/* ----------------------------------------------------------------------- ffi.c - Copyright (c) 2013 Synopsys, Inc. (www.synopsys.com) ARC Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL RENESAS TECHNOLOGY BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include <ffi.h> #include <ffi_common.h> #include <stdlib.h> #include <stdint.h> #include <sys/cachectl.h> /* for little endian ARC, the code is in fact stored as mixed endian for performance reasons */ #if __BIG_ENDIAN__ #define CODE_ENDIAN(x) (x) #else #define CODE_ENDIAN(x) ( (((uint32_t) (x)) << 16) | (((uint32_t) (x)) >> 16)) #endif /* ffi_prep_args is called by the assembly routine once stack space has been allocated for the function's arguments. */ void ffi_prep_args (char *stack, extended_cif * ecif) { unsigned int i; int tmp; void **p_argv; char *argp; ffi_type **p_arg; tmp = 0; argp = stack; if (ecif->cif->rtype->type == FFI_TYPE_STRUCT) { *(void **) argp = ecif->rvalue; argp += 4; } p_argv = ecif->avalue; for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types; (i != 0); i--, p_arg++) { size_t z; int alignment; /* align alignment to 4 */ alignment = (((*p_arg)->alignment - 1) | 3) + 1; /* Align if necessary. */ if ((alignment - 1) & (unsigned) argp) argp = (char *) ALIGN (argp, alignment); z = (*p_arg)->size; if (z < sizeof (int)) { z = sizeof (int); switch ((*p_arg)->type) { case FFI_TYPE_SINT8: *(signed int *) argp = (signed int) *(SINT8 *) (*p_argv); break; case FFI_TYPE_UINT8: *(unsigned int *) argp = (unsigned int) *(UINT8 *) (*p_argv); break; case FFI_TYPE_SINT16: *(signed int *) argp = (signed int) *(SINT16 *) (*p_argv); break; case FFI_TYPE_UINT16: *(unsigned int *) argp = (unsigned int) *(UINT16 *) (*p_argv); break; case FFI_TYPE_STRUCT: memcpy (argp, *p_argv, (*p_arg)->size); break; default: FFI_ASSERT (0); } } else if (z == sizeof (int)) { *(unsigned int *) argp = (unsigned int) *(UINT32 *) (*p_argv); } else { if ((*p_arg)->type == FFI_TYPE_STRUCT) { memcpy (argp, *p_argv, z); } else { /* Double or long long 64bit. */ memcpy (argp, *p_argv, z); } } p_argv++; argp += z; } return; } /* Perform machine dependent cif processing. */ ffi_status ffi_prep_cif_machdep (ffi_cif * cif) { /* Set the return type flag. */ switch (cif->rtype->type) { case FFI_TYPE_VOID: cif->flags = (unsigned) cif->rtype->type; break; case FFI_TYPE_STRUCT: cif->flags = (unsigned) cif->rtype->type; break; case FFI_TYPE_SINT64: case FFI_TYPE_UINT64: case FFI_TYPE_DOUBLE: cif->flags = FFI_TYPE_DOUBLE; break; case FFI_TYPE_FLOAT: default: cif->flags = FFI_TYPE_INT; break; } return FFI_OK; } extern void ffi_call_ARCompact (void (*)(char *, extended_cif *), extended_cif *, unsigned, unsigned, unsigned *, void (*fn) (void)); void ffi_call (ffi_cif * cif, void (*fn) (void), void *rvalue, void **avalue) { extended_cif ecif; ecif.cif = cif; ecif.avalue = avalue; /* If the return value is a struct and we don't have a return value address then we need to make one. */ if ((rvalue == NULL) && (cif->rtype->type == FFI_TYPE_STRUCT)) { ecif.rvalue = alloca (cif->rtype->size); } else ecif.rvalue = rvalue; switch (cif->abi) { case FFI_ARCOMPACT: ffi_call_ARCompact (ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue, fn); break; default: FFI_ASSERT (0); break; } } int ffi_closure_inner_ARCompact (ffi_closure * closure, void *rvalue, ffi_arg * args) { void **arg_area, **p_argv; ffi_cif *cif = closure->cif; char *argp = (char *) args; ffi_type **p_argt; int i; arg_area = (void **) alloca (cif->nargs * sizeof (void *)); /* handle hidden argument */ if (cif->flags == FFI_TYPE_STRUCT) { rvalue = *(void **) argp; argp += 4; } p_argv = arg_area; for (i = 0, p_argt = cif->arg_types; i < cif->nargs; i++, p_argt++, p_argv++) { size_t z; int alignment; /* align alignment to 4 */ alignment = (((*p_argt)->alignment - 1) | 3) + 1; /* Align if necessary. */ if ((alignment - 1) & (unsigned) argp) argp = (char *) ALIGN (argp, alignment); z = (*p_argt)->size; *p_argv = (void *) argp; argp += z; } (closure->fun) (cif, rvalue, arg_area, closure->user_data); return cif->flags; } extern void ffi_closure_ARCompact (void); ffi_status ffi_prep_closure_loc (ffi_closure * closure, ffi_cif * cif, void (*fun) (ffi_cif *, void *, void **, void *), void *user_data, void *codeloc) { uint32_t *tramp = (uint32_t *) & (closure->tramp[0]); switch (cif->abi) { case FFI_ARCOMPACT: FFI_ASSERT (tramp == codeloc); tramp[0] = CODE_ENDIAN (0x200a1fc0); /* mov r8, pcl */ tramp[1] = CODE_ENDIAN (0x20200f80); /* j [long imm] */ tramp[2] = CODE_ENDIAN (ffi_closure_ARCompact); break; default: return FFI_BAD_ABI; } closure->cif = cif; closure->fun = fun; closure->user_data = user_data; cacheflush (codeloc, FFI_TRAMPOLINE_SIZE, BCACHE); return FFI_OK; }