/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevc_chroma_iquant_itrans_recon.c * * @brief * Contains function definitions for inverse quantization, inverse * transform and reconstruction of chroma interleaved data. * * @author * 100470 * * @par List of Functions: * - ihevc_chroma_iquant_itrans_recon_4x4() * * @remarks * None * ******************************************************************************* */ #include <stdio.h> #include <string.h> #include "ihevc_typedefs.h" #include "ihevc_macros.h" #include "ihevc_platform_macros.h" #include "ihevc_defs.h" #include "ihevc_trans_tables.h" #include "ihevc_chroma_iquant_itrans_recon.h" #include "ihevc_func_selector.h" #include "ihevc_trans_macros.h" /* All the functions work one component(U or V) of interleaved data depending upon pointers passed to it */ /* Data visualization */ /* U V U V U V U V */ /* U V U V U V U V */ /* U V U V U V U V */ /* U V U V U V U V */ /* If the pointer points to first byte of above stream (U) , functions will operate on U component */ /* If the pointer points to second byte of above stream (V) , functions will operate on V component */ /** ******************************************************************************* * * @brief * This function performs inverse quantization, inverse transform and * reconstruction for 4x4 input block * * @par Description: * Performs inverse quantization , inverse transform and adds the * prediction data and clips output to 8 bit * * @param[in] pi2_src * Input 4x4 coefficients * * @param[in] pi2_tmp * Temporary 4x4 buffer for storing inverse transform * 1st stage output * * @param[in] pu1_pred * Prediction 4x4 block * * @param[in] pi2_dequant_coeff * Dequant Coeffs * * @param[out] pu1_dst * Output 4x4 block * * @param[in] qp_div * Quantization parameter / 6 * * @param[in] qp_rem * Quantization parameter % 6 * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] zero_cols * Zero columns in pi2_src * * @param[in] zero_rows * Zero Rows in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_chroma_iquant_itrans_recon_4x4(WORD16 *pi2_src, WORD16 *pi2_tmp, UWORD8 *pu1_pred, WORD16 *pi2_dequant_coeff, UWORD8 *pu1_dst, WORD32 qp_div, /* qpscaled / 6 */ WORD32 qp_rem, /* qpscaled % 6 */ WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols, WORD32 zero_rows) { UNUSED(zero_rows); /* Inverse Transform */ { WORD32 j; WORD32 e[2], o[2]; WORD32 add; WORD32 shift; WORD16 *pi2_tmp_orig; WORD32 shift_iq; WORD32 trans_size; /* Inverse Quantization constants */ { WORD32 log2_trans_size, bit_depth; log2_trans_size = 2; bit_depth = 8 + 0; shift_iq = bit_depth + log2_trans_size - 5; } trans_size = TRANS_SIZE_4; pi2_tmp_orig = pi2_tmp; /* Inverse Transform 1st stage */ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(j = 0; j < trans_size; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { WORD32 iq_tmp_1, iq_tmp_2; /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ IQUANT_4x4(iq_tmp_1, pi2_src[1 * src_strd], pi2_dequant_coeff[1 * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); IQUANT_4x4(iq_tmp_2, pi2_src[3 * src_strd], pi2_dequant_coeff[3 * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); o[0] = g_ai2_ihevc_trans_4[1][0] * iq_tmp_1 + g_ai2_ihevc_trans_4[3][0] * iq_tmp_2; o[1] = g_ai2_ihevc_trans_4[1][1] * iq_tmp_1 + g_ai2_ihevc_trans_4[3][1] * iq_tmp_2; IQUANT_4x4(iq_tmp_1, pi2_src[0 * src_strd], pi2_dequant_coeff[0 * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); IQUANT_4x4(iq_tmp_2, pi2_src[2 * src_strd], pi2_dequant_coeff[2 * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); e[0] = g_ai2_ihevc_trans_4[0][0] * iq_tmp_1 + g_ai2_ihevc_trans_4[2][0] * iq_tmp_2; e[1] = g_ai2_ihevc_trans_4[0][1] * iq_tmp_1 + g_ai2_ihevc_trans_4[2][1] * iq_tmp_2; pi2_tmp[0] = CLIP_S16(((e[0] + o[0] + add) >> shift)); pi2_tmp[1] = CLIP_S16(((e[1] + o[1] + add) >> shift)); pi2_tmp[2] = CLIP_S16(((e[1] - o[1] + add) >> shift)); pi2_tmp[3] = CLIP_S16(((e[0] - o[0] + add) >> shift)); } pi2_src++; pi2_dequant_coeff++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); for(j = 0; j < trans_size; j++) { WORD32 itrans_out; /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ o[0] = g_ai2_ihevc_trans_4[1][0] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_4[3][0] * pi2_tmp[3 * trans_size]; o[1] = g_ai2_ihevc_trans_4[1][1] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_4[3][1] * pi2_tmp[3 * trans_size]; e[0] = g_ai2_ihevc_trans_4[0][0] * pi2_tmp[0] + g_ai2_ihevc_trans_4[2][0] * pi2_tmp[2 * trans_size]; e[1] = g_ai2_ihevc_trans_4[0][1] * pi2_tmp[0] + g_ai2_ihevc_trans_4[2][1] * pi2_tmp[2 * trans_size]; itrans_out = CLIP_S16(((e[0] + o[0] + add) >> shift)); pu1_dst[0 * 2] = CLIP_U8((itrans_out + pu1_pred[0 * 2])); itrans_out = CLIP_S16(((e[1] + o[1] + add) >> shift)); pu1_dst[1 * 2] = CLIP_U8((itrans_out + pu1_pred[1 * 2])); itrans_out = CLIP_S16(((e[1] - o[1] + add) >> shift)); pu1_dst[2 * 2] = CLIP_U8((itrans_out + pu1_pred[2 * 2])); itrans_out = CLIP_S16(((e[0] - o[0] + add) >> shift)); pu1_dst[3 * 2] = CLIP_U8((itrans_out + pu1_pred[3 * 2])); pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } }