/* * soft_blender_tasks_priv.cpp - soft blender tasks private class implementation * * Copyright (c) 2017 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Wind Yuan <feng.yuan@intel.com> */ #include "soft_blender_tasks_priv.h" namespace XCam { namespace XCamSoftTasks { const float GaussScaleGray::coeffs[GAUSS_DOWN_SCALE_SIZE] = {0.152f, 0.222f, 0.252f, 0.222f, 0.152f}; void GaussScaleGray::gauss_luma_2x2 ( UcharImage *in_luma, UcharImage *out_luma, uint32_t x, uint32_t y) { /* * o o o o o o o * o o o o o o o * o o Y(UV) o Y o o * o o o o o o o * o o Y o Y o o * o o o o o o o * o o o o o o o */ uint32_t in_x = x * 4, in_y = y * 4; float line[7]; float sum0[7] = {0.0f}; float sum1[7] = {0.0f}; in_luma->read_array<float, 7> (in_x - 2, in_y - 2, line); multiply_coeff_y (sum0, line, coeffs[0]); in_luma->read_array<float, 7> (in_x - 2, in_y - 1, line); multiply_coeff_y (sum0, line, coeffs[1]); in_luma->read_array<float, 7> (in_x - 2, in_y, line); multiply_coeff_y (sum0, line, coeffs[2]); multiply_coeff_y (sum1, line, coeffs[0]); in_luma->read_array<float, 7> (in_x - 2, in_y + 1, line); multiply_coeff_y (sum0, line, coeffs[3]); multiply_coeff_y (sum1, line, coeffs[1]); in_luma->read_array<float, 7> (in_x - 2, in_y + 2, line); multiply_coeff_y (sum0, line, coeffs[4]); multiply_coeff_y (sum1, line, coeffs[2]); in_luma->read_array<float, 7> (in_x - 2, in_y + 3, line); multiply_coeff_y (sum1, line, coeffs[3]); in_luma->read_array<float, 7> (in_x - 2, in_y + 4, line); multiply_coeff_y (sum1, line, coeffs[4]); float value[2]; Uchar out[2]; value[0] = gauss_sum (&sum0[0]); value[1] = gauss_sum (&sum0[2]); out[0] = convert_to_uchar (value[0]); out[1] = convert_to_uchar (value[1]); out_luma->write_array_no_check<2> (x * 2, y * 2, out); value[0] = gauss_sum (&sum1[0]); value[1] = gauss_sum (&sum1[2]); out[0] = convert_to_uchar(value[0]); out[1] = convert_to_uchar(value[1]); out_luma->write_array_no_check<2> (x * 2, y * 2 + 1, out); } XCamReturn GaussScaleGray::work_range (const SmartPtr<Worker::Arguments> &base, const WorkRange &range) { SmartPtr<GaussScaleGray::Args> args = base.dynamic_cast_ptr<GaussScaleGray::Args> (); XCAM_ASSERT (args.ptr ()); UcharImage *in_luma = args->in_luma.ptr (), *out_luma = args->out_luma.ptr (); XCAM_ASSERT (in_luma && out_luma); for (uint32_t y = range.pos[1]; y < range.pos[1] + range.pos_len[1]; ++y) for (uint32_t x = range.pos[0]; x < range.pos[0] + range.pos_len[0]; ++x) { gauss_luma_2x2 (in_luma, out_luma, x, y); } return XCAM_RETURN_NO_ERROR; } XCamReturn GaussDownScale::work_range (const SmartPtr<Worker::Arguments> &base, const WorkRange &range) { SmartPtr<GaussDownScale::Args> args = base.dynamic_cast_ptr<GaussDownScale::Args> (); XCAM_ASSERT (args.ptr ()); UcharImage *in_luma = args->in_luma.ptr (), *out_luma = args->out_luma.ptr (); Uchar2Image *in_uv = args->in_uv.ptr (), *out_uv = args->out_uv.ptr (); XCAM_ASSERT (in_luma && in_uv); XCAM_ASSERT (out_luma && out_uv); for (uint32_t y = range.pos[1]; y < range.pos[1] + range.pos_len[1]; ++y) for (uint32_t x = range.pos[0]; x < range.pos[0] + range.pos_len[0]; ++x) { gauss_luma_2x2 (in_luma, out_luma, x, y); // calculate UV int32_t in_x = x * 2, in_y = y * 2; Float2 uv_line[5]; Float2 uv_sum [5]; in_uv->read_array<Float2, 5> (in_x - 2, in_y - 2, uv_line); multiply_coeff_uv (uv_sum, uv_line, coeffs[0]); in_uv->read_array<Float2, 5> (in_x - 2, in_y - 1, uv_line); multiply_coeff_uv (uv_sum, uv_line, coeffs[1]); in_uv->read_array<Float2, 5> (in_x - 2, in_y , uv_line); multiply_coeff_uv (uv_sum, uv_line, coeffs[2]); in_uv->read_array<Float2, 5> (in_x - 2, in_y + 1, uv_line); multiply_coeff_uv (uv_sum, uv_line, coeffs[3]); in_uv->read_array<Float2, 5> (in_x - 2, in_y + 2, uv_line); multiply_coeff_uv (uv_sum, uv_line, coeffs[4]); Float2 uv_value; uv_value = gauss_sum (&uv_sum[0]); Uchar2 uv_out(convert_to_uchar(uv_value.x), convert_to_uchar(uv_value.y)); out_uv->write_data_no_check (x, y, uv_out); } //printf ("done\n"); XCAM_LOG_DEBUG ("GaussDownScale work on range:[x:%d, width:%d, y:%d, height:%d]", range.pos[0], range.pos_len[0], range.pos[1], range.pos_len[1]); return XCAM_RETURN_NO_ERROR; } static inline void blend_luma_8 (const float *luma0, const float *luma1, const float *mask, float *out) { //out[0] = luma0[0] * mask + luma1[0] * ( 1.0f - mask[0]); #define BLEND_LUMA_8(idx) out[idx] = (luma0[idx] - luma1[idx]) * mask[idx] + luma1[idx] BLEND_LUMA_8 (0); BLEND_LUMA_8 (1); BLEND_LUMA_8 (2); BLEND_LUMA_8 (3); BLEND_LUMA_8 (4); BLEND_LUMA_8 (5); BLEND_LUMA_8 (6); BLEND_LUMA_8 (7); } static inline void normalize_8 (float *value, const float max) { value[0] /= max; value[1] /= max; value[2] /= max; value[3] /= max; value[4] /= max; value[5] /= max; value[6] /= max; value[7] /= max; } static inline void read_and_blend_pixel_luma_8 ( const UcharImage *in0, const UcharImage *in1, const UcharImage *mask, const uint32_t in_x, const uint32_t in_y, float *out_luma, float *out_mask) { float luma0_line[8], luma1_line[8]; mask->read_array_no_check<float, 8> (in_x, in_y, out_mask); in0->read_array_no_check<float, 8> (in_x, in_y, luma0_line); in1->read_array_no_check<float, 8> (in_x, in_y, luma1_line); normalize_8 (out_mask, 255.0f); blend_luma_8 (luma0_line, luma1_line, out_mask, out_luma); } static inline void read_and_blend_uv_4 ( const Uchar2Image *in_a, const Uchar2Image *in_b, const float *mask, const uint32_t in_x, const uint32_t in_y, Float2 *out_uv) { Float2 line_a[4], line_b[4]; in_a->read_array_no_check<Float2, 4> (in_x, in_y, line_a); in_b->read_array_no_check<Float2, 4> (in_x, in_y, line_b); //out_uv[0] = line_a[0] * mask + line_b[0] * ( 1.0f - mask[0]); #define BLEND_UV_4(i) out_uv[i] = (line_a[i] - line_b[i]) * mask[i] + line_b[i] BLEND_UV_4 (0); BLEND_UV_4 (1); BLEND_UV_4 (2); BLEND_UV_4 (3); } XCamReturn BlendTask::work_range (const SmartPtr<Arguments> &base, const WorkRange &range) { SmartPtr<BlendTask::Args> args = base.dynamic_cast_ptr<BlendTask::Args> (); XCAM_ASSERT (args.ptr ()); UcharImage *in0_luma = args->in_luma[0].ptr (), *in1_luma = args->in_luma[1].ptr (), *out_luma = args->out_luma.ptr (); Uchar2Image *in0_uv = args->in_uv[0].ptr (), *in1_uv = args->in_uv[1].ptr (), *out_uv = args->out_uv.ptr (); UcharImage *mask = args->mask.ptr (); XCAM_ASSERT (in0_luma && in0_uv && in1_luma && in1_uv); XCAM_ASSERT (out_luma && out_uv); XCAM_ASSERT (mask); for (uint32_t y = range.pos[1]; y < range.pos[1] + range.pos_len[1]; ++y) for (uint32_t x = range.pos[0]; x < range.pos[0] + range.pos_len[0]; ++x) { // 8x2 -pixels each time for luma uint32_t in_x = x * 8; uint32_t in_y = y * 2; float luma_blend[8], luma_mask[8]; Uchar luma_uc[8]; // process luma (in_x, in_y) read_and_blend_pixel_luma_8 (in0_luma, in1_luma, mask, in_x, in_y, luma_blend, luma_mask); convert_to_uchar_N<float, 8> (luma_blend, luma_uc); out_luma->write_array_no_check<8> (in_x, in_y, luma_uc); // process luma (in_x, in_y + 1) read_and_blend_pixel_luma_8 (in0_luma, in1_luma, mask, in_x, in_y + 1, luma_blend, luma_mask); convert_to_uchar_N<float, 8> (luma_blend, luma_uc); out_luma->write_array_no_check<8> (in_x, in_y + 1, luma_uc); // process uv(4x1) (uv_x, uv_y) uint32_t uv_x = x * 4, uv_y = y; Float2 uv_blend[4]; Uchar2 uv_uc[4]; luma_mask[1] = luma_mask[2]; luma_mask[2] = luma_mask[4]; luma_mask[3] = luma_mask[6]; read_and_blend_uv_4 (in0_uv, in1_uv, luma_mask, uv_x, uv_y, uv_blend); convert_to_uchar2_N<Float2, 4> (uv_blend, uv_uc); out_uv->write_array_no_check<4> (uv_x, uv_y, uv_uc); } XCAM_LOG_DEBUG ("BlendTask work on range:[x:%d, width:%d, y:%d, height:%d]", range.pos[0], range.pos_len[0], range.pos[1], range.pos_len[1]); return XCAM_RETURN_NO_ERROR; } static inline void minus_array_8 (float *orig, float *gauss, Uchar *ret) { #define ORG_MINUS_GAUSS(i) ret[i] = convert_to_uchar<float> ((orig[i] - gauss[i]) * 0.5f + 128.0f) ORG_MINUS_GAUSS(0); ORG_MINUS_GAUSS(1); ORG_MINUS_GAUSS(2); ORG_MINUS_GAUSS(3); ORG_MINUS_GAUSS(4); ORG_MINUS_GAUSS(5); ORG_MINUS_GAUSS(6); ORG_MINUS_GAUSS(7); } static inline void interpolate_luma_int_row_8x1 (UcharImage* image, uint32_t fixed_x, uint32_t fixed_y, float *gauss_v, float* ret) { image->read_array<float, 5> (fixed_x, fixed_y, gauss_v); ret[0] = gauss_v[0]; ret[1] = (gauss_v[0] + gauss_v[1]) * 0.5f; ret[2] = gauss_v[1]; ret[3] = (gauss_v[1] + gauss_v[2]) * 0.5f; ret[4] = gauss_v[2]; ret[5] = (gauss_v[2] + gauss_v[3]) * 0.5f; ret[6] = gauss_v[3]; ret[7] = (gauss_v[3] + gauss_v[4]) * 0.5f; } static inline void interpolate_luma_half_row_8x1 (UcharImage* image, uint32_t fixed_x, uint32_t next_y, float *last_gauss_v, float* ret) { float next_gauss_v[5]; float tmp; image->read_array<float, 5> (fixed_x, next_y, next_gauss_v); ret[0] = (last_gauss_v[0] + next_gauss_v[0]) / 2.0f; ret[2] = (last_gauss_v[1] + next_gauss_v[1]) / 2.0f; ret[4] = (last_gauss_v[2] + next_gauss_v[2]) / 2.0f; ret[6] = (last_gauss_v[3] + next_gauss_v[3]) / 2.0f; tmp = (last_gauss_v[4] + next_gauss_v[4]) / 2.0f; ret[1] = (ret[0] + ret[2]) / 2.0f; ret[3] = (ret[2] + ret[4]) / 2.0f; ret[5] = (ret[4] + ret[6]) / 2.0f; ret[7] = (ret[6] + tmp) / 2.0f; } void LaplaceTask::interplate_luma_8x2 ( UcharImage *orig_luma, UcharImage *gauss_luma, UcharImage *out_luma, uint32_t out_x, uint32_t out_y) { uint32_t gauss_x = out_x / 2, first_gauss_y = out_y / 2; float inter_value[8]; float gauss_v[5]; float orig_v[8]; Uchar lap_ret[8]; //interplate instaed of coefficient interpolate_luma_int_row_8x1 (gauss_luma, gauss_x, first_gauss_y, gauss_v, inter_value); orig_luma->read_array_no_check<float, 8> (out_x, out_y, orig_v); minus_array_8 (orig_v, inter_value, lap_ret); out_luma->write_array_no_check<8> (out_x, out_y, lap_ret); uint32_t next_gauss_y = first_gauss_y + 1; interpolate_luma_half_row_8x1 (gauss_luma, gauss_x, next_gauss_y, gauss_v, inter_value); orig_luma->read_array_no_check<float, 8> (out_x, out_y + 1, orig_v); minus_array_8 (orig_v, inter_value, lap_ret); out_luma->write_array_no_check<8> (out_x, out_y + 1, lap_ret); } static inline void minus_array_uv_4 (Float2 *orig, Float2 *gauss, Uchar2 *ret) { #define ORG_MINUS_GAUSS_UV(i) orig[i] -= gauss[i]; orig[i] *= 0.5f; orig[i] += 128.0f ORG_MINUS_GAUSS_UV(0); ORG_MINUS_GAUSS_UV(1); ORG_MINUS_GAUSS_UV(2); ORG_MINUS_GAUSS_UV(3); convert_to_uchar2_N<Float2, 4> (orig, ret); } static inline void interpolate_uv_int_row_4x1 (Uchar2Image *image, uint32_t x, uint32_t y, Float2 *gauss_value, Float2 *ret) { image->read_array<Float2, 3> (x, y, gauss_value); ret[0] = gauss_value[0]; ret[1] = gauss_value[0] + gauss_value[1]; ret[1] *= 0.5f; ret[2] = gauss_value[1]; ret[3] = gauss_value[1] + gauss_value[2]; ret[3] *= 0.5f; } static inline void interpolate_uv_half_row_4x1 (Uchar2Image *image, uint32_t x, uint32_t y, Float2 *gauss_value, Float2 *ret) { Float2 next_gauss_uv[3]; image->read_array<Float2, 3> (x, y, next_gauss_uv); ret[0] = (gauss_value[0] + next_gauss_uv[0]) * 0.5f; ret[2] = (gauss_value[1] + next_gauss_uv[1]) * 0.5f; Float2 tmp = (gauss_value[2] + next_gauss_uv[2]) * 0.5f; ret[1] = (ret[0] + ret[2]) * 0.5f; ret[3] = (ret[2] + tmp) * 0.5f; } XCamReturn LaplaceTask::work_range (const SmartPtr<Arguments> &base, const WorkRange &range) { SmartPtr<LaplaceTask::Args> args = base.dynamic_cast_ptr<LaplaceTask::Args> (); XCAM_ASSERT (args.ptr ()); UcharImage *orig_luma = args->orig_luma.ptr (), *gauss_luma = args->gauss_luma.ptr (), *out_luma = args->out_luma.ptr (); Uchar2Image *orig_uv = args->orig_uv.ptr (), *gauss_uv = args->gauss_uv.ptr (), *out_uv = args->out_uv.ptr (); XCAM_ASSERT (orig_luma && orig_uv); XCAM_ASSERT (gauss_luma && gauss_uv); XCAM_ASSERT (out_luma && out_uv); for (uint32_t y = range.pos[1]; y < range.pos[1] + range.pos_len[1]; ++y) for (uint32_t x = range.pos[0]; x < range.pos[0] + range.pos_len[0]; ++x) { // 8x4 -pixels each time for luma uint32_t out_x = x * 8, out_y = y * 4; interplate_luma_8x2 (orig_luma, gauss_luma, out_luma, out_x, out_y); interplate_luma_8x2 (orig_luma, gauss_luma, out_luma, out_x, out_y + 2); // 4x2 uv uint32_t out_uv_x = x * 4, out_uv_y = y * 2; uint32_t gauss_uv_x = out_uv_x / 2, gauss_uv_y = out_uv_y / 2; Float2 gauss_uv_value[3]; Float2 orig_uv_value[4]; Float2 inter_uv_value[4]; Uchar2 lap_uv_ret[4]; interpolate_uv_int_row_4x1 (gauss_uv, gauss_uv_x, gauss_uv_y, gauss_uv_value, inter_uv_value); orig_uv->read_array_no_check<Float2, 4> (out_uv_x , out_uv_y, orig_uv_value); minus_array_uv_4 (orig_uv_value, inter_uv_value, lap_uv_ret); out_uv->write_array_no_check<4> (out_uv_x , out_uv_y, lap_uv_ret); interpolate_uv_half_row_4x1 (gauss_uv, gauss_uv_x, gauss_uv_y + 1, gauss_uv_value, inter_uv_value); orig_uv->read_array_no_check<Float2, 4> (out_uv_x , out_uv_y + 1, orig_uv_value); minus_array_uv_4 (orig_uv_value, inter_uv_value, lap_uv_ret); out_uv->write_array_no_check<4> (out_uv_x, out_uv_y + 1, lap_uv_ret); } return XCAM_RETURN_NO_ERROR; } static inline void reconstruct_luma_8x1 (float *lap, float *up_sample, Uchar *result) { #define RECONSTRUCT_UP_SAMPLE(i) result[i] = convert_to_uchar<float>(up_sample[i] + lap[i] * 2.0f - 256.0f) RECONSTRUCT_UP_SAMPLE(0); RECONSTRUCT_UP_SAMPLE(1); RECONSTRUCT_UP_SAMPLE(2); RECONSTRUCT_UP_SAMPLE(3); RECONSTRUCT_UP_SAMPLE(4); RECONSTRUCT_UP_SAMPLE(5); RECONSTRUCT_UP_SAMPLE(6); RECONSTRUCT_UP_SAMPLE(7); } static inline void reconstruct_luma_4x1 (Float2 *lap, Float2 *up_sample, Uchar2 *uv_uc) { #define RECONSTRUCT_UP_SAMPLE_UV(i) \ uv_uc[i].x = convert_to_uchar<float>(up_sample[i].x + lap[i].x * 2.0f - 256.0f); \ uv_uc[i].y = convert_to_uchar<float>(up_sample[i].y + lap[i].y * 2.0f - 256.0f) RECONSTRUCT_UP_SAMPLE_UV (0); RECONSTRUCT_UP_SAMPLE_UV (1); RECONSTRUCT_UP_SAMPLE_UV (2); RECONSTRUCT_UP_SAMPLE_UV (3); } XCamReturn ReconstructTask::work_range (const SmartPtr<Arguments> &base, const WorkRange &range) { SmartPtr<ReconstructTask::Args> args = base.dynamic_cast_ptr<ReconstructTask::Args> (); XCAM_ASSERT (args.ptr ()); UcharImage *lap_luma[2] = {args->lap_luma[0].ptr (), args->lap_luma[1].ptr ()}; UcharImage *gauss_luma = args->gauss_luma.ptr (), *out_luma = args->out_luma.ptr (); Uchar2Image *lap_uv[2] = {args->lap_uv[0].ptr (), args->lap_uv[1].ptr ()}; Uchar2Image *gauss_uv = args->gauss_uv.ptr (), *out_uv = args->out_uv.ptr (); UcharImage *mask_image = args->mask.ptr (); XCAM_ASSERT (lap_luma[0] && lap_luma[1] && lap_uv[0] && lap_uv[1]); XCAM_ASSERT (gauss_luma && gauss_uv); XCAM_ASSERT (out_luma && out_uv); XCAM_ASSERT (mask_image); for (uint32_t y = range.pos[1]; y < range.pos[1] + range.pos_len[1]; ++y) for (uint32_t x = range.pos[0]; x < range.pos[0] + range.pos_len[0]; ++x) { // 8x4 -pixels each time for luma float luma_blend[8], luma_mask1[8], luma_mask2[8]; float luma_sample[8]; float gauss_data[5]; Uchar luma_uchar[8]; uint32_t in_x = x * 8, in_y = y * 4; // luma 1st - line read_and_blend_pixel_luma_8 (lap_luma[0], lap_luma[1], mask_image, in_x, in_y, luma_blend, luma_mask1); interpolate_luma_int_row_8x1 (gauss_luma, in_x / 2, in_y / 2, gauss_data, luma_sample); reconstruct_luma_8x1 (luma_blend, luma_sample, luma_uchar); out_luma->write_array_no_check<8> (in_x, in_y, luma_uchar); // luma 2nd -line in_y += 1; read_and_blend_pixel_luma_8 (lap_luma[0], lap_luma[1], mask_image, in_x, in_y, luma_blend, luma_mask1); interpolate_luma_half_row_8x1 (gauss_luma, in_x / 2, in_y / 2 + 1, gauss_data, luma_sample); reconstruct_luma_8x1 (luma_blend, luma_sample, luma_uchar); out_luma->write_array_no_check<8> (in_x, in_y, luma_uchar); // luma 3rd -line in_y += 1; read_and_blend_pixel_luma_8 (lap_luma[0], lap_luma[1], mask_image, in_x, in_y, luma_blend, luma_mask2); interpolate_luma_int_row_8x1 (gauss_luma, in_x / 2, in_y / 2, gauss_data, luma_sample); reconstruct_luma_8x1 (luma_blend, luma_sample, luma_uchar); out_luma->write_array_no_check<8> (in_x, in_y, luma_uchar); // luma 4th -line in_y += 1; read_and_blend_pixel_luma_8 (lap_luma[0], lap_luma[1], mask_image, in_x, in_y, luma_blend, luma_mask2); interpolate_luma_half_row_8x1 (gauss_luma, in_x / 2, in_y / 2 + 1, gauss_data, luma_sample); reconstruct_luma_8x1 (luma_blend, luma_sample, luma_uchar); out_luma->write_array_no_check<8> (in_x, in_y, luma_uchar); // 4x2-UV process UV uint32_t uv_x = x * 4, uv_y = y * 2; Float2 uv_blend[4]; Float2 gauss_uv_value[3]; Float2 up_sample_uv[4]; Uchar2 uv_uc[4]; luma_mask1[1] = luma_mask1[2]; luma_mask1[2] = luma_mask1[4]; luma_mask1[3] = luma_mask1[6]; luma_mask2[1] = luma_mask2[2]; luma_mask2[2] = luma_mask2[4]; luma_mask2[3] = luma_mask1[6]; //1st-line UV read_and_blend_uv_4 (lap_uv[0], lap_uv[1], luma_mask1, uv_x, uv_y, uv_blend); interpolate_uv_int_row_4x1 (gauss_uv, uv_x / 2, uv_y / 2, gauss_uv_value, up_sample_uv); reconstruct_luma_4x1 (uv_blend, up_sample_uv, uv_uc); out_uv->write_array_no_check<4> (uv_x, uv_y, uv_uc); //2nd-line UV uv_y += 1; read_and_blend_uv_4 (lap_uv[0], lap_uv[1], luma_mask2, uv_x, uv_y, uv_blend); interpolate_uv_half_row_4x1 (gauss_uv, uv_x / 2, uv_y / 2 + 1, gauss_uv_value, up_sample_uv); reconstruct_luma_4x1 (uv_blend, up_sample_uv, uv_uc); out_uv->write_array_no_check<4> (uv_x, uv_y, uv_uc); } return XCAM_RETURN_NO_ERROR; } } }