/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevc_itrans_recon.c * * @brief * Contains function definitions for inverse transform and reconstruction * * * @author * 100470 * * @par List of Functions: * - ihevc_itrans_recon_4x4_ttype1() * - ihevc_itrans_recon_4x4() * * @remarks * None * ******************************************************************************* */ #include <stdio.h> #include <string.h> #include "ihevc_typedefs.h" #include "ihevc_macros.h" #include "ihevc_platform_macros.h" #include "ihevc_defs.h" #include "ihevc_trans_tables.h" #include "ihevc_itrans_recon.h" #include "ihevc_func_selector.h" #include "ihevc_trans_macros.h" /* All the functions here are replicated from ihevc_itrans.c and modified to */ /* include reconstruction */ /** ******************************************************************************* * * @brief * This function performs Inverse transform type 1 (DST) and reconstruction * for 4x4 input block * * @par Description: * Performs inverse transform and adds the prediction data and clips output * to 8 bit * * @param[in] pi2_src * Input 4x4 coefficients * * @param[in] pi2_tmp * Temporary 4x4 buffer for storing inverse * * transform * 1st stage output * * @param[in] pu1_pred * Prediction 4x4 block * * @param[out] pu1_dst * Output 4x4 block * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_itrans_recon_4x4_ttype1(WORD16 *pi2_src, WORD16 *pi2_tmp, UWORD8 *pu1_pred, UWORD8 *pu1_dst, WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols, WORD32 zero_rows) { WORD32 i, c[4]; WORD32 add; WORD32 shift; WORD16 *pi2_tmp_orig; WORD32 trans_size; UNUSED(zero_rows); trans_size = TRANS_SIZE_4; pi2_tmp_orig = pi2_tmp; /* Inverse Transform 1st stage */ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(i = 0; i < trans_size; i++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { // Intermediate Variables c[0] = pi2_src[0] + pi2_src[2 * src_strd]; c[1] = pi2_src[2 * src_strd] + pi2_src[3 * src_strd]; c[2] = pi2_src[0] - pi2_src[3 * src_strd]; c[3] = 74 * pi2_src[src_strd]; pi2_tmp[0] = CLIP_S16((29 * c[0] + 55 * c[1] + c[3] + add) >> shift); pi2_tmp[1] = CLIP_S16((55 * c[2] - 29 * c[1] + c[3] + add) >> shift); pi2_tmp[2] = CLIP_S16((74 * (pi2_src[0] - pi2_src[2 * src_strd] + pi2_src[3 * src_strd]) + add) >> shift); pi2_tmp[3] = CLIP_S16((55 * c[0] + 29 * c[2] - c[3] + add) >> shift); } pi2_src++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); for(i = 0; i < trans_size; i++) { WORD32 itrans_out; // Intermediate Variables c[0] = pi2_tmp[0] + pi2_tmp[2 * trans_size]; c[1] = pi2_tmp[2 * trans_size] + pi2_tmp[3 * trans_size]; c[2] = pi2_tmp[0] - pi2_tmp[3 * trans_size]; c[3] = 74 * pi2_tmp[trans_size]; itrans_out = CLIP_S16((29 * c[0] + 55 * c[1] + c[3] + add) >> shift); pu1_dst[0] = CLIP_U8((itrans_out + pu1_pred[0])); itrans_out = CLIP_S16((55 * c[2] - 29 * c[1] + c[3] + add) >> shift); pu1_dst[1] = CLIP_U8((itrans_out + pu1_pred[1])); itrans_out = CLIP_S16((74 * (pi2_tmp[0] - pi2_tmp[2 * trans_size] + pi2_tmp[3 * trans_size]) + add) >> shift); pu1_dst[2] = CLIP_U8((itrans_out + pu1_pred[2])); itrans_out = CLIP_S16((55 * c[0] + 29 * c[2] - c[3] + add) >> shift); pu1_dst[3] = CLIP_U8((itrans_out + pu1_pred[3])); pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } /** ******************************************************************************* * * @brief * This function performs Inverse transform and reconstruction for 4x4 * input block * * @par Description: * Performs inverse transform and adds the prediction data and clips output * to 8 bit * * @param[in] pi2_src * Input 4x4 coefficients * * @param[in] pi2_tmp * Temporary 4x4 buffer for storing inverse * * transform * 1st stage output * * @param[in] pu1_pred * Prediction 4x4 block * * @param[out] pu1_dst * Output 4x4 block * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_itrans_recon_4x4(WORD16 *pi2_src, WORD16 *pi2_tmp, UWORD8 *pu1_pred, UWORD8 *pu1_dst, WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols, WORD32 zero_rows) { WORD32 j; WORD32 e[2], o[2]; WORD32 add; WORD32 shift; WORD16 *pi2_tmp_orig; WORD32 trans_size; UNUSED(zero_rows); trans_size = TRANS_SIZE_4; pi2_tmp_orig = pi2_tmp; /* Inverse Transform 1st stage */ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(j = 0; j < trans_size; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ o[0] = g_ai2_ihevc_trans_4[1][0] * pi2_src[src_strd] + g_ai2_ihevc_trans_4[3][0] * pi2_src[3 * src_strd]; o[1] = g_ai2_ihevc_trans_4[1][1] * pi2_src[src_strd] + g_ai2_ihevc_trans_4[3][1] * pi2_src[3 * src_strd]; e[0] = g_ai2_ihevc_trans_4[0][0] * pi2_src[0] + g_ai2_ihevc_trans_4[2][0] * pi2_src[2 * src_strd]; e[1] = g_ai2_ihevc_trans_4[0][1] * pi2_src[0] + g_ai2_ihevc_trans_4[2][1] * pi2_src[2 * src_strd]; pi2_tmp[0] = CLIP_S16(((e[0] + o[0] + add) >> shift)); pi2_tmp[1] = CLIP_S16(((e[1] + o[1] + add) >> shift)); pi2_tmp[2] = CLIP_S16(((e[1] - o[1] + add) >> shift)); pi2_tmp[3] = CLIP_S16(((e[0] - o[0] + add) >> shift)); } pi2_src++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); for(j = 0; j < trans_size; j++) { WORD32 itrans_out; /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ o[0] = g_ai2_ihevc_trans_4[1][0] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_4[3][0] * pi2_tmp[3 * trans_size]; o[1] = g_ai2_ihevc_trans_4[1][1] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_4[3][1] * pi2_tmp[3 * trans_size]; e[0] = g_ai2_ihevc_trans_4[0][0] * pi2_tmp[0] + g_ai2_ihevc_trans_4[2][0] * pi2_tmp[2 * trans_size]; e[1] = g_ai2_ihevc_trans_4[0][1] * pi2_tmp[0] + g_ai2_ihevc_trans_4[2][1] * pi2_tmp[2 * trans_size]; itrans_out = CLIP_S16(((e[0] + o[0] + add) >> shift)); pu1_dst[0] = CLIP_U8((itrans_out + pu1_pred[0])); itrans_out = CLIP_S16(((e[1] + o[1] + add) >> shift)); pu1_dst[1] = CLIP_U8((itrans_out + pu1_pred[1])); itrans_out = CLIP_S16(((e[1] - o[1] + add) >> shift)); pu1_dst[2] = CLIP_U8((itrans_out + pu1_pred[2])); itrans_out = CLIP_S16(((e[0] - o[0] + add) >> shift)); pu1_dst[3] = CLIP_U8((itrans_out + pu1_pred[3])); pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } }