#ifndef FILESYSTEM_TEST_HELPER_HPP #define FILESYSTEM_TEST_HELPER_HPP #include "filesystem_include.hpp" #include <cassert> #include <cstdio> // for printf #include <string> #include <fstream> #include <random> #include <chrono> #include <vector> #include <regex> #include "test_macros.h" #include "rapid-cxx-test.hpp" #include "format_string.hpp" // static test helpers #ifndef LIBCXX_FILESYSTEM_STATIC_TEST_ROOT #warning "STATIC TESTS DISABLED" #else // LIBCXX_FILESYSTEM_STATIC_TEST_ROOT namespace StaticEnv { inline fs::path makePath(fs::path const& p) { // env_path is expected not to contain symlinks. static const fs::path env_path = LIBCXX_FILESYSTEM_STATIC_TEST_ROOT; return env_path / p; } static const fs::path Root = LIBCXX_FILESYSTEM_STATIC_TEST_ROOT; static const fs::path TestFileList[] = { makePath("empty_file"), makePath("non_empty_file"), makePath("dir1/file1"), makePath("dir1/file2") }; const std::size_t TestFileListSize = sizeof(TestFileList) / sizeof(fs::path); static const fs::path TestDirList[] = { makePath("dir1"), makePath("dir1/dir2"), makePath("dir1/dir2/dir3") }; const std::size_t TestDirListSize = sizeof(TestDirList) / sizeof(fs::path); static const fs::path File = TestFileList[0]; static const fs::path Dir = TestDirList[0]; static const fs::path Dir2 = TestDirList[1]; static const fs::path Dir3 = TestDirList[2]; static const fs::path SymlinkToFile = makePath("symlink_to_empty_file"); static const fs::path SymlinkToDir = makePath("symlink_to_dir"); static const fs::path BadSymlink = makePath("bad_symlink"); static const fs::path DNE = makePath("DNE"); static const fs::path EmptyFile = TestFileList[0]; static const fs::path NonEmptyFile = TestFileList[1]; static const fs::path CharFile = "/dev/null"; // Hopefully this exists static const fs::path DirIterationList[] = { makePath("dir1/dir2"), makePath("dir1/file1"), makePath("dir1/file2") }; const std::size_t DirIterationListSize = sizeof(DirIterationList) / sizeof(fs::path); static const fs::path DirIterationListDepth1[] = { makePath("dir1/dir2/afile3"), makePath("dir1/dir2/dir3"), makePath("dir1/dir2/symlink_to_dir3"), makePath("dir1/dir2/file4"), }; static const fs::path RecDirIterationList[] = { makePath("dir1/dir2"), makePath("dir1/file1"), makePath("dir1/file2"), makePath("dir1/dir2/afile3"), makePath("dir1/dir2/dir3"), makePath("dir1/dir2/symlink_to_dir3"), makePath("dir1/dir2/file4"), makePath("dir1/dir2/dir3/file5") }; static const fs::path RecDirFollowSymlinksIterationList[] = { makePath("dir1/dir2"), makePath("dir1/file1"), makePath("dir1/file2"), makePath("dir1/dir2/afile3"), makePath("dir1/dir2/dir3"), makePath("dir1/dir2/file4"), makePath("dir1/dir2/dir3/file5"), makePath("dir1/dir2/symlink_to_dir3"), makePath("dir1/dir2/symlink_to_dir3/file5"), }; } // namespace StaticEnv #endif // LIBCXX_FILESYSTEM_STATIC_TEST_ROOT #ifndef LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT #warning LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT must be defined #else // LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT #ifndef LIBCXX_FILESYSTEM_DYNAMIC_TEST_HELPER #error LIBCXX_FILESYSTEM_DYNAMIC_TEST_HELPER must be defined #endif namespace random_utils { inline char to_hex(int ch) { return ch < 10 ? static_cast<char>('0' + ch) : static_cast<char>('a' + (ch - 10)); } inline char random_hex_char() { static std::mt19937 rd{std::random_device{}()}; static std::uniform_int_distribution<int> mrand{0, 15}; return to_hex(mrand(rd)); } } // namespace random_utils struct scoped_test_env { scoped_test_env() : test_root(random_env_path()) { fs_helper_run(fs_make_cmd("init_test_directory", test_root)); } ~scoped_test_env() { fs_helper_run(fs_make_cmd("destroy_test_directory", test_root)); } scoped_test_env(scoped_test_env const &) = delete; scoped_test_env & operator=(scoped_test_env const &) = delete; fs::path make_env_path(std::string p) { return sanitize_path(p); } std::string sanitize_path(std::string raw) { assert(raw.find("..") == std::string::npos); std::string const& root = test_root.native(); if (root.compare(0, root.size(), raw, 0, root.size()) != 0) { assert(raw.front() != '\\'); fs::path tmp(test_root); tmp /= raw; return std::move(const_cast<std::string&>(tmp.native())); } return raw; } std::string create_file(std::string filename, std::size_t size = 0) { filename = sanitize_path(std::move(filename)); std::string out_str(size, 'a'); { std::ofstream out(filename.c_str()); out << out_str; } return filename; } std::string create_dir(std::string filename) { filename = sanitize_path(std::move(filename)); fs_helper_run(fs_make_cmd("create_dir", filename)); return filename; } std::string create_symlink(std::string source, std::string to) { source = sanitize_path(std::move(source)); to = sanitize_path(std::move(to)); fs_helper_run(fs_make_cmd("create_symlink", source, to)); return to; } std::string create_hardlink(std::string source, std::string to) { source = sanitize_path(std::move(source)); to = sanitize_path(std::move(to)); fs_helper_run(fs_make_cmd("create_hardlink", source, to)); return to; } std::string create_fifo(std::string file) { file = sanitize_path(std::move(file)); fs_helper_run(fs_make_cmd("create_fifo", file)); return file; } // OS X and FreeBSD doesn't support socket files so we shouldn't even // allow tests to call this unguarded. #if !defined(__FreeBSD__) && !defined(__APPLE__) std::string create_socket(std::string file) { file = sanitize_path(std::move(file)); fs_helper_run(fs_make_cmd("create_socket", file)); return file; } #endif fs::path const test_root; private: static std::string unique_path_suffix() { std::string model = "test.%%%%%%"; for (auto & ch : model) { if (ch == '%') ch = random_utils::random_hex_char(); } return model; } // This could potentially introduce a filesystem race with other tests // running at the same time, but oh well, it's just test code. static inline fs::path random_env_path() { static const char* env_path = LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT; fs::path p = fs::path(env_path) / unique_path_suffix(); assert(p.parent_path() == env_path); return p; } static inline std::string make_arg(std::string const& arg) { return "'" + arg + "'"; } static inline std::string make_arg(std::size_t arg) { return std::to_string(arg); } template <class T> static inline std::string fs_make_cmd(std::string const& cmd_name, T const& arg) { return cmd_name + "(" + make_arg(arg) + ")"; } template <class T, class U> static inline std::string fs_make_cmd(std::string const& cmd_name, T const& arg1, U const& arg2) { return cmd_name + "(" + make_arg(arg1) + ", " + make_arg(arg2) + ")"; } static inline void fs_helper_run(std::string const& raw_cmd) { // check that the fs test root in the environment matches what we were // compiled with. static bool checked = checkDynamicTestRoot(); ((void)checked); std::string cmd = LIBCXX_FILESYSTEM_DYNAMIC_TEST_HELPER; cmd += " \"" + raw_cmd + "\""; int ret = std::system(cmd.c_str()); assert(ret == 0); } static bool checkDynamicTestRoot() { // LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT is expected not to contain symlinks. char* fs_root = std::getenv("LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT"); if (!fs_root) { std::printf("ERROR: LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT must be a defined " "environment variable when running the test.\n"); std::abort(); } if (std::string(fs_root) != LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT) { std::printf("ERROR: LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT environment variable" " must have the same value as when the test was compiled.\n"); std::printf(" Current Value: '%s'\n", fs_root); std::printf(" Expected Value: '%s'\n", LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT); std::abort(); } return true; } }; #endif // LIBCXX_FILESYSTEM_DYNAMIC_TEST_ROOT // Misc test types #define CONCAT2(LHS, RHS) LHS##RHS #define CONCAT(LHS, RHS) CONCAT2(LHS, RHS) #define MKSTR(Str) {Str, CONCAT(L, Str), CONCAT(u, Str), CONCAT(U, Str)} struct MultiStringType { const char* s; const wchar_t* w; const char16_t* u16; const char32_t* u32; operator const char* () const { return s; } operator const wchar_t* () const { return w; } operator const char16_t* () const { return u16; } operator const char32_t* () const { return u32; } }; const MultiStringType PathList[] = { MKSTR(""), MKSTR(" "), MKSTR("//"), MKSTR("."), MKSTR(".."), MKSTR("foo"), MKSTR("/"), MKSTR("/foo"), MKSTR("foo/"), MKSTR("/foo/"), MKSTR("foo/bar"), MKSTR("/foo/bar"), MKSTR("//net"), MKSTR("//net/foo"), MKSTR("///foo///"), MKSTR("///foo///bar"), MKSTR("/."), MKSTR("./"), MKSTR("/.."), MKSTR("../"), MKSTR("foo/."), MKSTR("foo/.."), MKSTR("foo/./"), MKSTR("foo/./bar"), MKSTR("foo/../"), MKSTR("foo/../bar"), MKSTR("c:"), MKSTR("c:/"), MKSTR("c:foo"), MKSTR("c:/foo"), MKSTR("c:foo/"), MKSTR("c:/foo/"), MKSTR("c:/foo/bar"), MKSTR("prn:"), MKSTR("c:\\"), MKSTR("c:\\foo"), MKSTR("c:foo\\"), MKSTR("c:\\foo\\"), MKSTR("c:\\foo/"), MKSTR("c:/foo\\bar"), MKSTR("//"), MKSTR("/finally/we/need/one/really/really/really/really/really/really/really/long/string") }; const unsigned PathListSize = sizeof(PathList) / sizeof(MultiStringType); template <class Iter> Iter IterEnd(Iter B) { using VT = typename std::iterator_traits<Iter>::value_type; for (; *B != VT{}; ++B) ; return B; } template <class CharT> const CharT* StrEnd(CharT const* P) { return IterEnd(P); } template <class CharT> std::size_t StrLen(CharT const* P) { return StrEnd(P) - P; } // Testing the allocation behavior of the code_cvt functions requires // *knowing* that the allocation was not done by "path::__str_". // This hack forces path to allocate enough memory. inline void PathReserve(fs::path& p, std::size_t N) { auto const& native_ref = p.native(); const_cast<std::string&>(native_ref).reserve(N); } template <class Iter1, class Iter2> bool checkCollectionsEqual( Iter1 start1, Iter1 const end1 , Iter2 start2, Iter2 const end2 ) { while (start1 != end1 && start2 != end2) { if (*start1 != *start2) { return false; } ++start1; ++start2; } return (start1 == end1 && start2 == end2); } template <class Iter1, class Iter2> bool checkCollectionsEqualBackwards( Iter1 const start1, Iter1 end1 , Iter2 const start2, Iter2 end2 ) { while (start1 != end1 && start2 != end2) { --end1; --end2; if (*end1 != *end2) { return false; } } return (start1 == end1 && start2 == end2); } // We often need to test that the error_code was cleared if no error occurs // this function returns an error_code which is set to an error that will // never be returned by the filesystem functions. inline std::error_code GetTestEC(unsigned Idx = 0) { using std::errc; auto GetErrc = [&]() { switch (Idx) { case 0: return errc::address_family_not_supported; case 1: return errc::address_not_available; case 2: return errc::address_in_use; case 3: return errc::argument_list_too_long; default: assert(false && "Idx out of range"); std::abort(); } }; return std::make_error_code(GetErrc()); } inline bool ErrorIsImp(const std::error_code& ec, std::vector<std::errc> const& errors) { for (auto errc : errors) { if (ec == std::make_error_code(errc)) return true; } return false; } template <class... ErrcT> inline bool ErrorIs(const std::error_code& ec, std::errc First, ErrcT... Rest) { std::vector<std::errc> errors = {First, Rest...}; return ErrorIsImp(ec, errors); } // Provide our own Sleep routine since std::this_thread::sleep_for is not // available in single-threaded mode. void SleepFor(std::chrono::seconds dur) { using namespace std::chrono; #if defined(_LIBCPP_HAS_NO_MONOTONIC_CLOCK) using Clock = system_clock; #else using Clock = steady_clock; #endif const auto wake_time = Clock::now() + dur; while (Clock::now() < wake_time) ; } inline bool PathEq(fs::path const& LHS, fs::path const& RHS) { return LHS.native() == RHS.native(); } struct ExceptionChecker { std::errc expected_err; fs::path expected_path1; fs::path expected_path2; unsigned num_paths; const char* func_name; std::string opt_message; explicit ExceptionChecker(std::errc first_err, const char* func_name, std::string opt_msg = {}) : expected_err{first_err}, num_paths(0), func_name(func_name), opt_message(opt_msg) {} explicit ExceptionChecker(fs::path p, std::errc first_err, const char* func_name, std::string opt_msg = {}) : expected_err(first_err), expected_path1(p), num_paths(1), func_name(func_name), opt_message(opt_msg) {} explicit ExceptionChecker(fs::path p1, fs::path p2, std::errc first_err, const char* func_name, std::string opt_msg = {}) : expected_err(first_err), expected_path1(p1), expected_path2(p2), num_paths(2), func_name(func_name), opt_message(opt_msg) {} void operator()(fs::filesystem_error const& Err) { TEST_CHECK(ErrorIsImp(Err.code(), {expected_err})); TEST_CHECK(Err.path1() == expected_path1); TEST_CHECK(Err.path2() == expected_path2); LIBCPP_ONLY(check_libcxx_string(Err)); } void check_libcxx_string(fs::filesystem_error const& Err) { std::string message = std::make_error_code(expected_err).message(); std::string additional_msg = ""; if (!opt_message.empty()) { additional_msg = opt_message + ": "; } auto transform_path = [](const fs::path& p) { if (p.native().empty()) return "\"\""; return p.c_str(); }; std::string format = [&]() -> std::string { switch (num_paths) { case 0: return format_string("filesystem error: in %s: %s%s", func_name, additional_msg, message); case 1: return format_string("filesystem error: in %s: %s%s [%s]", func_name, additional_msg, message, transform_path(expected_path1)); case 2: return format_string("filesystem error: in %s: %s%s [%s] [%s]", func_name, additional_msg, message, transform_path(expected_path1), transform_path(expected_path2)); default: TEST_CHECK(false && "unexpected case"); return ""; } }(); TEST_CHECK(format == Err.what()); if (format != Err.what()) { fprintf(stderr, "filesystem_error::what() does not match expected output:\n"); fprintf(stderr, " expected: \"%s\"\n", format.c_str()); fprintf(stderr, " actual: \"%s\"\n\n", Err.what()); } } ExceptionChecker(ExceptionChecker const&) = delete; ExceptionChecker& operator=(ExceptionChecker const&) = delete; }; #endif /* FILESYSTEM_TEST_HELPER_HPP */