/****************************************************************************** * * * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ***************************************************************************** * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore */ #include <stdlib.h> #include <math.h> #include <string.h> #include <ixheaacd_type_def.h> #include "ixheaacd_error_standards.h" #include "ixheaacd_sbr_const.h" #include "ixheaacd_sbrdecsettings.h" #include "ixheaacd_bitbuffer.h" #include "ixheaacd_sbr_common.h" #include "ixheaacd_drc_data_struct.h" #include "ixheaacd_drc_dec.h" #include "ixheaacd_sbrdecoder.h" #include "ixheaacd_bitbuffer.h" #include "ixheaacd_env_extr_part.h" #include <ixheaacd_sbr_rom.h> #include "ixheaacd_common_rom.h" #include "ixheaacd_hybrid.h" #include "ixheaacd_sbr_scale.h" #include "ixheaacd_ps_dec.h" #include "ixheaacd_freq_sca.h" #include "ixheaacd_lpp_tran.h" #include "ixheaacd_env_extr.h" #include "ixheaacd_esbr_rom.h" VOID ixheaacd_shellsort(WORD32 *in, WORD32 n) { WORD32 i, j, v; WORD32 inc = 1; do inc = 3 * inc + 1; while (inc <= n); do { inc = inc / 3; for (i = inc + 1; i <= n; i++) { v = in[i - 1]; j = i; while (in[j - inc - 1] > v) { in[j - 1] = in[j - inc - 1]; j -= inc; if (j <= inc) break; } in[j - 1] = v; } } while (inc > 1); } WORD32 ixheaacd_sbr_env_calc(ia_sbr_frame_info_data_struct *frame_data, FLOAT32 input_real[][64], FLOAT32 input_imag[][64], FLOAT32 input_real1[][64], FLOAT32 input_imag1[][64], WORD32 x_over_qmf[MAX_NUM_PATCHES], FLOAT32 *scratch_buff, FLOAT32 *env_out) { WORD8 harmonics[64]; FLOAT32(*env_tmp)[48]; FLOAT32(*noise_level_pvc)[48]; FLOAT32(*nrg_est_pvc)[48]; FLOAT32(*nrg_ref_pvc)[48]; FLOAT32(*nrg_gain_pvc)[48]; FLOAT32(*nrg_tone_pvc)[48]; WORD32 n, c, li, ui, i, j, k = 0, l, m = 0, kk = 0, o, next = -1, ui2, flag, tmp, noise_absc_flag, smooth_length; WORD32 upsamp_4_flag = frame_data->pstr_sbr_header->is_usf_4; FLOAT32 *ptr_real_buf, *ptr_imag_buf, nrg = 0, p_ref, p_est, avg_gain, g_max, p_adj, boost_gain, sb_gain, sb_noise, temp[64]; WORD32 t; WORD32 start_pos = 0; WORD32 end_pos = 0; WORD32 slot_idx; FLOAT32 *prev_env_noise_level = frame_data->prev_noise_level; FLOAT32 *nrg_tone = scratch_buff; FLOAT32 *noise_level = scratch_buff + 64; FLOAT32 *nrg_est = scratch_buff + 128; FLOAT32 *nrg_ref = scratch_buff + 192; FLOAT32 *nrg_gain = scratch_buff + 256; const FLOAT32 *smooth_filt; FLOAT32 *sfb_nrg = frame_data->flt_env_sf_arr; FLOAT32 *noise_floor = frame_data->flt_noise_floor; ia_frame_info_struct *p_frame_info = &frame_data->str_frame_info_details; ia_frame_info_struct *pvc_frame_info = &frame_data->str_pvc_frame_info; WORD32 smoothing_length = frame_data->pstr_sbr_header->smoothing_mode ? 0 : 4; WORD32 int_mode = frame_data->pstr_sbr_header->interpol_freq; WORD32 limiter_band = frame_data->pstr_sbr_header->limiter_bands; WORD32 limiter_gains = frame_data->pstr_sbr_header->limiter_gains; WORD32 *add_harmonics = frame_data->add_harmonics; WORD32 sub_band_start = frame_data->pstr_sbr_header->pstr_freq_band_data->sub_band_start; WORD32 sub_band_end = frame_data->pstr_sbr_header->pstr_freq_band_data->sub_band_end; WORD32 reset = frame_data->reset_flag; WORD32 num_subbands = sub_band_end - sub_band_start; WORD32 bs_num_env = p_frame_info->num_env; WORD32 trans_env = p_frame_info->transient_env; WORD32 sbr_mode = frame_data->sbr_mode; WORD32 prev_sbr_mode = frame_data->prev_sbr_mode; WORD16 *freq_band_table[2]; const WORD16 *num_sf_bands = frame_data->pstr_sbr_header->pstr_freq_band_data->num_sf_bands; WORD16 *freq_band_table_noise = frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_noise; WORD32 num_nf_bands = frame_data->pstr_sbr_header->pstr_freq_band_data->num_nf_bands; WORD32 harm_index = frame_data->harm_index; WORD32 phase_index = frame_data->phase_index; WORD32 esbr_start_up = frame_data->pstr_sbr_header->esbr_start_up; WORD32 esbr_start_up_pvc = frame_data->pstr_sbr_header->esbr_start_up_pvc; WORD8(*harm_flag_prev)[64] = &frame_data->harm_flag_prev; FLOAT32(*e_gain)[5][64] = &frame_data->e_gain; FLOAT32(*noise_buf)[5][64] = &frame_data->noise_buf; WORD32(*lim_table)[4][12 + 1] = &frame_data->lim_table; WORD32(*gate_mode)[4] = &frame_data->gate_mode; WORD32 freq_inv = 1; WORD8(*harm_flag_varlen_prev)[64] = &frame_data->harm_flag_varlen_prev; WORD8(*harm_flag_varlen)[64] = &frame_data->harm_flag_varlen; WORD32 band_loop_end; WORD32 rate = upsamp_4_flag ? 4 : 2; env_tmp = frame_data->env_tmp; noise_level_pvc = frame_data->noise_level_pvc; nrg_est_pvc = frame_data->nrg_est_pvc; nrg_ref_pvc = frame_data->nrg_ref_pvc; nrg_gain_pvc = frame_data->nrg_gain_pvc; nrg_tone_pvc = frame_data->nrg_tone_pvc; freq_band_table[0] = frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_table[0]; freq_band_table[1] = frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_table[1]; if (reset) { esbr_start_up = 1; esbr_start_up_pvc = 1; phase_index = 0; if (ixheaacd_createlimiterbands( (*lim_table), (*gate_mode), frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_lo, num_sf_bands[LOW], x_over_qmf, frame_data->sbr_patching_mode, upsamp_4_flag, &frame_data->patch_param)) return IA_FATAL_ERROR; } if (frame_data->sbr_patching_mode != frame_data->prev_sbr_patching_mode) { if (ixheaacd_createlimiterbands( (*lim_table), (*gate_mode), frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_lo, num_sf_bands[LOW], x_over_qmf, frame_data->sbr_patching_mode, upsamp_4_flag, &frame_data->patch_param)) return IA_FATAL_ERROR; frame_data->prev_sbr_patching_mode = frame_data->sbr_patching_mode; } memset(harmonics, 0, 64 * sizeof(WORD8)); if (sbr_mode == PVC_SBR) { for (i = 0; i < num_sf_bands[HIGH]; i++) { li = frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_hi[i]; ui = frame_data->pstr_sbr_header->pstr_freq_band_data ->freq_band_tbl_hi[i + 1]; tmp = ((ui + li) - (sub_band_start << 1)) >> 1; if ((tmp >= 64) || (tmp < 0)) return -1; harmonics[tmp] = add_harmonics[i]; } for (t = 0; t < p_frame_info->border_vec[0]; t++) { for (c = 0; c < 64; c++) { frame_data->qmapped_pvc[c][t] = frame_data->qmapped_pvc[c][t + 16]; } } for (i = 0; i < bs_num_env; i++) { if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk]) kk++, next++; start_pos = p_frame_info->border_vec[i]; end_pos = p_frame_info->border_vec[i + 1]; for (t = start_pos; t < end_pos; t++) { band_loop_end = num_sf_bands[p_frame_info->freq_res[i]]; for (c = 0, o = 0, j = 0; j < band_loop_end; j++) { li = freq_band_table[p_frame_info->freq_res[i]][j]; ui = freq_band_table[p_frame_info->freq_res[i]][j + 1]; ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data ->freq_band_tbl_noise[o + 1]; for (k = 0; k < ui - li; k++) { o = (k + li >= ui2) ? o + 1 : o; ui2 = freq_band_table_noise[o + 1]; frame_data->qmapped_pvc[c][t] = noise_floor[next * num_nf_bands + o]; c++; } } } } kk = 0; next = -1; for (i = 0; i < bs_num_env; i++) { if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk]) kk++, next++; start_pos = pvc_frame_info->border_vec[i]; end_pos = pvc_frame_info->border_vec[i + 1]; for (t = start_pos; t < end_pos; t++) { for (c = 0; c < 64; c++) { env_tmp[c][t] = env_out[64 * t + c]; } } noise_absc_flag = (i == trans_env || i == frame_data->env_short_flag_prev) ? 1 : 0; if (prev_sbr_mode == ORIG_SBR) noise_absc_flag = 0; smooth_length = (noise_absc_flag ? 0 : smoothing_length); smooth_filt = *ixheaacd_fir_table[smooth_length]; for (t = start_pos; t < frame_data->sin_len_for_cur_top; t++) { band_loop_end = num_sf_bands[frame_data->str_frame_info_prev .freq_res[frame_data->var_len_id_prev]]; for (c = 0, o = 0, j = 0; j < band_loop_end; j++) { double tmp; li = freq_band_table[frame_data->str_frame_info_prev .freq_res[frame_data->var_len_id_prev]][j]; ui = freq_band_table[frame_data->str_frame_info_prev .freq_res[frame_data->var_len_id_prev]] [j + 1]; ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data ->freq_band_tbl_noise[o + 1]; for (flag = 0, k = li; k < ui; k++) { flag = ((*harm_flag_varlen)[c] && (t >= frame_data->sin_start_for_cur_top || (*harm_flag_varlen_prev)[c + sub_band_start])) ? 1 : flag; nrg_ref_pvc[c][t] = env_tmp[k][t]; for (nrg = 0, l = 0; l < rate; l++) { nrg += (input_real[rate * t + l][k] * input_real[rate * t + l][k]) + (input_imag[rate * t + l][k] * input_imag[rate * t + l][k]); } nrg_est_pvc[c][t] = nrg / rate; c++; } if (!int_mode) { for (nrg = 0, k = c - (ui - li); k < c; k++) { nrg += nrg_est_pvc[k][t]; } nrg /= (ui - li); } c -= (ui - li); for (k = 0; k < ui - li; k++) { o = (k + li >= ui2) ? o + 1 : o; ui2 = freq_band_table_noise[o + 1]; nrg_est_pvc[c][t] = (!int_mode) ? nrg : nrg_est_pvc[c][t]; nrg_tone_pvc[c][t] = 0.0f; tmp = frame_data->qmapped_pvc[c][t] / (1 + frame_data->qmapped_pvc[c][t]); if (flag) { nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp / (nrg_est_pvc[c][t] + 1)); nrg_tone_pvc[c][t] = (FLOAT32)( (harmonics[c] && (t >= frame_data->sine_position || (*harm_flag_prev)[c + sub_band_start])) ? sqrt(nrg_ref_pvc[c][t] * tmp / frame_data->qmapped_pvc[c][t]) : nrg_tone_pvc[c][t]); nrg_tone_pvc[c][t] = (FLOAT32)( ((*harm_flag_varlen)[c] && (t >= frame_data->sin_start_for_cur_top || (*harm_flag_varlen_prev)[c + sub_band_start])) ? sqrt(nrg_ref_pvc[c][t] * tmp / prev_env_noise_level[o]) : nrg_tone_pvc[c][t]); } else { if (noise_absc_flag) { nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] / (nrg_est_pvc[c][t] + 1)); } else { nrg_gain_pvc[c][t] = (FLOAT32)sqrt( nrg_ref_pvc[c][t] * tmp / ((nrg_est_pvc[c][t] + 1) * frame_data->qmapped_pvc[c][t])); } } noise_level_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp); c++; } } for (c = 0; c < (*gate_mode)[limiter_band]; c++) { p_ref = p_est = 0.0f; p_adj = 0; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { p_ref += nrg_ref_pvc[k][t]; p_est += nrg_est_pvc[k][t]; } avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS)); g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains]; g_max > 1.0e5f ? g_max = 1.0e5f : 0; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { if (g_max <= nrg_gain_pvc[k][t]) { noise_level_pvc[k][t] = noise_level_pvc[k][t] * (g_max / nrg_gain_pvc[k][t]); nrg_gain_pvc[k][t] = g_max; } p_adj += nrg_gain_pvc[k][t] * nrg_gain_pvc[k][t] * nrg_est_pvc[k][t]; if (nrg_tone_pvc[k][t]) { p_adj += nrg_tone_pvc[k][t] * nrg_tone_pvc[k][t]; } else if (!noise_absc_flag) { p_adj += noise_level_pvc[k][t] * noise_level_pvc[k][t]; } } boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS)); boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { nrg_gain_pvc[k][t] *= boost_gain; noise_level_pvc[k][t] *= boost_gain; nrg_tone_pvc[k][t] *= boost_gain; } } } for (; t < end_pos; t++) { band_loop_end = num_sf_bands[pvc_frame_info->freq_res[i]]; for (c = 0, o = 0, j = 0; j < band_loop_end; j++) { double tmp; li = freq_band_table[pvc_frame_info->freq_res[i]][j]; ui = freq_band_table[pvc_frame_info->freq_res[i]][j + 1]; ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data ->freq_band_tbl_noise[o + 1]; for (flag = 0, k = li; k < ui; k++) { flag = (harmonics[c] && (t >= frame_data->sine_position || (*harm_flag_prev)[c + sub_band_start])) ? 1 : flag; nrg_ref_pvc[c][t] = env_tmp[k][t]; for (nrg = 0, l = 0; l < rate; l++) { nrg += (input_real[rate * t + l][k] * input_real[rate * t + l][k]) + (input_imag[rate * t + l][k] * input_imag[rate * t + l][k]); } nrg_est_pvc[c][t] = nrg / rate; c++; } if (!int_mode) { for (nrg = 0, k = c - (ui - li); k < c; k++) { nrg += nrg_est_pvc[k][t]; } nrg /= (ui - li); } c -= (ui - li); for (k = 0; k < ui - li; k++) { o = (k + li >= ui2) ? o + 1 : o; ui2 = freq_band_table_noise[o + 1]; nrg_est_pvc[c][t] = (!int_mode) ? nrg : nrg_est_pvc[c][t]; nrg_tone_pvc[c][t] = 0.0f; tmp = frame_data->qmapped_pvc[c][t] / (1 + frame_data->qmapped_pvc[c][t]); if (flag) { nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp / (nrg_est_pvc[c][t] + 1)); nrg_tone_pvc[c][t] = (FLOAT32)( (harmonics[c] && (t >= frame_data->sine_position || (*harm_flag_prev)[c + sub_band_start])) ? sqrt(nrg_ref_pvc[c][t] * tmp / frame_data->qmapped_pvc[c][t]) : nrg_tone_pvc[c][t]); } else { if (noise_absc_flag) { nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] / (nrg_est_pvc[c][t] + 1)); } else { nrg_gain_pvc[c][t] = (FLOAT32)sqrt( nrg_ref_pvc[c][t] * tmp / ((nrg_est_pvc[c][t] + 1) * frame_data->qmapped_pvc[c][t])); } } noise_level_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp); c++; } } for (c = 0; c < (*gate_mode)[limiter_band]; c++) { p_ref = p_est = 0.0f; p_adj = 0; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { p_ref += nrg_ref_pvc[k][t]; p_est += nrg_est_pvc[k][t]; } avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS)); g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains]; g_max > 1.0e5f ? g_max = 1.0e5f : 0; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { if (g_max <= nrg_gain_pvc[k][t]) { noise_level_pvc[k][t] = noise_level_pvc[k][t] * (g_max / nrg_gain_pvc[k][t]); nrg_gain_pvc[k][t] = g_max; } p_adj += nrg_gain_pvc[k][t] * nrg_gain_pvc[k][t] * nrg_est_pvc[k][t]; if (nrg_tone_pvc[k][t]) { p_adj += nrg_tone_pvc[k][t] * nrg_tone_pvc[k][t]; } else if (!noise_absc_flag) { p_adj += noise_level_pvc[k][t] * noise_level_pvc[k][t]; } } boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS)); boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { nrg_gain_pvc[k][t] *= boost_gain; noise_level_pvc[k][t] *= boost_gain; nrg_tone_pvc[k][t] *= boost_gain; } } } if (esbr_start_up_pvc) { for (n = 0; n < 4; n++) { for (c = 0; c < num_subbands; c++) { (*e_gain)[n][c] = nrg_gain_pvc[c][start_pos]; (*noise_buf)[n][c] = noise_level_pvc[c][start_pos]; } } esbr_start_up_pvc = 0; esbr_start_up = 0; } for (l = rate * pvc_frame_info->border_vec[i]; l < rate * pvc_frame_info->border_vec[1 + i]; l++) { ptr_real_buf = *(input_real + l) + sub_band_start; ptr_imag_buf = *(input_imag + l) + sub_band_start; slot_idx = (WORD32)l / rate; if (sub_band_start & 1) { freq_inv = -1; } for (k = 0; k < num_subbands; k++) { (*e_gain)[4][k] = nrg_gain_pvc[k][slot_idx]; (*noise_buf)[4][k] = noise_level_pvc[k][slot_idx]; c = 0, sb_gain = 0, sb_noise = 0; for (n = 4 - smooth_length; n <= 4; n++) { sb_gain += (*e_gain)[n][k] * smooth_filt[c]; sb_noise += (*noise_buf)[n][k] * smooth_filt[c++]; } phase_index = (phase_index + 1) & 511; sb_noise = (nrg_tone_pvc[k][slot_idx] != 0 || noise_absc_flag) ? 0 : sb_noise; *ptr_real_buf = *ptr_real_buf * sb_gain + sb_noise * ixheaacd_random_phase[phase_index][0] + nrg_tone_pvc[k][slot_idx] * ixheaacd_hphase_tbl[0][harm_index]; *ptr_imag_buf = *ptr_imag_buf * sb_gain + sb_noise * ixheaacd_random_phase[phase_index][1] + nrg_tone_pvc[k][slot_idx] * freq_inv * ixheaacd_hphase_tbl[1][harm_index]; ptr_real_buf++; ptr_imag_buf++; freq_inv = -freq_inv; } harm_index = (harm_index + 1) & 3; memcpy(temp, (*e_gain)[0], 64 * sizeof(FLOAT32)); for (n = 0; n < 4; n++) { memcpy((*e_gain)[n], (*e_gain)[n + 1], 64 * sizeof(FLOAT32)); } memcpy((*e_gain)[4], temp, 64 * sizeof(FLOAT32)); memcpy(temp, (*noise_buf)[0], 64 * sizeof(FLOAT32)); for (n = 0; n < 4; n++) { memcpy((*noise_buf)[n], (*noise_buf)[n + 1], 64 * sizeof(FLOAT32)); } memcpy((*noise_buf)[4], temp, 64 * sizeof(FLOAT32)); } } } else { for (i = 0; i < num_sf_bands[HIGH]; i++) { li = frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_hi[i]; ui = frame_data->pstr_sbr_header->pstr_freq_band_data ->freq_band_tbl_hi[i + 1]; tmp = ((ui + li) - (sub_band_start << 1)) >> 1; if ((tmp >= 64) || (tmp < 0)) return -1; harmonics[tmp] = add_harmonics[i]; } for (i = 0; i < bs_num_env; i++) { if (kk > MAX_NOISE_ENVELOPES) return IA_FATAL_ERROR; if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk]) kk++, next++; noise_absc_flag = (i == trans_env || i == frame_data->env_short_flag_prev) ? 1 : 0; smooth_length = (noise_absc_flag ? 0 : smoothing_length); smooth_filt = *ixheaacd_fir_table[smooth_length]; if (sbr_mode == ORIG_SBR) { for (c = 0, o = 0, j = 0; j < num_sf_bands[p_frame_info->freq_res[i]]; j++) { double tmp; li = freq_band_table[p_frame_info->freq_res[i]][j]; ui = freq_band_table[p_frame_info->freq_res[i]][j + 1]; ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data ->freq_band_tbl_noise[o + 1]; for (flag = 0, k = li; k < ui; k++) { for (nrg = 0, l = rate * p_frame_info->border_vec[i]; l < rate * p_frame_info->border_vec[i + 1]; l++) { nrg += (input_real[l][k] * input_real[l][k]) + (input_imag[l][k] * input_imag[l][k]); } flag = (harmonics[c] && (i >= trans_env || (*harm_flag_prev)[c + sub_band_start])) ? 1 : flag; nrg_est[c++] = nrg / (rate * p_frame_info->border_vec[i + 1] - rate * p_frame_info->border_vec[i]); } if (!int_mode) { for (nrg = 0, k = c - (ui - li); k < c; k++) { nrg += nrg_est[k]; } nrg /= (ui - li); } c -= (ui - li); for (k = 0; k < ui - li; k++) { o = (k + li >= ui2) ? o + 1 : o; ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data ->freq_band_tbl_noise[o + 1]; nrg_ref[c] = sfb_nrg[m]; nrg_est[c] = (!int_mode) ? nrg : nrg_est[c]; nrg_tone[c] = 0; tmp = noise_floor[next * num_nf_bands + o] / (1 + noise_floor[next * num_nf_bands + o]); if (flag) { nrg_gain[c] = (FLOAT32)sqrt(nrg_ref[c] * tmp / (nrg_est[c] + 1)); nrg_tone[c] = (FLOAT32)( (harmonics[c] && (i >= trans_env || (*harm_flag_prev)[c + sub_band_start])) ? sqrt(nrg_ref[c] * tmp / noise_floor[next * num_nf_bands + o]) : nrg_tone[c]); } else { if (noise_absc_flag) nrg_gain[c] = (FLOAT32)sqrt(nrg_ref[c] / (nrg_est[c] + 1)); else nrg_gain[c] = (FLOAT32)sqrt(nrg_ref[c] * tmp / ((nrg_est[c] + 1) * (noise_floor[next * num_nf_bands + o]))); } noise_level[c] = (FLOAT32)sqrt(nrg_ref[c] * tmp); c++; } m++; } for (c = 0; c < (*gate_mode)[limiter_band]; c++) { p_ref = p_est = 0; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { p_ref += nrg_ref[k]; p_est += nrg_est[k]; } avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS)); g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains]; g_max > 1.0e5f ? g_max = 1.0e5f : 0; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { if (g_max <= nrg_gain[k]) { noise_level[k] = noise_level[k] * (g_max / nrg_gain[k]); nrg_gain[k] = g_max; } } p_adj = 0; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { p_adj += nrg_gain[k] * nrg_gain[k] * nrg_est[k]; if (nrg_tone[k]) p_adj += nrg_tone[k] * nrg_tone[k]; else if (!noise_absc_flag) p_adj += noise_level[k] * noise_level[k]; } boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS)); boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain; for (k = (*lim_table)[limiter_band][c]; k < (*lim_table)[limiter_band][c + 1]; k++) { nrg_gain[k] *= boost_gain; noise_level[k] *= boost_gain; nrg_tone[k] *= boost_gain; } } if (esbr_start_up) { for (n = 0; n < 4; n++) { memcpy((*e_gain)[n], nrg_gain, num_subbands * sizeof(FLOAT32)); memcpy((*noise_buf)[n], noise_level, num_subbands * sizeof(FLOAT32)); } esbr_start_up = 0; esbr_start_up_pvc = 0; } for (l = rate * p_frame_info->border_vec[i]; l < rate * p_frame_info->border_vec[i + 1]; l++) { ptr_real_buf = *(input_real + l) + sub_band_start; ptr_imag_buf = *(input_imag + l) + sub_band_start; for (k = 0; k < num_subbands; k++) { (*e_gain)[4][k] = nrg_gain[k]; (*noise_buf)[4][k] = noise_level[k]; c = 0, sb_gain = 0, sb_noise = 0; for (n = 4 - smooth_length; n <= 4; n++) { sb_gain += (*e_gain)[n][k] * smooth_filt[c]; sb_noise += (*noise_buf)[n][k] * smooth_filt[c++]; } phase_index = (phase_index + 1) & 511; sb_noise = (nrg_tone[k] != 0 || noise_absc_flag) ? 0 : sb_noise; *ptr_real_buf = *ptr_real_buf * sb_gain + sb_noise * ixheaacd_random_phase[phase_index][0]; *ptr_imag_buf = *ptr_imag_buf * sb_gain + sb_noise * ixheaacd_random_phase[phase_index][1]; ptr_real_buf++; ptr_imag_buf++; } memcpy(temp, (*e_gain)[0], 64 * sizeof(FLOAT32)); for (n = 0; n < 4; n++) memcpy((*e_gain)[n], (*e_gain)[n + 1], 64 * sizeof(FLOAT32)); memcpy((*e_gain)[4], temp, 64 * sizeof(FLOAT32)); memcpy(temp, (*noise_buf)[0], 64 * sizeof(FLOAT32)); for (n = 0; n < 4; n++) memcpy((*noise_buf)[n], (*noise_buf)[n + 1], 64 * sizeof(FLOAT32)); memcpy((*noise_buf)[4], temp, 64 * sizeof(FLOAT32)); } ixheaacd_apply_inter_tes( *(input_real1 + rate * p_frame_info->border_vec[i]), *(input_imag1 + rate * p_frame_info->border_vec[i]), *(input_real + rate * p_frame_info->border_vec[i]), *(input_imag + rate * p_frame_info->border_vec[i]), rate * p_frame_info->border_vec[i + 1] - rate * p_frame_info->border_vec[i], sub_band_start, num_subbands, frame_data->inter_temp_shape_mode[i]); for (l = rate * p_frame_info->border_vec[i]; l < rate * p_frame_info->border_vec[i + 1]; l++) { ptr_real_buf = *(input_real + l) + sub_band_start; ptr_imag_buf = *(input_imag + l) + sub_band_start; if (sub_band_start & 1) { freq_inv = -1; } for (k = 0; k < num_subbands; k++) { *ptr_real_buf += nrg_tone[k] * ixheaacd_hphase_tbl[0][harm_index]; *ptr_imag_buf += nrg_tone[k] * freq_inv * ixheaacd_hphase_tbl[1][harm_index]; ptr_real_buf++; ptr_imag_buf++; freq_inv = -freq_inv; } harm_index = (harm_index + 1) & 3; } } } } for (i = 0; i < 64; i++) { (*harm_flag_varlen_prev)[i] = (*harm_flag_prev)[i]; (*harm_flag_varlen)[i] = harmonics[i]; } memcpy(&((*harm_flag_prev)[0]) + sub_band_start, harmonics, (64 - sub_band_start) * sizeof(WORD8)); if (trans_env == bs_num_env) { frame_data->env_short_flag_prev = 0; } else { frame_data->env_short_flag_prev = -1; } memcpy((VOID *)&frame_data->str_frame_info_prev, (VOID *)&frame_data->str_frame_info_details, sizeof(ia_frame_info_struct)); if (frame_data->str_frame_info_details.num_env == 1) { frame_data->var_len_id_prev = 0; } else if (frame_data->str_frame_info_details.num_env == 2) { frame_data->var_len_id_prev = 1; } for (i = 0; i < num_nf_bands; i++) { prev_env_noise_level[i] = frame_data->flt_noise_floor [(frame_data->str_frame_info_details.num_noise_env - 1) * num_nf_bands + i]; } frame_data->harm_index = harm_index; frame_data->phase_index = phase_index; frame_data->pstr_sbr_header->esbr_start_up = esbr_start_up; frame_data->pstr_sbr_header->esbr_start_up_pvc = esbr_start_up_pvc; return 0; } IA_ERRORCODE ixheaacd_createlimiterbands( WORD32 lim_table[4][12 + 1], WORD32 gate_mode[4], WORD16 *freq_band_tbl, WORD32 ixheaacd_num_bands, WORD32 x_over_qmf[MAX_NUM_PATCHES], WORD32 b_patching_mode, WORD32 upsamp_4_flag, struct ixheaacd_lpp_trans_patch *patch_param) { WORD32 i, j, k, is_patch_border[2]; WORD32 patch_borders[MAX_NUM_PATCHES + 1]; WORD32 temp_limiter_band_calc[32 + MAX_NUM_PATCHES + 1]; double num_octave; WORD32 num_patches; WORD32 sub_band_start = freq_band_tbl[0]; WORD32 sub_band_end = freq_band_tbl[ixheaacd_num_bands]; const double log2 = log(2.0); const double limbnd_per_oct[4] = {0, 1.2, 2.0, 3.0}; if (!b_patching_mode && (x_over_qmf != NULL)) { num_patches = 0; if (upsamp_4_flag) { for (i = 1; i < MAX_NUM_PATCHES; i++) if (x_over_qmf[i] != 0) num_patches++; } else { for (i = 1; i < 4; i++) if (x_over_qmf[i] != 0) num_patches++; } for (i = 0; i < num_patches; i++) { patch_borders[i] = x_over_qmf[i] - sub_band_start; } } else { num_patches = patch_param->num_patches; for (i = 0; i < num_patches; i++) { patch_borders[i] = patch_param->start_subband[i] - sub_band_start; } } patch_borders[i] = sub_band_end - sub_band_start; lim_table[0][0] = freq_band_tbl[0] - sub_band_start; lim_table[0][1] = freq_band_tbl[ixheaacd_num_bands] - sub_band_start; gate_mode[0] = 1; for (i = 1; i < 4; i++) { for (k = 0; k <= ixheaacd_num_bands; k++) { temp_limiter_band_calc[k] = freq_band_tbl[k] - sub_band_start; } for (k = 1; k < num_patches; k++) { temp_limiter_band_calc[ixheaacd_num_bands + k] = patch_borders[k]; } gate_mode[i] = ixheaacd_num_bands + num_patches - 1; ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1); for (j = 1; j <= gate_mode[i]; j++) { num_octave = log((double)(temp_limiter_band_calc[j] + sub_band_start) / (temp_limiter_band_calc[j - 1] + sub_band_start)) / log2; if (num_octave * limbnd_per_oct[i] < 0.49) { if (temp_limiter_band_calc[j] == temp_limiter_band_calc[j - 1]) { temp_limiter_band_calc[j] = sub_band_end; ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1); gate_mode[i]--; j--; continue; } is_patch_border[0] = is_patch_border[1] = 0; for (k = 0; k <= num_patches; k++) { if (temp_limiter_band_calc[j - 1] == patch_borders[k]) { is_patch_border[0] = 1; break; } } for (k = 0; k <= num_patches; k++) { if (temp_limiter_band_calc[j] == patch_borders[k]) { is_patch_border[1] = 1; break; } } if (!is_patch_border[1]) { temp_limiter_band_calc[j] = sub_band_end; ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1); gate_mode[i]--; j--; } else if (!is_patch_border[0]) { temp_limiter_band_calc[j - 1] = sub_band_end; ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1); gate_mode[i]--; j--; } } } if (gate_mode[i] > 12) return IA_FATAL_ERROR; for (k = 0; k <= gate_mode[i]; k++) { lim_table[i][k] = temp_limiter_band_calc[k]; } } return IA_NO_ERROR; } VOID ixheaacd_apply_inter_tes(FLOAT32 *qmf_real1, FLOAT32 *qmf_imag1, FLOAT32 *qmf_real, FLOAT32 *qmf_imag, WORD32 num_sample, WORD32 sub_band_start, WORD32 num_subband, WORD32 gamma_idx) { WORD32 sub_band_end = sub_band_start + num_subband; FLOAT32 subsample_power_high[TIMESLOT_BUFFER_SIZE], subsample_power_low[TIMESLOT_BUFFER_SIZE]; FLOAT32 total_power_high = 0.0f; FLOAT32 total_power_low = 0.0f, total_power_high_after = 1.0e-6f; FLOAT32 gain[TIMESLOT_BUFFER_SIZE]; FLOAT32 gain_adj, gain_adj_2; FLOAT32 gamma = ixheaacd_q_gamma_table[gamma_idx]; WORD32 i, j; if (gamma > 0) { for (i = 0; i < num_sample; i++) { memcpy(&qmf_real[64 * i], &qmf_real1[64 * i], sub_band_start * sizeof(FLOAT32)); memcpy(&qmf_imag[64 * i], &qmf_imag1[64 * i], sub_band_start * sizeof(FLOAT32)); } for (i = 0; i < num_sample; i++) { subsample_power_low[i] = 0.0f; for (j = 0; j < sub_band_start; j++) { subsample_power_low[i] += qmf_real[64 * i + j] * qmf_real[64 * i + j]; subsample_power_low[i] += qmf_imag[64 * i + j] * qmf_imag[64 * i + j]; } subsample_power_high[i] = 0.0f; for (j = sub_band_start; j < sub_band_end; j++) { subsample_power_high[i] += qmf_real[64 * i + j] * qmf_real[64 * i + j]; subsample_power_high[i] += qmf_imag[64 * i + j] * qmf_imag[64 * i + j]; } total_power_low += subsample_power_low[i]; total_power_high += subsample_power_high[i]; } for (i = 0; i < num_sample; i++) { gain[i] = (FLOAT32)(sqrt(subsample_power_low[i] * num_sample / (total_power_low + 1.0e-6f))); } for (i = 0; i < num_sample; i++) { gain[i] = (FLOAT32)(1.0f + gamma * (gain[i] - 1.0f)); } for (i = 0; i < num_sample; i++) { if (gain[i] < 0.2f) { gain[i] = 0.2f; } subsample_power_high[i] *= gain[i] * gain[i]; total_power_high_after += subsample_power_high[i]; } gain_adj_2 = total_power_high / total_power_high_after; gain_adj = (FLOAT32)(sqrt(gain_adj_2)); for (i = 0; i < num_sample; i++) { gain[i] *= gain_adj; for (j = sub_band_start; j < sub_band_end; j++) { qmf_real[64 * i + j] *= gain[i]; qmf_imag[64 * i + j] *= gain[i]; } } } }