/* ----------------------------------------------------------------------- ffi_sysv.c - Copyright (C) 2013 IBM Copyright (C) 2011 Anthony Green Copyright (C) 2011 Kyle Moffett Copyright (C) 2008 Red Hat, Inc Copyright (C) 2007, 2008 Free Software Foundation, Inc Copyright (c) 1998 Geoffrey Keating PowerPC Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include "ffi.h" #ifndef POWERPC64 #include "ffi_common.h" #include "ffi_powerpc.h" /* About the SYSV ABI. */ #define ASM_NEEDS_REGISTERS 4 #define NUM_GPR_ARG_REGISTERS 8 #define NUM_FPR_ARG_REGISTERS 8 #if HAVE_LONG_DOUBLE_VARIANT && FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE /* Adjust size of ffi_type_longdouble. */ void FFI_HIDDEN ffi_prep_types_sysv (ffi_abi abi) { if ((abi & (FFI_SYSV | FFI_SYSV_LONG_DOUBLE_128)) == FFI_SYSV) { ffi_type_longdouble.size = 8; ffi_type_longdouble.alignment = 8; } else { ffi_type_longdouble.size = 16; ffi_type_longdouble.alignment = 16; } } #endif /* Transform long double, double and float to other types as per abi. */ static int translate_float (int abi, int type) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE if (type == FFI_TYPE_LONGDOUBLE && (abi & FFI_SYSV_LONG_DOUBLE_128) == 0) type = FFI_TYPE_DOUBLE; #endif if ((abi & FFI_SYSV_SOFT_FLOAT) != 0) { if (type == FFI_TYPE_FLOAT) type = FFI_TYPE_UINT32; else if (type == FFI_TYPE_DOUBLE) type = FFI_TYPE_UINT64; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE else if (type == FFI_TYPE_LONGDOUBLE) type = FFI_TYPE_UINT128; } else if ((abi & FFI_SYSV_IBM_LONG_DOUBLE) == 0) { if (type == FFI_TYPE_LONGDOUBLE) type = FFI_TYPE_STRUCT; #endif } return type; } /* Perform machine dependent cif processing */ static ffi_status ffi_prep_cif_sysv_core (ffi_cif *cif) { ffi_type **ptr; unsigned bytes; unsigned i, fparg_count = 0, intarg_count = 0; unsigned flags = cif->flags; unsigned struct_copy_size = 0; unsigned type = cif->rtype->type; unsigned size = cif->rtype->size; /* The machine-independent calculation of cif->bytes doesn't work for us. Redo the calculation. */ /* Space for the frame pointer, callee's LR, and the asm's temp regs. */ bytes = (2 + ASM_NEEDS_REGISTERS) * sizeof (int); /* Space for the GPR registers. */ bytes += NUM_GPR_ARG_REGISTERS * sizeof (int); /* Return value handling. The rules for SYSV are as follows: - 32-bit (or less) integer values are returned in gpr3; - Structures of size <= 4 bytes also returned in gpr3; - 64-bit integer values and structures between 5 and 8 bytes are returned in gpr3 and gpr4; - Larger structures are allocated space and a pointer is passed as the first argument. - Single/double FP values are returned in fpr1; - long doubles (if not equivalent to double) are returned in fpr1,fpr2 for Linux and as for large structs for SysV. */ type = translate_float (cif->abi, type); switch (type) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: flags |= FLAG_RETURNS_128BITS; /* Fall through. */ #endif case FFI_TYPE_DOUBLE: flags |= FLAG_RETURNS_64BITS; /* Fall through. */ case FFI_TYPE_FLOAT: flags |= FLAG_RETURNS_FP; #ifdef __NO_FPRS__ return FFI_BAD_ABI; #endif break; case FFI_TYPE_UINT128: flags |= FLAG_RETURNS_128BITS; /* Fall through. */ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: flags |= FLAG_RETURNS_64BITS; break; case FFI_TYPE_STRUCT: /* The final SYSV ABI says that structures smaller or equal 8 bytes are returned in r3/r4. A draft ABI used by linux instead returns them in memory. */ if ((cif->abi & FFI_SYSV_STRUCT_RET) != 0 && size <= 8) { flags |= FLAG_RETURNS_SMST; break; } intarg_count++; flags |= FLAG_RETVAL_REFERENCE; /* Fall through. */ case FFI_TYPE_VOID: flags |= FLAG_RETURNS_NOTHING; break; default: /* Returns 32-bit integer, or similar. Nothing to do here. */ break; } /* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest goes on the stack. Structures and long doubles (if not equivalent to double) are passed as a pointer to a copy of the structure. Stuff on the stack needs to keep proper alignment. */ for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) { unsigned short typenum = (*ptr)->type; typenum = translate_float (cif->abi, typenum); switch (typenum) { #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: fparg_count++; /* Fall thru */ #endif case FFI_TYPE_DOUBLE: fparg_count++; /* If this FP arg is going on the stack, it must be 8-byte-aligned. */ if (fparg_count > NUM_FPR_ARG_REGISTERS && intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count % 2 != 0) intarg_count++; #ifdef __NO_FPRS__ return FFI_BAD_ABI; #endif break; case FFI_TYPE_FLOAT: fparg_count++; #ifdef __NO_FPRS__ return FFI_BAD_ABI; #endif break; case FFI_TYPE_UINT128: /* A long double in FFI_LINUX_SOFT_FLOAT can use only a set of four consecutive gprs. If we do not have enough, we have to adjust the intarg_count value. */ if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3 && intarg_count < NUM_GPR_ARG_REGISTERS) intarg_count = NUM_GPR_ARG_REGISTERS; intarg_count += 4; break; case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: /* 'long long' arguments are passed as two words, but either both words must fit in registers or both go on the stack. If they go on the stack, they must be 8-byte-aligned. Also, only certain register pairs can be used for passing long long int -- specifically (r3,r4), (r5,r6), (r7,r8), (r9,r10). */ if (intarg_count == NUM_GPR_ARG_REGISTERS-1 || intarg_count % 2 != 0) intarg_count++; intarg_count += 2; break; case FFI_TYPE_STRUCT: /* We must allocate space for a copy of these to enforce pass-by-value. Pad the space up to a multiple of 16 bytes (the maximum alignment required for anything under the SYSV ABI). */ struct_copy_size += ((*ptr)->size + 15) & ~0xF; /* Fall through (allocate space for the pointer). */ case FFI_TYPE_POINTER: case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_UINT16: case FFI_TYPE_SINT16: case FFI_TYPE_UINT8: case FFI_TYPE_SINT8: /* Everything else is passed as a 4-byte word in a GPR, either the object itself or a pointer to it. */ intarg_count++; break; default: FFI_ASSERT (0); } } if (fparg_count != 0) flags |= FLAG_FP_ARGUMENTS; if (intarg_count > 4) flags |= FLAG_4_GPR_ARGUMENTS; if (struct_copy_size != 0) flags |= FLAG_ARG_NEEDS_COPY; /* Space for the FPR registers, if needed. */ if (fparg_count != 0) bytes += NUM_FPR_ARG_REGISTERS * sizeof (double); /* Stack space. */ if (intarg_count > NUM_GPR_ARG_REGISTERS) bytes += (intarg_count - NUM_GPR_ARG_REGISTERS) * sizeof (int); if (fparg_count > NUM_FPR_ARG_REGISTERS) bytes += (fparg_count - NUM_FPR_ARG_REGISTERS) * sizeof (double); /* The stack space allocated needs to be a multiple of 16 bytes. */ bytes = (bytes + 15) & ~0xF; /* Add in the space for the copied structures. */ bytes += struct_copy_size; cif->flags = flags; cif->bytes = bytes; return FFI_OK; } ffi_status FFI_HIDDEN ffi_prep_cif_sysv (ffi_cif *cif) { if ((cif->abi & FFI_SYSV) == 0) { /* This call is from old code. Translate to new ABI values. */ cif->flags |= FLAG_COMPAT; switch (cif->abi) { default: return FFI_BAD_ABI; case FFI_COMPAT_SYSV: cif->abi = FFI_SYSV | FFI_SYSV_STRUCT_RET | FFI_SYSV_LONG_DOUBLE_128; break; case FFI_COMPAT_GCC_SYSV: cif->abi = FFI_SYSV | FFI_SYSV_LONG_DOUBLE_128; break; case FFI_COMPAT_LINUX: cif->abi = (FFI_SYSV | FFI_SYSV_IBM_LONG_DOUBLE | FFI_SYSV_LONG_DOUBLE_128); break; case FFI_COMPAT_LINUX_SOFT_FLOAT: cif->abi = (FFI_SYSV | FFI_SYSV_SOFT_FLOAT | FFI_SYSV_IBM_LONG_DOUBLE | FFI_SYSV_LONG_DOUBLE_128); break; } } return ffi_prep_cif_sysv_core (cif); } /* ffi_prep_args_SYSV is called by the assembly routine once stack space has been allocated for the function's arguments. The stack layout we want looks like this: | Return address from ffi_call_SYSV 4bytes | higher addresses |--------------------------------------------| | Previous backchain pointer 4 | stack pointer here |--------------------------------------------|<+ <<< on entry to | Saved r28-r31 4*4 | | ffi_call_SYSV |--------------------------------------------| | | GPR registers r3-r10 8*4 | | ffi_call_SYSV |--------------------------------------------| | | FPR registers f1-f8 (optional) 8*8 | | |--------------------------------------------| | stack | | Space for copied structures | | grows | |--------------------------------------------| | down V | Parameters that didn't fit in registers | | |--------------------------------------------| | lower addresses | Space for callee's LR 4 | | |--------------------------------------------| | stack pointer here | Current backchain pointer 4 |-/ during |--------------------------------------------| <<< ffi_call_SYSV */ void FFI_HIDDEN ffi_prep_args_SYSV (extended_cif *ecif, unsigned *const stack) { const unsigned bytes = ecif->cif->bytes; const unsigned flags = ecif->cif->flags; typedef union { char *c; unsigned *u; long long *ll; float *f; double *d; } valp; /* 'stacktop' points at the previous backchain pointer. */ valp stacktop; /* 'gpr_base' points at the space for gpr3, and grows upwards as we use GPR registers. */ valp gpr_base; int intarg_count; #ifndef __NO_FPRS__ /* 'fpr_base' points at the space for fpr1, and grows upwards as we use FPR registers. */ valp fpr_base; int fparg_count; #endif /* 'copy_space' grows down as we put structures in it. It should stay 16-byte aligned. */ valp copy_space; /* 'next_arg' grows up as we put parameters in it. */ valp next_arg; int i; ffi_type **ptr; #ifndef __NO_FPRS__ double double_tmp; #endif union { void **v; char **c; signed char **sc; unsigned char **uc; signed short **ss; unsigned short **us; unsigned int **ui; long long **ll; float **f; double **d; } p_argv; size_t struct_copy_size; unsigned gprvalue; stacktop.c = (char *) stack + bytes; gpr_base.u = stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS; intarg_count = 0; #ifndef __NO_FPRS__ fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS; fparg_count = 0; copy_space.c = ((flags & FLAG_FP_ARGUMENTS) ? fpr_base.c : gpr_base.c); #else copy_space.c = gpr_base.c; #endif next_arg.u = stack + 2; /* Check that everything starts aligned properly. */ FFI_ASSERT (((unsigned long) (char *) stack & 0xF) == 0); FFI_ASSERT (((unsigned long) copy_space.c & 0xF) == 0); FFI_ASSERT (((unsigned long) stacktop.c & 0xF) == 0); FFI_ASSERT ((bytes & 0xF) == 0); FFI_ASSERT (copy_space.c >= next_arg.c); /* Deal with return values that are actually pass-by-reference. */ if (flags & FLAG_RETVAL_REFERENCE) { *gpr_base.u++ = (unsigned long) (char *) ecif->rvalue; intarg_count++; } /* Now for the arguments. */ p_argv.v = ecif->avalue; for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs; i > 0; i--, ptr++, p_argv.v++) { unsigned int typenum = (*ptr)->type; typenum = translate_float (ecif->cif->abi, typenum); /* Now test the translated value */ switch (typenum) { #ifndef __NO_FPRS__ # if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: double_tmp = (*p_argv.d)[0]; if (fparg_count >= NUM_FPR_ARG_REGISTERS - 1) { if (intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count % 2 != 0) { intarg_count++; next_arg.u++; } *next_arg.d = double_tmp; next_arg.u += 2; double_tmp = (*p_argv.d)[1]; *next_arg.d = double_tmp; next_arg.u += 2; } else { *fpr_base.d++ = double_tmp; double_tmp = (*p_argv.d)[1]; *fpr_base.d++ = double_tmp; } fparg_count += 2; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; # endif case FFI_TYPE_DOUBLE: double_tmp = **p_argv.d; if (fparg_count >= NUM_FPR_ARG_REGISTERS) { if (intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count % 2 != 0) { intarg_count++; next_arg.u++; } *next_arg.d = double_tmp; next_arg.u += 2; } else *fpr_base.d++ = double_tmp; fparg_count++; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; case FFI_TYPE_FLOAT: double_tmp = **p_argv.f; if (fparg_count >= NUM_FPR_ARG_REGISTERS) { *next_arg.f = (float) double_tmp; next_arg.u += 1; intarg_count++; } else *fpr_base.d++ = double_tmp; fparg_count++; FFI_ASSERT (flags & FLAG_FP_ARGUMENTS); break; #endif /* have FPRs */ case FFI_TYPE_UINT128: /* The soft float ABI for long doubles works like this, a long double is passed in four consecutive GPRs if available. A maximum of 2 long doubles can be passed in gprs. If we do not have 4 GPRs left, the long double is passed on the stack, 4-byte aligned. */ { unsigned int int_tmp; unsigned int ii; if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3) { if (intarg_count < NUM_GPR_ARG_REGISTERS) intarg_count = NUM_GPR_ARG_REGISTERS; for (ii = 0; ii < 4; ii++) { int_tmp = (*p_argv.ui)[ii]; *next_arg.u++ = int_tmp; } } else { for (ii = 0; ii < 4; ii++) { int_tmp = (*p_argv.ui)[ii]; *gpr_base.u++ = int_tmp; } } intarg_count += 4; break; } case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: if (intarg_count == NUM_GPR_ARG_REGISTERS-1) intarg_count++; if (intarg_count >= NUM_GPR_ARG_REGISTERS) { if (intarg_count % 2 != 0) { intarg_count++; next_arg.u++; } *next_arg.ll = **p_argv.ll; next_arg.u += 2; } else { /* The abi states only certain register pairs can be used for passing long long int specifically (r3,r4), (r5,r6), (r7,r8), (r9,r10). If next arg is long long but not correct starting register of pair then skip until the proper starting register. */ if (intarg_count % 2 != 0) { intarg_count ++; gpr_base.u++; } *gpr_base.ll++ = **p_argv.ll; } intarg_count += 2; break; case FFI_TYPE_STRUCT: struct_copy_size = ((*ptr)->size + 15) & ~0xF; copy_space.c -= struct_copy_size; memcpy (copy_space.c, *p_argv.c, (*ptr)->size); gprvalue = (unsigned long) copy_space.c; FFI_ASSERT (copy_space.c > next_arg.c); FFI_ASSERT (flags & FLAG_ARG_NEEDS_COPY); goto putgpr; case FFI_TYPE_UINT8: gprvalue = **p_argv.uc; goto putgpr; case FFI_TYPE_SINT8: gprvalue = **p_argv.sc; goto putgpr; case FFI_TYPE_UINT16: gprvalue = **p_argv.us; goto putgpr; case FFI_TYPE_SINT16: gprvalue = **p_argv.ss; goto putgpr; case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_POINTER: gprvalue = **p_argv.ui; putgpr: if (intarg_count >= NUM_GPR_ARG_REGISTERS) *next_arg.u++ = gprvalue; else *gpr_base.u++ = gprvalue; intarg_count++; break; } } /* Check that we didn't overrun the stack... */ FFI_ASSERT (copy_space.c >= next_arg.c); FFI_ASSERT (gpr_base.u <= stacktop.u - ASM_NEEDS_REGISTERS); /* The assert below is testing that the number of integer arguments agrees with the number found in ffi_prep_cif_machdep(). However, intarg_count is incremented whenever we place an FP arg on the stack, so account for that before our assert test. */ #ifndef __NO_FPRS__ if (fparg_count > NUM_FPR_ARG_REGISTERS) intarg_count -= fparg_count - NUM_FPR_ARG_REGISTERS; FFI_ASSERT (fpr_base.u <= stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS); #endif FFI_ASSERT (flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4); } #define MIN_CACHE_LINE_SIZE 8 static void flush_icache (char *wraddr, char *xaddr, int size) { int i; for (i = 0; i < size; i += MIN_CACHE_LINE_SIZE) __asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;" : : "r" (xaddr + i), "r" (wraddr + i) : "memory"); __asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;" "sync;" "isync;" : : "r"(xaddr + size - 1), "r"(wraddr + size - 1) : "memory"); } ffi_status FFI_HIDDEN ffi_prep_closure_loc_sysv (ffi_closure *closure, ffi_cif *cif, void (*fun) (ffi_cif *, void *, void **, void *), void *user_data, void *codeloc) { unsigned int *tramp; if (cif->abi < FFI_SYSV || cif->abi >= FFI_LAST_ABI) return FFI_BAD_ABI; tramp = (unsigned int *) &closure->tramp[0]; tramp[0] = 0x7c0802a6; /* mflr r0 */ tramp[1] = 0x4800000d; /* bl 10 <trampoline_initial+0x10> */ tramp[4] = 0x7d6802a6; /* mflr r11 */ tramp[5] = 0x7c0803a6; /* mtlr r0 */ tramp[6] = 0x800b0000; /* lwz r0,0(r11) */ tramp[7] = 0x816b0004; /* lwz r11,4(r11) */ tramp[8] = 0x7c0903a6; /* mtctr r0 */ tramp[9] = 0x4e800420; /* bctr */ *(void **) &tramp[2] = (void *) ffi_closure_SYSV; /* function */ *(void **) &tramp[3] = codeloc; /* context */ /* Flush the icache. */ flush_icache ((char *)tramp, (char *)codeloc, FFI_TRAMPOLINE_SIZE); closure->cif = cif; closure->fun = fun; closure->user_data = user_data; return FFI_OK; } /* Basically the trampoline invokes ffi_closure_SYSV, and on entry, r11 holds the address of the closure. After storing the registers that could possibly contain parameters to be passed into the stack frame and setting up space for a return value, ffi_closure_SYSV invokes the following helper function to do most of the work. */ int ffi_closure_helper_SYSV (ffi_closure *closure, void *rvalue, unsigned long *pgr, ffi_dblfl *pfr, unsigned long *pst) { /* rvalue is the pointer to space for return value in closure assembly */ /* pgr is the pointer to where r3-r10 are stored in ffi_closure_SYSV */ /* pfr is the pointer to where f1-f8 are stored in ffi_closure_SYSV */ /* pst is the pointer to outgoing parameter stack in original caller */ void ** avalue; ffi_type ** arg_types; long i, avn; #ifndef __NO_FPRS__ long nf = 0; /* number of floating registers already used */ #endif long ng = 0; /* number of general registers already used */ ffi_cif *cif = closure->cif; unsigned size = cif->rtype->size; unsigned short rtypenum = cif->rtype->type; avalue = alloca (cif->nargs * sizeof (void *)); /* First translate for softfloat/nonlinux */ rtypenum = translate_float (cif->abi, rtypenum); /* Copy the caller's structure return value address so that the closure returns the data directly to the caller. For FFI_SYSV the result is passed in r3/r4 if the struct size is less or equal 8 bytes. */ if (rtypenum == FFI_TYPE_STRUCT && !((cif->abi & FFI_SYSV_STRUCT_RET) != 0 && size <= 8)) { rvalue = (void *) *pgr; ng++; pgr++; } i = 0; avn = cif->nargs; arg_types = cif->arg_types; /* Grab the addresses of the arguments from the stack frame. */ while (i < avn) { unsigned short typenum = arg_types[i]->type; /* We may need to handle some values depending on ABI. */ typenum = translate_float (cif->abi, typenum); switch (typenum) { #ifndef __NO_FPRS__ case FFI_TYPE_FLOAT: /* Unfortunately float values are stored as doubles in the ffi_closure_SYSV code (since we don't check the type in that routine). */ if (nf < NUM_FPR_ARG_REGISTERS) { /* FIXME? here we are really changing the values stored in the original calling routines outgoing parameter stack. This is probably a really naughty thing to do but... */ double temp = pfr->d; pfr->f = (float) temp; avalue[i] = pfr; nf++; pfr++; } else { avalue[i] = pst; pst += 1; } break; case FFI_TYPE_DOUBLE: if (nf < NUM_FPR_ARG_REGISTERS) { avalue[i] = pfr; nf++; pfr++; } else { if (((long) pst) & 4) pst++; avalue[i] = pst; pst += 2; } break; # if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: if (nf < NUM_FPR_ARG_REGISTERS - 1) { avalue[i] = pfr; pfr += 2; nf += 2; } else { if (((long) pst) & 4) pst++; avalue[i] = pst; pst += 4; nf = 8; } break; # endif #endif case FFI_TYPE_UINT128: /* Test if for the whole long double, 4 gprs are available. otherwise the stuff ends up on the stack. */ if (ng < NUM_GPR_ARG_REGISTERS - 3) { avalue[i] = pgr; pgr += 4; ng += 4; } else { avalue[i] = pst; pst += 4; ng = 8+4; } break; case FFI_TYPE_SINT8: case FFI_TYPE_UINT8: #ifndef __LITTLE_ENDIAN__ if (ng < NUM_GPR_ARG_REGISTERS) { avalue[i] = (char *) pgr + 3; ng++; pgr++; } else { avalue[i] = (char *) pst + 3; pst++; } break; #endif case FFI_TYPE_SINT16: case FFI_TYPE_UINT16: #ifndef __LITTLE_ENDIAN__ if (ng < NUM_GPR_ARG_REGISTERS) { avalue[i] = (char *) pgr + 2; ng++; pgr++; } else { avalue[i] = (char *) pst + 2; pst++; } break; #endif case FFI_TYPE_SINT32: case FFI_TYPE_UINT32: case FFI_TYPE_POINTER: if (ng < NUM_GPR_ARG_REGISTERS) { avalue[i] = pgr; ng++; pgr++; } else { avalue[i] = pst; pst++; } break; case FFI_TYPE_STRUCT: /* Structs are passed by reference. The address will appear in a gpr if it is one of the first 8 arguments. */ if (ng < NUM_GPR_ARG_REGISTERS) { avalue[i] = (void *) *pgr; ng++; pgr++; } else { avalue[i] = (void *) *pst; pst++; } break; case FFI_TYPE_SINT64: case FFI_TYPE_UINT64: /* Passing long long ints are complex, they must be passed in suitable register pairs such as (r3,r4) or (r5,r6) or (r6,r7), or (r7,r8) or (r9,r10) and if the entire pair aren't available then the outgoing parameter stack is used for both but an alignment of 8 must will be kept. So we must either look in pgr or pst to find the correct address for this type of parameter. */ if (ng < NUM_GPR_ARG_REGISTERS - 1) { if (ng & 1) { /* skip r4, r6, r8 as starting points */ ng++; pgr++; } avalue[i] = pgr; ng += 2; pgr += 2; } else { if (((long) pst) & 4) pst++; avalue[i] = pst; pst += 2; ng = NUM_GPR_ARG_REGISTERS; } break; default: FFI_ASSERT (0); } i++; } (closure->fun) (cif, rvalue, avalue, closure->user_data); /* Tell ffi_closure_SYSV how to perform return type promotions. Because the FFI_SYSV ABI returns the structures <= 8 bytes in r3/r4 we have to tell ffi_closure_SYSV how to treat them. We combine the base type FFI_SYSV_TYPE_SMALL_STRUCT with the size of the struct less one. We never have a struct with size zero. See the comment in ffitarget.h about ordering. */ if (rtypenum == FFI_TYPE_STRUCT && (cif->abi & FFI_SYSV_STRUCT_RET) != 0 && size <= 8) return FFI_SYSV_TYPE_SMALL_STRUCT - 1 + size; return rtypenum; } #endif