_MOV, BPF_REG_7, 0), BPF_LD_ABS(BPF_B, 3), BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), }, .data = { 10, 20, 30, 40, 50, }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "ld_abs: div + abs, test 4", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_ALU64_IMM(BPF_MOV, BPF_REG_7, 0), BPF_LD_ABS(BPF_B, 256), BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), }, .data = { 10, 20, 30, 40, 50, }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0, }, { "ld_abs: vlan + abs, test 1", .insns = { }, .data = { 0x34, }, .fill_helper = bpf_fill_ld_abs_vlan_push_pop, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 0xbef, }, { "ld_abs: vlan + abs, test 2", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_6, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_vlan_push), BPF_MOV64_REG(BPF_REG_6, BPF_REG_7), BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_MOV64_IMM(BPF_REG_0, 42), BPF_EXIT_INSN(), }, .data = { 0x34, }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 42, }, { "ld_abs: jump around ld_abs", .insns = { }, .data = { 10, 11, }, .fill_helper = bpf_fill_jump_around_ld_abs, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 10, }, { "ld_dw: xor semi-random 64 bit imms, test 1", .insns = { }, .data = { }, .fill_helper = bpf_fill_rand_ld_dw, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 4090, }, { "ld_dw: xor semi-random 64 bit imms, test 2", .insns = { }, .data = { }, .fill_helper = bpf_fill_rand_ld_dw, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 2047, }, { "ld_dw: xor semi-random 64 bit imms, test 3", .insns = { }, .data = { }, .fill_helper = bpf_fill_rand_ld_dw, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 511, }, { "ld_dw: xor semi-random 64 bit imms, test 4", .insns = { }, .data = { }, .fill_helper = bpf_fill_rand_ld_dw, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 5, }, { "pass unmodified ctx pointer to helper", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_update), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: leak potential reference", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), /* leak reference */ BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking: leak potential reference on stack", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking: leak potential reference on stack 2", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking: zero potential reference", .insns = { BPF_SK_LOOKUP, BPF_MOV64_IMM(BPF_REG_0, 0), /* leak reference */ BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking: copy and zero potential references", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_7, 0), /* leak reference */ BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking: release reference without check", .insns = { BPF_SK_LOOKUP, /* reference in r0 may be NULL */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "type=sock_or_null expected=sock", .result = REJECT, }, { "reference tracking: release reference", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: release reference 2", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: release reference twice", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "type=inv expected=sock", .result = REJECT, }, { "reference tracking: release reference twice inside branch", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), /* goto end */ BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "type=inv expected=sock", .result = REJECT, }, { "reference tracking: alloc, check, free in one subbranch", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 16), /* if (offsetof(skb, mark) > data_len) exit; */ BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_2, offsetof(struct __sk_buff, mark)), BPF_SK_LOOKUP, BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 1), /* mark == 0? */ /* Leak reference in R0 */ BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), /* sk NULL? */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking: alloc, check, free in both subbranches", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 16), /* if (offsetof(skb, mark) > data_len) exit; */ BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_2, offsetof(struct __sk_buff, mark)), BPF_SK_LOOKUP, BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 4), /* mark == 0? */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), /* sk NULL? */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), /* sk NULL? */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking in call: free reference in subprog", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), /* unchecked reference */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "pass modified ctx pointer to helper, 1", .insns = { BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -612), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_update), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .errstr = "dereference of modified ctx ptr", }, { "pass modified ctx pointer to helper, 2", .insns = { BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -612), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_socket_cookie), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result_unpriv = REJECT, .result = REJECT, .errstr_unpriv = "dereference of modified ctx ptr", .errstr = "dereference of modified ctx ptr", }, { "pass modified ctx pointer to helper, 3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_3, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_update), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .errstr = "variable ctx access var_off=(0x0; 0x4)", }, { "mov64 src == dst", .insns = { BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_2), // Check bounds are OK BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "mov64 src != dst", .insns = { BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_3), // Check bounds are OK BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking in call: free reference in subprog and outside", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), /* unchecked reference */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_2, BPF_REG_1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "type=inv expected=sock", .result = REJECT, }, { "reference tracking in call: alloc & leak reference in subprog", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_4), BPF_SK_LOOKUP, /* spill unchecked sk_ptr into stack of caller */ BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking in call: alloc in subprog, release outside", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), /* subprog 1 */ BPF_SK_LOOKUP, BPF_EXIT_INSN(), /* return sk */ }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .retval = POINTER_VALUE, .result = ACCEPT, }, { "reference tracking in call: sk_ptr leak into caller stack", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, -8), BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5), /* spill unchecked sk_ptr into stack of caller */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_5, 0), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 2 */ BPF_SK_LOOKUP, BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "Unreleased reference", .result = REJECT, }, { "reference tracking in call: sk_ptr spill into caller stack", .insns = { BPF_MOV64_REG(BPF_REG_4, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), /* subprog 1 */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, -8), BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8), /* spill unchecked sk_ptr into stack of caller */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_5, 0), BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), /* now the sk_ptr is verified, free the reference */ BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_4, 0), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), /* subprog 2 */ BPF_SK_LOOKUP, BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: allow LD_ABS", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: forbid LD_ABS while holding reference", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_SK_LOOKUP, BPF_LD_ABS(BPF_B, 0), BPF_LD_ABS(BPF_H, 0), BPF_LD_ABS(BPF_W, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "BPF_LD_[ABS|IND] cannot be mixed with socket references", .result = REJECT, }, { "reference tracking: allow LD_IND", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_MOV64_IMM(BPF_REG_7, 1), BPF_LD_IND(BPF_W, BPF_REG_7, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, .retval = 1, }, { "reference tracking: forbid LD_IND while holding reference", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_7, 1), BPF_LD_IND(BPF_W, BPF_REG_7, -0x200000), BPF_MOV64_REG(BPF_REG_0, BPF_REG_7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "BPF_LD_[ABS|IND] cannot be mixed with socket references", .result = REJECT, }, { "reference tracking: check reference or tail call", .insns = { BPF_MOV64_REG(BPF_REG_7, BPF_REG_1), BPF_SK_LOOKUP, /* if (sk) bpf_sk_release() */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 7), /* bpf_tail_call() */ BPF_MOV64_IMM(BPF_REG_3, 2), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .fixup_prog1 = { 17 }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: release reference then tail call", .insns = { BPF_MOV64_REG(BPF_REG_7, BPF_REG_1), BPF_SK_LOOKUP, /* if (sk) bpf_sk_release() */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), /* bpf_tail_call() */ BPF_MOV64_IMM(BPF_REG_3, 2), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_prog1 = { 18 }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: leak possible reference over tail call", .insns = { BPF_MOV64_REG(BPF_REG_7, BPF_REG_1), /* Look up socket and store in REG_6 */ BPF_SK_LOOKUP, /* bpf_tail_call() */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, 2), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 0), /* if (sk) bpf_sk_release() */ BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .fixup_prog1 = { 16 }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "tail_call would lead to reference leak", .result = REJECT, }, { "reference tracking: leak checked reference over tail call", .insns = { BPF_MOV64_REG(BPF_REG_7, BPF_REG_1), /* Look up socket and store in REG_6 */ BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), /* if (!sk) goto end */ BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), /* bpf_tail_call() */ BPF_MOV64_IMM(BPF_REG_3, 0), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .fixup_prog1 = { 17 }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "tail_call would lead to reference leak", .result = REJECT, }, { "reference tracking: mangle and release sock_or_null", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 5), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "R1 pointer arithmetic on sock_or_null prohibited", .result = REJECT, }, { "reference tracking: mangle and release sock", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 5), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "R1 pointer arithmetic on sock prohibited", .result = REJECT, }, { "reference tracking: access member", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "reference tracking: write to member", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_LD_IMM64(BPF_REG_2, 42), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_2, offsetof(struct bpf_sock, mark)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_LD_IMM64(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "cannot write into socket", .result = REJECT, }, { "reference tracking: invalid 64-bit access of member", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "invalid bpf_sock access off=0 size=8", .result = REJECT, }, { "reference tracking: access after release", .insns = { BPF_SK_LOOKUP, BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .errstr = "!read_ok", .result = REJECT, }, { "reference tracking: direct access for lookup", .insns = { /* Check that the packet is at least 64B long */ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 64), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 9), /* sk = sk_lookup_tcp(ctx, skb->data, ...) */ BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_sk_lookup_tcp), BPF_MOV64_REG(BPF_REG_6, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_EMIT_CALL(BPF_FUNC_sk_release), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = ACCEPT, }, { "calls: ctx read at start of subprog", .insns = { BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5), BPF_JMP_REG(BPF_JSGT, BPF_REG_0, BPF_REG_0, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_9, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SOCKET_FILTER, .errstr_unpriv = "function calls to other bpf functions are allowed for root only", .result_unpriv = REJECT, .result = ACCEPT, }, { "calls: cross frame pruning", .insns = { /* r8 = !!random(); * call pruner() * if (r8) * do something bad; */ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_prandom_u32), BPF_MOV64_IMM(BPF_REG_8, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_MOV64_IMM(BPF_REG_8, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_8, 1, 1), BPF_LDX_MEM(BPF_B, BPF_REG_9, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SOCKET_FILTER, .errstr_unpriv = "function calls to other bpf functions are allowed for root only", .result_unpriv = REJECT, .errstr = "!read_ok", .result = REJECT, }, }; static int probe_filter_length(const struct bpf_insn *fp) { int len; for (len = MAX_INSNS - 1; len > 0; --len) if (fp[len].code != 0 || fp[len].imm != 0) break; return len + 1; } static int create_map(uint32_t type, uint32_t size_key, uint32_t size_value, uint32_t max_elem) { int fd; fd = bpf_create_map(type, size_key, size_value, max_elem, type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0); if (fd < 0) printf("Failed to create hash map '%s'!\n", strerror(errno)); return fd; } static int create_prog_dummy1(enum bpf_prog_type prog_type) { struct bpf_insn prog[] = { BPF_MOV64_IMM(BPF_REG_0, 42), BPF_EXIT_INSN(), }; return bpf_load_program(prog_type, prog, ARRAY_SIZE(prog), "GPL", 0, NULL, 0); } static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx) { struct bpf_insn prog[] = { BPF_MOV64_IMM(BPF_REG_3, idx), BPF_LD_MAP_FD(BPF_REG_2, mfd), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 41), BPF_EXIT_INSN(), }; return bpf_load_program(prog_type, prog, ARRAY_SIZE(prog), "GPL", 0, NULL, 0); } static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, int p1key) { int p2key = 1; int mfd, p1fd, p2fd; mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), sizeof(int), max_elem, 0); if (mfd < 0) { printf("Failed to create prog array '%s'!\n", strerror(errno)); return -1; } p1fd = create_prog_dummy1(prog_type); p2fd = create_prog_dummy2(prog_type, mfd, p2key); if (p1fd < 0 || p2fd < 0) goto out; if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) goto out; if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) goto out; close(p2fd); close(p1fd); return mfd; out: close(p2fd); close(p1fd); close(mfd); return -1; } static int create_map_in_map(void) { int inner_map_fd, outer_map_fd; inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), sizeof(int), 1, 0); if (inner_map_fd < 0) { printf("Failed to create array '%s'!\n", strerror(errno)); return inner_map_fd; } outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, sizeof(int), inner_map_fd, 1, 0); if (outer_map_fd < 0) printf("Failed to create array of maps '%s'!\n", strerror(errno)); close(inner_map_fd); return outer_map_fd; } static int create_cgroup_storage(bool percpu) { enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : BPF_MAP_TYPE_CGROUP_STORAGE; int fd; fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), TEST_DATA_LEN, 0, 0); if (fd < 0) printf("Failed to create cgroup storage '%s'!\n", strerror(errno)); return fd; } static char bpf_vlog[UINT_MAX >> 8]; static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, struct bpf_insn *prog, int *map_fds) { int *fixup_map_hash_8b = test->fixup_map_hash_8b; int *fixup_map_hash_48b = test->fixup_map_hash_48b; int *fixup_map_hash_16b = test->fixup_map_hash_16b; int *fixup_map_array_48b = test->fixup_map_array_48b; int *fixup_map_sockmap = test->fixup_map_sockmap; int *fixup_map_sockhash = test->fixup_map_sockhash; int *fixup_map_xskmap = test->fixup_map_xskmap; int *fixup_map_stacktrace = test->fixup_map_stacktrace; int *fixup_prog1 = test->fixup_prog1; int *fixup_prog2 = test->fixup_prog2; int *fixup_map_in_map = test->fixup_map_in_map; int *fixup_cgroup_storage = test->fixup_cgroup_storage; int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; if (test->fill_helper) test->fill_helper(test); /* Allocating HTs with 1 elem is fine here, since we only test * for verifier and not do a runtime lookup, so the only thing * that really matters is value size in this case. */ if (*fixup_map_hash_8b) { map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), sizeof(long long), 1); do { prog[*fixup_map_hash_8b].imm = map_fds[0]; fixup_map_hash_8b++; } while (*fixup_map_hash_8b); } if (*fixup_map_hash_48b) { map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), sizeof(struct test_val), 1); do { prog[*fixup_map_hash_48b].imm = map_fds[1]; fixup_map_hash_48b++; } while (*fixup_map_hash_48b); } if (*fixup_map_hash_16b) { map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), sizeof(struct other_val), 1); do { prog[*fixup_map_hash_16b].imm = map_fds[2]; fixup_map_hash_16b++; } while (*fixup_map_hash_16b); } if (*fixup_map_array_48b) { map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), sizeof(struct test_val), 1); do { prog[*fixup_map_array_48b].imm = map_fds[3]; fixup_map_array_48b++; } while (*fixup_map_array_48b); } if (*fixup_prog1) { map_fds[4] = create_prog_array(prog_type, 4, 0); do { prog[*fixup_prog1].imm = map_fds[4]; fixup_prog1++; } while (*fixup_prog1); } if (*fixup_prog2) { map_fds[5] = create_prog_array(prog_type, 8, 7); do { prog[*fixup_prog2].imm = map_fds[5]; fixup_prog2++; } while (*fixup_prog2); } if (*fixup_map_in_map) { map_fds[6] = create_map_in_map(); do { prog[*fixup_map_in_map].imm = map_fds[6]; fixup_map_in_map++; } while (*fixup_map_in_map); } if (*fixup_cgroup_storage) { map_fds[7] = create_cgroup_storage(false); do { prog[*fixup_cgroup_storage].imm = map_fds[7]; fixup_cgroup_storage++; } while (*fixup_cgroup_storage); } if (*fixup_percpu_cgroup_storage) { map_fds[8] = create_cgroup_storage(true); do { prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; fixup_percpu_cgroup_storage++; } while (*fixup_percpu_cgroup_storage); } if (*fixup_map_sockmap) { map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), sizeof(int), 1); do { prog[*fixup_map_sockmap].imm = map_fds[9]; fixup_map_sockmap++; } while (*fixup_map_sockmap); } if (*fixup_map_sockhash) { map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), sizeof(int), 1); do { prog[*fixup_map_sockhash].imm = map_fds[10]; fixup_map_sockhash++; } while (*fixup_map_sockhash); } if (*fixup_map_xskmap) { map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), sizeof(int), 1); do { prog[*fixup_map_xskmap].imm = map_fds[11]; fixup_map_xskmap++; } while (*fixup_map_xskmap); } if (*fixup_map_stacktrace) { map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), sizeof(u64), 1); do { prog[*fixup_map_stacktrace].imm = map_fds[12]; fixup_map_stacktrace++; } while (*fixup_map_stacktrace); } } static int set_admin(bool admin) { cap_t caps; const cap_value_t cap_val = CAP_SYS_ADMIN; int ret = -1; caps = cap_get_proc(); if (!caps) { perror("cap_get_proc"); return -1; } if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val, admin ? CAP_SET : CAP_CLEAR)) { perror("cap_set_flag"); goto out; } if (cap_set_proc(caps)) { perror("cap_set_proc"); goto out; } ret = 0; out: if (cap_free(caps)) perror("cap_free"); return ret; } static void do_test_single(struct bpf_test *test, bool unpriv, int *passes, int *errors) { int fd_prog, expected_ret, reject_from_alignment; int prog_len, prog_type = test->prog_type; struct bpf_insn *prog = test->insns; int map_fds[MAX_NR_MAPS]; const char *expected_err; uint32_t expected_val; uint32_t retval; int i, err; for (i = 0; i < MAX_NR_MAPS; i++) map_fds[i] = -1; if (!prog_type) prog_type = BPF_PROG_TYPE_SOCKET_FILTER; do_test_fixup(test, prog_type, prog, map_fds); prog_len = probe_filter_length(prog); fd_prog = bpf_verify_program(prog_type, prog, prog_len, test->flags & F_LOAD_WITH_STRICT_ALIGNMENT, "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 1); expected_ret = unpriv && test->result_unpriv != UNDEF ? test->result_unpriv : test->result; expected_err = unpriv && test->errstr_unpriv ? test->errstr_unpriv : test->errstr; expected_val = unpriv && test->retval_unpriv ? test->retval_unpriv : test->retval; reject_from_alignment = fd_prog < 0 && (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) && strstr(bpf_vlog, "misaligned"); #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (reject_from_alignment) { printf("FAIL\nFailed due to alignment despite having efficient unaligned access: '%s'!\n", strerror(errno)); goto fail_log; } #endif if (expected_ret == ACCEPT) { if (fd_prog < 0 && !reject_from_alignment) { printf("FAIL\nFailed to load prog '%s'!\n", strerror(errno)); goto fail_log; } } else { if (fd_prog >= 0) { printf("FAIL\nUnexpected success to load!\n"); goto fail_log; } if (!strstr(bpf_vlog, expected_err) && !reject_from_alignment) { printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", expected_err, bpf_vlog); goto fail_log; } } if (fd_prog >= 0) { __u8 tmp[TEST_DATA_LEN << 2]; __u32 size_tmp = sizeof(tmp); if (unpriv) set_admin(true); err = bpf_prog_test_run(fd_prog, 1, test->data, sizeof(test->data), tmp, &size_tmp, &retval, NULL); if (unpriv) set_admin(false); if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) { printf("Unexpected bpf_prog_test_run error\n"); goto fail_log; } if (!err && retval != expected_val && expected_val != POINTER_VALUE) { printf("FAIL retval %d != %d\n", retval, expected_val); goto fail_log; } } (*passes)++; printf("OK%s\n", reject_from_alignment ? " (NOTE: reject due to unknown alignment)" : ""); close_fds: close(fd_prog); for (i = 0; i < MAX_NR_MAPS; i++) close(map_fds[i]); sched_yield(); return; fail_log: (*errors)++; printf("%s", bpf_vlog); goto close_fds; } static bool is_admin(void) { cap_t caps; cap_flag_value_t sysadmin = CAP_CLEAR; const cap_value_t cap_val = CAP_SYS_ADMIN; #ifdef CAP_IS_SUPPORTED if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { perror("cap_get_flag"); return false; } #endif caps = cap_get_proc(); if (!caps) { perror("cap_get_proc"); return false; } if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin)) perror("cap_get_flag"); if (cap_free(caps)) perror("cap_free"); return (sysadmin == CAP_SET); } static void get_unpriv_disabled() { char buf[2]; FILE *fd; fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); if (!fd) { perror("fopen /proc/sys/"UNPRIV_SYSCTL); unpriv_disabled = true; return; } if (fgets(buf, 2, fd) == buf && atoi(buf)) unpriv_disabled = true; fclose(fd); } static bool test_as_unpriv(struct bpf_test *test) { return !test->prog_type || test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; } static int do_test(bool unpriv, unsigned int from, unsigned int to) { int i, passes = 0, errors = 0, skips = 0; for (i = from; i < to; i++) { struct bpf_test *test = &tests[i]; /* Program types that are not supported by non-root we * skip right away. */ if (test_as_unpriv(test) && unpriv_disabled) { printf("#%d/u %s SKIP\n", i, test->descr); skips++; } else if (test_as_unpriv(test)) { if (!unpriv) set_admin(false); printf("#%d/u %s ", i, test->descr); do_test_single(test, true, &passes, &errors); if (!unpriv) set_admin(true); } if (unpriv) { printf("#%d/p %s SKIP\n", i, test->descr); skips++; } else { printf("#%d/p %s ", i, test->descr); do_test_single(test, false, &passes, &errors); } } printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, skips, errors); return errors ? EXIT_FAILURE : EXIT_SUCCESS; } int main(int argc, char **argv) { unsigned int from = 0, to = ARRAY_SIZE(tests); bool unpriv = !is_admin(); if (argc == 3) { unsigned int l = atoi(argv[argc - 2]); unsigned int u = atoi(argv[argc - 1]); if (l < to && u < to) { from = l; to = u + 1; } } else if (argc == 2) { unsigned int t = atoi(argv[argc - 1]); if (t < to) { from = t; to = t + 1; } } get_unpriv_disabled(); if (unpriv && unpriv_disabled) { printf("Cannot run as unprivileged user with sysctl %s.\n", UNPRIV_SYSCTL); return EXIT_FAILURE; } bpf_semi_rand_init(); return do_test(unpriv, from, to); }